Search results for: NPI processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3718

Search results for: NPI processing

3178 The Usage of Nitrogen Gas and Alum for Sludge Dewatering

Authors: Mamdouh Yousef Saleh, Medhat Hosny El-Zahar, Shymaa El-Dosoky

Abstract:

In most cases, the associated processing cost of dewatering sludge increase with the solid particles concentration. All experiments in this study were conducted on biological sludge type. All experiments help to reduce the greenhouse gases in addition, the technology used was faster in time and less in cost compared to other methods. First, the bubbling pressure was used to dissolve N₂ gas into the sludge, second alum was added to accelerate the process of coagulation of the sludge particles and facilitate their flotation, and third nitrogen gas was used to help floating the sludge particles and reduce the processing time because of the nitrogen gas from the inert gases. The conclusions of this experiment were as follows: first, the best conditions were obtained when the bubbling pressure was 0.6 bar. Second, the best alum dose was determined to help the sludge agglomerate and float. During the experiment, the best alum dose was 80 mg/L. It increased concentration of the sludge by 7-8 times. Third, the economic dose of nitrogen gas was 60 mg/L with separation efficiency of 85%. The sludge concentration was about 8-9 times. That happened due to the gas released tiny bubbles which adhere to the suspended matter causing them to float to the surface of the water where it could be then removed.

Keywords: nitrogen gas, biological treatment, alum, dewatering sludge, greenhouse gases

Procedia PDF Downloads 221
3177 The Impact of Recurring Events in Fake News Detection

Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair

Abstract:

Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.

Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM

Procedia PDF Downloads 29
3176 Efficient Reconstruction of DNA Distance Matrices Using an Inverse Problem Approach

Authors: Boris Melnikov, Ye Zhang, Dmitrii Chaikovskii

Abstract:

We continue to consider one of the cybernetic methods in computational biology related to the study of DNA chains. Namely, we are considering the problem of reconstructing the not fully filled distance matrix of DNA chains. When applied in a programming context, it is revealed that with a modern computer of average capabilities, creating even a small-sized distance matrix for mitochondrial DNA sequences is quite time-consuming with standard algorithms. As the size of the matrix grows larger, the computational effort required increases significantly, potentially spanning several weeks to months of non-stop computer processing. Hence, calculating the distance matrix on conventional computers is hardly feasible, and supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains; then, we published algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. In this paper, we propose an algorithm for restoring the distance matrix for DNA chains, and the primary focus is on enhancing the algorithms that shape the greedy function within the branches and boundaries method framework.

Keywords: DNA chains, distance matrix, optimization problem, restoring algorithm, greedy algorithm, heuristics

Procedia PDF Downloads 123
3175 IIROC's Enforcement Performance: Funnel in, Funnel out, and Funnel away

Authors: Mark Lokanan

Abstract:

The paper analyzes the processing of complaints against investment brokers and dealer members through the Investment Industry Regulatory Organization of Canada (IIROC) from 2008 to 2017. IIROC is the self-regulatory organization (SRO) that is responsible for policing investment dealers and brokerage firms that trade in Canada’s securities market. Data from the study came from IIROC's enforcement annual reports for the years examined. The case processing is evaluated base on the misconduct funnel that was originally designed for street crime and applies to the enforcement of investment fraud. The misconduct funnel is used as a framework to examine IIROC’s claim that it brought in more complaints (funnel in) than government regulators and shows how these complaints are funneled out and funneled away as they are processed through IIROC’s enforcement system. The results indicate that IIROC is ineffective in disciplining its members and is unable to handle the more serious quasi-criminal and improper sales practices offenses. It is hard not to see the results of the paper being used by the legislator in Ottawa to show the importance of a federal securities regulatory agency such as the Securities and Exchange Commission (SEC) in the United States.

Keywords: investment fraud, securities regulation, compliance, enforcement

Procedia PDF Downloads 165
3174 Detecting Paraphrases in Arabic Text

Authors: Amal Alshahrani, Allan Ramsay

Abstract:

Paraphrasing is one of the important tasks in natural language processing; i.e. alternative ways to express the same concept by using different words or phrases. Paraphrases can be used in many natural language applications, such as Information Retrieval, Machine Translation, Question Answering, Text Summarization, or Information Extraction. To obtain pairs of sentences that are paraphrases we create a system that automatically extracts paraphrases from a corpus, which is built from different sources of news article since these are likely to contain paraphrases when they report the same event on the same day. There are existing simple standard approaches (e.g. TF-IDF vector space, cosine similarity) and alignment technique (e.g. Dynamic Time Warping (DTW)) for extracting paraphrase which have been applied to the English. However, the performance of these approaches could be affected when they are applied to another language, for instance Arabic language, due to the presence of phenomena which are not present in English, such as Free Word Order, Zero copula, and Pro-dropping. These phenomena will affect the performance of these algorithms. Thus, if we can analysis how the existing algorithms for English fail for Arabic then we can find a solution for Arabic. The results are promising.

Keywords: natural language processing, TF-IDF, cosine similarity, dynamic time warping (DTW)

Procedia PDF Downloads 392
3173 Leveraging Sentiment Analysis for Quality Improvement in Digital Healthcare Services

Authors: Naman Jain, Shaun Fernandes

Abstract:

With the increasing prevalence of online healthcare services, selecting the most suitable doctor has become a complex task, requiring careful consideration of both public sentiment and personal preferences. This paper proposes a sentiment analysis-driven method that integrates public reviews with user-specific criteria and correlated attributes to recommend online doctors. By leveraging Natural Language Processing (NLP) techniques, public sentiment is extracted from online reviews, which is then combined with user-defined preferences such as specialty, years of experience, location, and consultation fees. Additionally, correlated attributes like education and certifications are incorporated to enhance the recommendation accuracy. Experimental results demonstrate that the proposed system significantly improves user satisfaction by providing personalized doctor recommendations that align with both public opinion and individual needs.

Keywords: sentiment analysis, online doctors, personal preferences, correlated attributes, recommendation system, healthcare, natural language processing

Procedia PDF Downloads 16
3172 Magnesium Alloys Containing Y, Gd and Ca with Enhanced Ignition Temperature and Mechanical Properties for Aviation Applications

Authors: Jiří Kubásek, Peter Minárik, Klára Hosová, Stanislav Šašek, Jozef Veselý, Jitka Stráská, Drahomír Dvorský, Dalibor Vojtěch, Miloš Janeček

Abstract:

Mg-2Y-2Gd-1Ca and Mg-4Y-4Gd-2Ca alloys were processed by extrusion or equal channel angular pressing (ECAP) to analyse the effect of the microstructure on ignition temperature, mechanical properties and corrosion resistance. The alloys are characterized by good mechanical properties and exceptionally high ignition temperature, which is a critical safety measure. The effect of extrusion and ECAP on the microstructure, mechanical properties and ignition temperature was studied. The obtained results indicated a substantial effect of the processing conditions on the average grain size, the recrystallized fraction and texture formation. Both alloys featured a high strength, depending on the composition and processing condition, and a high ignition temperature of ≈1100 °C (Mg-4Y-4Gd-2Ca) and ≈950 °C (Mg-2Y-2Gd-1Ca), which was attributed to the synergic effect of Y, Gd and Ca oxides, with the dominant effect of Y₂O₃. The achieved combination of enhanced mechanical properties and the ignition temperature makes these alloys a prominent candidate for aircraft applications.

Keywords: magnesium alloys, enhanced ignition temperature, mechanical properties, ECAP

Procedia PDF Downloads 114
3171 When Messages Cause Distraction from Advertising: An Eye-Tracking Study

Authors: Nilamadhab Mohanty

Abstract:

It is essential to use message formats that make communication understandable and correct. It is because; the information format can influence consumer decision on the purchase of a product. This study combines information from qualitative inquiry, media trend analysis, eye tracking experiment, and questionnaire data to examine the impact of specific message format and consumer perceived risk on attention to the information and risk retention. We investigated the influence of message framing (goal framing, attribute framing, and mix framing) on consumer memory, study time, and decisional uncertainty while deciding on the purchase of drugs. Furthermore, we explored the impact of consumer perceived risk (associated with the use of the drug, i.e., RISK-AB and perceived risk associated with the non-use of the drug, i.e., RISK-EB) on message format preference. The study used eye-tracking methods to understand the differences in message processing. Findings of the study suggest that the message format influences information processing, and participants' risk perception impacts message format preference. Eye tracking can be used to understand the format differences and design effective advertisements.

Keywords: message framing, consumer perceived risk, advertising, eye tracking

Procedia PDF Downloads 127
3170 Cicadas: A Clinician-assisted, Closed-loop Technology, Mobile App for Adolescents with Autism Spectrum Disorders

Authors: Bruno Biagianti, Angela Tseng, Kathy Wannaviroj, Allison Corlett, Megan DuBois, Kyu Lee, Suma Jacob

Abstract:

Background: ASD is characterized by pervasive Sensory Processing Abnormalities (SPA) and social cognitive deficits that persist throughout the course of the illness and have been linked to functional abnormalities in specific neural systems that underlie the perception, processing, and representation of sensory information. SPA and social cognitive deficits are associated with difficulties in interpersonal relationships, poor development of social skills, reduced social interactions and lower academic performance. Importantly, they can hamper the effects of established evidence-based psychological treatments—including PEERS (Program for the Education and Enrichment of Relationship Skills), a parent/caregiver-assisted, 16-weeks social skills intervention—which nonetheless requires a functional brain capable of assimilating and retaining information and skills. As a matter of fact, some adolescents benefit from PEERS more than others, calling for strategies to increase treatment response rates. Objective: We will present interim data on CICADAS (Care Improving Cognition for ADolescents on the Autism Spectrum)—a clinician-assisted, closed-loop technology mobile application for adolescents with ASD. Via ten mobile assessments, CICADAS captures data on sensory processing abnormalities and associated cognitive deficits. These data populate a machine learning algorithm that tailors the delivery of ten neuroplasticity-based social cognitive training (NB-SCT) exercises targeting sensory processing abnormalities. Methods: In collaboration with the Autism Spectrum and Neurodevelopmental Disorders Clinic at the University of Minnesota, we conducted a fully remote, three-arm, randomized crossover trial with adolescents with ASD to document the acceptability of CICADAS and evaluate its potential as a stand-alone treatment or as a treatment enhancer of PEERS. Twenty-four adolescents with ASD (ages 11-18) have been initially randomized to 16 weeks of PEERS + CICADAS (Arm A) vs. 16 weeks of PEERS + computer games vs. 16 weeks of CICADAS alone (Arm C). After 16 weeks, the full battery of assessments has been remotely administered. Results: We have evaluated the acceptability of CICADAS by examining adherence rates, engagement patterns, and exit survey data. We found that: 1) CICADAS is able to serve as a treatment enhancer for PEERS, inducing greater improvements in sensory processing, cognition, symptom reduction, social skills and behaviors, as well as the quality of life compared to computer games; 2) the concurrent delivery of PEERS and CICADAS induces greater improvements in study outcomes compared to CICADAS only. Conclusion: While preliminary, our results indicate that the individualized assessment and treatment approach designed in CICADAS seems effective in inducing adaptive long-term learning about social-emotional events. CICADAS-induced enhancement of processing and cognition facilitates the application of PEERS skills in the environment of adolescents with ASD, thus improving their real-world functioning.

Keywords: ASD, social skills, cognitive training, mobile app

Procedia PDF Downloads 218
3169 Efficacy of Microwave against Oryzaephilus Mercator Pest Infesting Dried Figs and Evaluation of the Product Color Changes Using an Image Processing Technique

Authors: Reza Sadeghi

Abstract:

In this study, microwave heating was employed for controlling Oryzaephilus mercator. adults infesting stored Iranian dried fig. For this purpose, the dried fig samples were artificially infested with O. mercator and then heated in a microwave oven (2450 MHz) at the power outputs of 450, 720, and 900 W for 10, 20, 30, and 40 s, respectively. Subsequently, changes in the colors of the product samples under the effects of the varied microwave applications were investigated in terms of lightness (ΔL*), redness (Δa*), and yellowness (Δb*) using an image processing technique. The results revealed that both parameters of microwave power and exposure time had significant impacts on the pest mortality rates (p<0.01). In fact, a direct positive relationship was obtained between the mortality rate and microwave irradiation power. Complete mortality was achieved for the pest at the power of 900 W and exposure time of 40 s. The dried fig samples experienced fewer changes in their color parameters. Considering the successful pest control and acceptable changes in the product quality, microwave irradiation can be introduced as an appropriate alternative to chemical fumigants.

Keywords: colorimetric assay, microwave heating, Oryzaephilus mercator, mortality

Procedia PDF Downloads 92
3168 A Supervised Approach for Word Sense Disambiguation Based on Arabic Diacritics

Authors: Alaa Alrakaf, Sk. Md. Mizanur Rahman

Abstract:

Since the last two decades’ Arabic natural language processing (ANLP) has become increasingly much more important. One of the key issues related to ANLP is ambiguity. In Arabic language different pronunciation of one word may have a different meaning. Furthermore, ambiguity also has an impact on the effectiveness and efficiency of Machine Translation (MT). The issue of ambiguity has limited the usefulness and accuracy of the translation from Arabic to English. The lack of Arabic resources makes ambiguity problem more complicated. Additionally, the orthographic level of representation cannot specify the exact meaning of the word. This paper looked at the diacritics of Arabic language and used them to disambiguate a word. The proposed approach of word sense disambiguation used Diacritizer application to Diacritize Arabic text then found the most accurate sense of an ambiguous word using Naïve Bayes Classifier. Our Experimental study proves that using Arabic Diacritics with Naïve Bayes Classifier enhances the accuracy of choosing the appropriate sense by 23% and also decreases the ambiguity in machine translation.

Keywords: Arabic natural language processing, machine learning, machine translation, Naive bayes classifier, word sense disambiguation

Procedia PDF Downloads 363
3167 “Presently”: A Personal Trainer App to Self-Train and Improve Presentation Skills

Authors: Shyam Mehraaj, Samanthi E. R. Siriwardana, Shehara A. K. G. H., Wanigasinghe N. T., Wandana R. A. K., Wedage C. V.

Abstract:

A presentation is a critical tool for conveying not just spoken information but also a wide spectrum of human emotions. The single most effective thing to make the presentation successful is to practice it beforehand. Preparing for a presentation has been shown to be essential for improving emotional control, intonation and prosody, pronunciation, and vocabulary, as well as the quality of the presentation slides. As a result, practicing has become one of the most critical parts of giving a good presentation. In this research, the main focus is to analyze the audio, video, and slides of the presentation uploaded by the presenters. This proposed solution is based on the Natural Language Processing and Computer Vision techniques to cater to the requirement for the presenter to do a presentation beforehand using a mobile responsive web application. The proposed system will assist in practicing the presentation beforehand by identifying the presenters’ emotions, body language, tonality, prosody, pronunciations and vocabulary, and presentation slides quality. Overall, the system will give a rating and feedback to the presenter about the performance so that the presenters’ can improve their presentation skills.

Keywords: presentation, self-evaluation, natural learning processing, computer vision

Procedia PDF Downloads 121
3166 Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer

Authors: N. Metidji, N. Kasbadji Merzouk, O. Badaoui, R. Sellami, A. Djebli

Abstract:

The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste.

Keywords: solar energy, solar dryer, energy conversion, orange drying, forced convection solar dryer

Procedia PDF Downloads 359
3165 Thermo-Mechanical Processing of Armor Steel Plates

Authors: Taher El-Bitar, Maha El-Meligy, Eman El-Shenawy, Almosilhy Almosilhy, Nader Dawood

Abstract:

The steel contains 0.3% C and 0.004% B, beside Mn, Cr, Mo, and Ni. The alloy was processed by using 20-ton capacity electric arc furnace (EAF), and then refined by ladle furnace (LF). Liquid steel was cast as rectangular ingots. Dilatation test showed the critical transformation temperatures Ac1, Ac3, Ms and Mf as 716, 835, 356, and 218 °C. The ingots were austenitized and soaked and then rough rolled to thin slabs with 80 mm thickness. The thin slabs were then reheated and soaked for finish rolling to 6.0 mm thickness plates. During the rough rolling, the roll force increases as a result of rolling at temperatures less than recrystallization temperature. However, during finish rolling, the steel reflects initially continuous static recrystallization after which it shows strain hardening due to fall of temperature. It was concluded that, the steel plates were successfully heat treated by quenching-tempering at 250 ºC for 20 min.

Keywords: armor steel, austenitizing, critical transformation temperatures (CTTs), dilatation curve, martensite, quenching, rough and finish rolling processes, soaking, tempering, thermo-mechanical processing

Procedia PDF Downloads 348
3164 A Practical Survey on Zero-Shot Prompt Design for In-Context Learning

Authors: Yinheng Li

Abstract:

The remarkable advancements in large language models (LLMs) have brought about significant improvements in natural language processing tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single ”best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various Natural Language Processing (NLP) tasks.

Keywords: in-context learning, prompt engineering, zero-shot learning, large language models

Procedia PDF Downloads 88
3163 Effects of Extrusion Conditions on the Cooking Properties of Extruded Rice Vermicelli Using Twin-Screw Extrusion

Authors: Hasika Mith, Hassany Ly, Hengsim Phoung, Rathana Sovann, Pichmony Ek, Sokuntheary Theng

Abstract:

Rice is one of the most important crops used in the production of ready-to-cook (RTC) products such as rice vermicelli, noodles, rice paper, Banh Kanh, wine, snacks, and desserts. Meanwhile, extrusion is the most creative food processing method used for developing products with improved nutritional, functional, and sensory properties. This method authorizes process control such as mixing, cooking, and product shaping. Therefore, the objectives of this study were to produce rice vermicelli using a twin screw extruder, and the cooking properties of extruded rice vermicelli were investigated. Response Surface Methodology (RSM) with Box-Behnken design was applied to optimize extrusion conditions in order to achieve the most desirable product characteristics. The feed moisture rate (30–35%), the barrel temperature (90–110°C), and the screw speed (200–400 rpm) all play a big role and have a significant impact on the water absorption index (WAI), cooking yield (CY), and cooking loss (CL) of extrudate rice vermicelli. Results showed that the WAI of the final extruded rice vermicelli ranged between 216.97% and 571.90%. The CY ranged from 147.94 to 203.19%, while the CL ranged from 8.55 to 25.54%. The findings indicated that at a low screw speed or low temperature, there are likely to be more unbroken polymer chains and more hydrophilic groups, which can bind more water and make WAI values higher. The extruded rice vermicelli's cooking yield value had altered considerably after processing under various conditions, proving that the screw speed had little effect on each extruded rice vermicelli's CY. The increase in barrel temperature tended to increase cooking yield and reduce cooking loss. In conclusion, the extrusion processing by a twin-screw extruder had a significant effect on the cooking quality of the rice vermicelli extrudate.

Keywords: cooking loss, cooking quality, cooking yield, extruded rice vermicelli, twin-screw extruder, water absorption index

Procedia PDF Downloads 88
3162 A New Distributed Computing Environment Based On Mobile Agents for Massively Parallel Applications

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

In this paper, we propose a new distributed environment for High Performance Computing (HPC) based on mobile agents. It allows us to perform parallel programs execution as distributed one over a flexible grid constituted by a cooperative mobile agent team works. The distributed program to be performed is encapsulated on team leader agent which deploys its team workers as Agent Virtual Processing Unit (AVPU). Each AVPU is asked to perform its assigned tasks and provides the computational results which make the data and team works tasks management difficult for the team leader agent and that influence the performance computing. In this work we focused on the implementation of the Mobile Provider Agent (MPA) in order to manage the distribution of data and instructions and to ensure a load balancing model. It grants also some interesting mechanisms to manage the others computing challenges thanks to the mobile agents several skills.

Keywords: image processing, distributed environment, mobile agents, parallel and distributed computing

Procedia PDF Downloads 413
3161 Arc Plasma Application for Solid Waste Processing

Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).

Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator

Procedia PDF Downloads 252
3160 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 83
3159 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 151
3158 The Role of Executive Attention and Literacy on Consumer Memory

Authors: Fereshteh Nazeri Bahadori

Abstract:

In today's competitive environment, any company that aims to operate in a market, whether industrial or consumer markets, must know that it cannot address all the tastes and demands of customers at once and serve them all. The study of consumer memory is considered an important subject in marketing research, and many companies have conducted studies on this subject and the factors affecting it due to its importance. Therefore, the current study tries to investigate the relationship between consumers' attention, literacy, and memory. Memory has a very close relationship with learning. Memory is the collection of all the information that we have understood and stored. One of the important subjects in consumer behavior is information processing by the consumer. One of the important factors in information processing is the mental involvement of the consumer, which has attracted a lot of attention in the past two decades. Since consumers are the turning point of all marketing activities, successful marketing begins with understanding why and how consumers behave. Therefore, in the current study, the role of executive attention and literacy on consumers' memory has been investigated. The results showed that executive attention and literacy would play a significant role in the long-term and short-term memory of consumers.

Keywords: literacy, consumer memory, executive attention, psychology of consumer behavior

Procedia PDF Downloads 101
3157 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation

Authors: C. Bunsanit

Abstract:

This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.

Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband

Procedia PDF Downloads 229
3156 Effect of Some Metal Ions on the Activity of Lipase Produced by Aspergillus Niger Cultured on Vitellaria Paradoxa Shells

Authors: Abdulhakeem Sulyman, Olukotun Zainab, Hammed Abdulquadri

Abstract:

Lipases (triacylglycerol acyl hydrolases) (EC 3.1.1.3) are class of enzymes that catalyses the hydrolysis of triglycerides to glycerol and free fatty acids. They account for up to 10% of the enzyme in the market and have a wide range of applications in biofuel production, detergent formulation, leather processing and in food and feed processing industry. This research was conducted to study the effect of some metal ions on the activity of purified lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells. Purified lipase in 12.5 mM p-NPL was incubated with different metal ions (Zn²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Na⁺, K⁺ and Mg²⁺). The final concentrations of metal ions investigated were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mM. The results obtained from the study showed that Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ ions increased the activity of lipase up to 3.0, 3.0, 1.0, and 26.0 folds respectively. Lipase activity was partially inhibited by Na⁺ and Mg²⁺ with up to 88.5% and 83.7% loss of activity respectively. Lipase activity was also inhibited by K⁺ with up to 56.7% loss in the activity as compared to in the absence of metal ions. The study concluded that lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells can be activated by the presence of Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ and inhibited by Na⁺, K⁺ and Mg²⁺.

Keywords: Aspergillus niger, Vitellaria paradoxa, lipase, metal ions

Procedia PDF Downloads 155
3155 Online Monitoring Rheological Property of Polymer Melt during Injection Molding

Authors: Chung-Chih Lin, Chien-Liang Wu

Abstract:

The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.

Keywords: injection molding, melt viscosity, shear rate, monitoring

Procedia PDF Downloads 387
3154 Detection of Image Blur and Its Restoration for Image Enhancement

Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad

Abstract:

Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.

Keywords: image enhancement, motion analysis, motion detection, motion estimation

Procedia PDF Downloads 292
3153 Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion

Authors: Gavin Hutama Farandiarta, Hegi Adi Prabowo, Istiara Rizqillah Hanifah, Millati Hanifah Saprudin, Raden Iqrafia Ashna

Abstract:

The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again.

Keywords: petroleum sewage sludge, remediation soil, thermal desorption, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 256
3152 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life

Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar

Abstract:

In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.

Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home

Procedia PDF Downloads 116
3151 Deep Learning Based Road Crack Detection on an Embedded Platform

Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan

Abstract:

It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.

Keywords: deep learning, embedded platform, real-time processing, road crack detection

Procedia PDF Downloads 341
3150 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 277
3149 An ERP Study of Chinese Pseudo-Object Structures

Authors: Changyin Zhou

Abstract:

Verb-argument relation is a very important aspect of syntax-semantics interaction in sentence processing. Previous ERP (event related potentials) studies in this field mainly concentrated on the relation between the verb and its core arguments. The present study aims to reveal the ERP pattern of Chinese pseudo-object structures (SOSs), in which a peripheral argument is promoted to occupy the position of the patient object, as compared with the patient object structures (POSs). The ERP data were collected when participants were asked to perform acceptability judgments about Chinese phrases. Our result shows that, similar to the previous studies of number-of-argument violations, Chinese SOSs show a bilaterally distributed N400 effect. But different from all the previous studies of verb-argument relations, Chinese SOSs demonstrate a sustained anterior positivity (SAP). This SAP, which is the first report related to complexity of argument structure operation, reflects the integration difficulty of the newly promoted arguments and the progressive nature of well-formedness checking in the processing of Chinese SOSs.

Keywords: Chinese pseudo-object structures, ERP, sustained anterior positivity, verb-argument relation

Procedia PDF Downloads 436