Search results for: molecular modeling of Cdk5/p25
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5936

Search results for: molecular modeling of Cdk5/p25

446 Analytical and Numerical Studies on the Behavior of a Freezing Soil Layer

Authors: X. Li, Y. Liu, H. Wong, B. Pardoen, A. Fabbri, F. McGregor, E. Liu

Abstract:

The target of this paper is to investigate how saturated poroelastic soils subject to freezing temperatures behave and how different boundary conditions can intervene and affect the thermo-hydro-mechanical (THM) responses, based on a particular but classical configuration of a finite homogeneous soil layer studied by Terzaghi. The essential relations on the constitutive behavior of a freezing soil are firstly recalled: ice crystal - liquid water thermodynamic equilibrium, hydromechanical constitutive equations, momentum balance, water mass balance, and the thermal diffusion equation, in general, non-linear case where material parameters are state-dependent. The system of equations is firstly linearized, assuming all material parameters to be constants, particularly the permeability of liquid water, which should depend on the ice content. Two analytical solutions solved by the classic Laplace transform are then developed, accounting for two different sets of boundary conditions. Afterward, the general non-linear equations with state-dependent parameters are solved using a commercial code COMSOL based on finite elements method to obtain numerical results. The validity of this numerical modeling is partially verified using the analytical solution in the limiting case of state-independent parameters. Comparison between the results given by the linearized analytical solutions and the non-linear numerical model reveals that the above-mentioned linear computation will always underestimate the liquid pore pressure and displacement, whatever the hydraulic boundary conditions are. In the nonlinear model, the faster growth of ice crystals, accompanying the subsequent reduction of permeability of freezing soil layer, makes a longer duration for the depressurization of water liquid and slower settlement in the case where the ground surface is swiftly covered by a thin layer of ice, as well as a bigger global liquid pressure and swelling in the case of the impermeable ground surface. Nonetheless, the analytical solutions based on linearized equations give a correct order-of-magnitude estimate, especially at moderate temperature variations, and remain a useful tool for preliminary design checks.

Keywords: chemical potential, cryosuction, Laplace transform, multiphysics coupling, phase transformation, thermodynamic equilibrium

Procedia PDF Downloads 80
445 Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms

Authors: Pola Goldberg Oppenheimer, Stephan Hofmann, Sumeet Mahajan

Abstract:

Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms.

Keywords: carbon nanotubes (CNTs), EHD patterning, SERS, vertically aligned carbon nanotube forests (VACNTF)

Procedia PDF Downloads 331
444 Investigation of Mangrove Area Effects on Hydrodynamic Conditions of a Tidal Dominant Strait Near the Strait of Hormuz

Authors: Maryam Hajibaba, Mohsen Soltanpour, Mehrnoosh Abbasian, S. Abbas Haghshenas

Abstract:

This paper aims to evaluate the main role of mangroves forests on the unique hydrodynamic characteristics of the Khuran Strait (KS) in the Persian Gulf. Investigation of hydrodynamic conditions of KS is vital to predict and estimate sedimentation and erosion all over the protected areas north of Qeshm Island. KS (or Tang-e-Khuran) is located between Qeshm Island and the Iranian mother land and has a minimum width of approximately two kilometers. Hydrodynamics of the strait is dominated by strong tidal currents of up to 2 m/s. The bathymetry of the area is dynamic and complicated as 1) strong currents do exist in the area which lead to seemingly sand dune movements in the middle and southern parts of the strait, and 2) existence a vast area with mangrove coverage next to the narrowest part of the strait. This is why ordinary modeling schemes with normal mesh resolutions are not capable for high accuracy estimations of current fields in the KS. A comprehensive set of measurements were carried out with several components, to investigate the hydrodynamics and morpho-dynamics of the study area, including 1) vertical current profiling at six stations, 2) directional wave measurements at four stations, 3) water level measurements at six stations, 4) wind measurements at one station, and 5) sediment grab sampling at 100 locations. Additionally, a set of periodic hydrographic surveys was included in the program. The numerical simulation was carried out by using Delft3D – Flow Module. Model calibration was done by comparing water levels and depth averaged velocity of currents against available observational data. The results clearly indicate that observed data and simulations only fit together if a realistic perspective of the mangrove area is well captured by the model bathymetry data. Generating unstructured grid by using RGFGRID and QUICKIN, the flow model was driven with water level time-series at open boundaries. Adopting the available field data, the key role of mangrove area on the hydrodynamics of the study area can be studied. The results show that including the accurate geometry of the mangrove area and consideration of its sponge-like behavior are the key aspects through which a realistic current field can be simulated in the KS.

Keywords: Khuran Strait, Persian Gulf, tide, current, Delft3D

Procedia PDF Downloads 210
443 Investigate the Competencies Required for Sustainable Entrepreneurship Development in Agricultural Higher Education

Authors: Ehsan Moradi, Parisa Paikhaste, Amir Alam Beigi, Seyedeh Somayeh Bathaei

Abstract:

The need for entrepreneurial sustainability is as important as the entrepreneurship category itself. By transferring competencies in a sustainable entrepreneurship framework, entrepreneurship education can make a significant contribution to the effectiveness of businesses, especially for start-up entrepreneurs. This study analyzes the essential competencies of students in the development of sustainable entrepreneurship. It is an applied causal study in terms of nature and field in terms of data collection. The main purpose of this research project is to study and explain the dimensions of sustainability entrepreneurship competencies among agricultural students. The statistical population consists of 730 junior and senior undergraduate students of the Campus of Agriculture and Natural Resources, University of Tehran. The sample size was determined to be 120 using the Cochran's formula, and the convenience sampling method was used. Face validity, structure validity, and diagnostic methods were used to evaluate the validity of the research tool and Cronbach's alpha and composite reliability to evaluate its reliability. Structural equation modeling (SEM) was used by the confirmatory factor analysis (CFA) method to prepare a measurement model for data processing. The results showed that seven key dimensions play a role in shaping sustainable entrepreneurial development competencies: systems thinking competence (STC), embracing diversity and interdisciplinary (EDI), foresighted thinking (FTC), normative competence (NC), action competence (AC), interpersonal competence (IC), and strategic management competence (SMC). It was found that acquiring skills in SMC by creating the ability to plan to achieve sustainable entrepreneurship in students through the relevant mechanisms can improve entrepreneurship in students by adopting a sustainability attitude. While increasing students' analytical ability in the field of social and environmental needs and challenges and emphasizing curriculum updates, AC should pay more attention to the relationship between the curriculum and its content in the form of entrepreneurship culture promotion programs. In the field of EDI, it was found that the success of entrepreneurs in terms of sustainability and business sustainability of start-up entrepreneurs depends on their interdisciplinary thinking. It was also found that STC plays an important role in explaining the relationship between sustainability and entrepreneurship. Therefore, focusing on these competencies in agricultural education to train start-up entrepreneurs can lead to sustainable entrepreneurship in the agricultural higher education system.

Keywords: sustainable entrepreneurship, entrepreneurship education, competency, agricultural higher education

Procedia PDF Downloads 144
442 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 75
441 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 23
440 Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes

Authors: Valery Gulyayev, Sergey Glazunov, Elena Andrusenko, Nataliya Shlyun

Abstract:

Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization.

Keywords: curvilinear drilling, drill string tripping in and out, contact forces, resistance forces

Procedia PDF Downloads 146
439 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
438 A Reduced Ablation Model for Laser Cutting and Laser Drilling

Authors: Torsten Hermanns, Thoufik Al Khawli, Wolfgang Schulz

Abstract:

In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too.

Keywords: asymptotic ablation shape, interactive process simulation, laser drilling, laser cutting, metamodeling, reduced modeling

Procedia PDF Downloads 214
437 Effect of Endurance Training on Serum Chemerin Levels and Lipid Profile of Plasma in Obese Women

Authors: A. Moghadasein, M. Ghasemi, S. Fazelifar

Abstract:

Aim: Chemerin is a novel adipokine that play an important role in regulating lipid metabolism and abiogenesis. Chemerin is dependent on autocrine and paracrine signals for the differentiation and maturation of fat cells; it also regulates glucose uptake in fat cells and stimulates lipolysis. It has been reported that in adipocytes, chemerin enhances the insulin-stimulated glucose and causes the phosphorylation of tyrosine in Insulin receptor substrate. According to the studies, Chemerin may increase insulin sensitivity in adipose tissue and is largely associated with Body mass index, triglycerides, and blood pressure in those with normal glucose tolerance. There is limited information available regarding the effect of exercise training on serum chemerin concentrations. The purpose of this study was to investigate the effect of endurance training on serum chemerin levels and lipids of plasma in overweight women. Methodology: This study was a quasi-experimental research with a pre-post test design. After required examination and verification of high pressure by the physician, 22 obese subjects (age: 35.64±5.55 yr, weight: 75.62±9.30 kg, body mass index: 32.4±1.6 kg/m2) were randomly assigned to aerobic training (n= 12) and control (n= 12) groups. Participants completed a questionnaire indicating the lack of sports history during the past six months, the lack of anti-hypertension drugs use, hormone therapy, cardiovascular problems, and complete stoppage of menstrual cycle. Aerobic training was performed 3 times weekly for 8 weeks. Resting levels of chemerin plasma, metabolic parameters were measured prior to and after the intervention. The control group did not participate in any training program. In this study, ethical considerations included the complete description of the objectives to the study participants, ensuring the confidentiality of their information. Kolmogorov-Smirnov and Levin test were used for determining the normal distribution of data and homogeneity of variances, respectively. Analyze of variance with repeated measure were used to investigate the changes in the intra-group and the differences in inter-group of variables. Statistical operations were performed using SPSS 16 and the significance level of the tests was considered at P < 0.05. Results: After an 8 week aerobic training, levels of chemerin plasma were significantly decreased in aerobic trained group when compared with their control groups (p < 0.05).Concurrently, levels of HDL-c were significantly decreased (p < 0.05) whereas, levels of cholesterol, TG and LDL-c, showed no significant changes (p > 0.05). No significant correlations between chemerin levels and weight loss were observed in subjects with overweight women. Conclusion: The present study demonstrated, 8 weeks aerobic training, reduced serum chemerin concentrations in overweight women. Whereas, aerobic training exercise programmers affected the lipid profile response of obese subjects differently. However further research is warranted in order to unravel the molecular mechanism for the range of responses and the role of serum chemerin.

Keywords: chemerin, aerobic training, lipid profile, obese women

Procedia PDF Downloads 489
436 Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid

Authors: J. Roberto Lopez, Hened Saade, Graciela Morales, Javier Enriquez, Raul G. Lopez

Abstract:

Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier.

Keywords: aspirin, biocompatibility, biodegradable, Eudragit S100, methacrylic nanoparticles

Procedia PDF Downloads 140
435 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 54
434 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
433 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests

Authors: Huseyin Guler, Cigdem Kosar

Abstract:

The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.

Keywords: bridge estimators, HEGY test, model selection, seasonal unit root

Procedia PDF Downloads 340
432 Mixed Monolayer and PEG Linker Approaches to Creating Multifunctional Gold Nanoparticles

Authors: D. Dixon, J. Nicol, J. A. Coulter, E. Harrison

Abstract:

The ease with which they can be functionalized, combined with their excellent biocompatibility, make gold nanoparticles (AuNPs) ideal candidates for various applications in nanomedicine. Indeed several promising treatments are currently undergoing human clinical trials (CYT-6091 and Auroshell). A successful nanoparticle treatment must first evade the immune system, then accumulate within the target tissue, before enter the diseased cells and delivering the payload. In order to create a clinically relevant drug delivery system, contrast agent or radiosensitizer, it is generally necessary to functionalize the AuNP surface with multiple groups; e.g. Polyethylene Glycol (PEG) for enhanced stability, targeting groups such as antibodies, peptides for enhanced internalization, and therapeutic agents. Creating and characterizing the biological response of such complex systems remains a challenge. The two commonly used methods to attach multiple groups to the surface of AuNPs are the creation of a mixed monolayer, or by binding groups to the AuNP surface using a bi-functional PEG linker. While some excellent in-vitro and animal results have been reported for both approaches further work is necessary to directly compare the two methods. In this study AuNPs capped with both PEG and a Receptor Mediated Endocytosis (RME) peptide were prepared using both mixed monolayer and PEG linker approaches. The PEG linker used was SH-PEG-SGA which has a thiol at one end for AuNP attachment, and an NHS ester at the other to bind to the peptide. The work builds upon previous studies carried out at the University of Ulster which have investigated AuNP synthesis, the influence of PEG on stability in a range of media and investigated intracellular payload release. 18-19nm citrate capped AuNPs were prepared using the Turkevich method via the sodium citrate reduction of boiling 0.01wt% Chloroauric acid. To produce PEG capped AuNPs, the required amount of PEG-SH (5000Mw) or SH-PEG-SGA (3000Mw Jenkem Technologies) was added, and the solution stirred overnight at room temperature. The RME (sequence: CKKKKKKSEDEYPYVPN, Biomatik) co-functionalised samples were prepared by adding the required amount of peptide to the PEG capped samples and stirring overnight. The appropriate amounts of PEG-SH and RME peptide were added to the AuNP to produce a mixed monolayer consisting of approximately 50% PEG and 50% RME. The PEG linker samples were first fully capped with bi-functional PEG before being capped with RME peptide. An increase in diameter from 18-19mm for the ‘as synthesized’ AuNPs to 40-42nm after PEG capping was observed via DLS. The presence of PEG and RME peptide on both the mixed monolayer and PEG linker co-functionalized samples was confirmed by both FTIR and TGA. Bi-functional PEG linkers allow the entire AuNP surface to be capped with PEG, enabling in-vitro stability to be achieved using a lower molecular weight PEG. The approach also allows the entire outer surface to be coated with peptide or other biologically active groups, whilst also offering the promise of enhanced biological availability. The effect of mixed monolayer versus PEG linker attachment on both stability and non-specific protein corona interactions was also studied.

Keywords: nanomedicine, gold nanoparticles, PEG, biocompatibility

Procedia PDF Downloads 339
431 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 154
430 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 38
429 Functionalizing Gold Nanostars with Ninhydrin as Vehicle Molecule for Biomedical Applications

Authors: Swati Mishra

Abstract:

In recent years, there has been an explosion in Gold NanoParticle (GNP) research, with a rapid increase in publications in diverse fields, including imaging, bioengineering, and molecular biology. GNPs exhibit unique physicochemical properties, including surface plasmon resonance (SPR) and bind amine and thiol groups, allowing surface modification and use in biomedical applications. Nanoparticle functionalization is the subject of intense research at present, with rapid progress being made towards developing biocompatible, multi-functional particles. In the present study, the photochemical method has been done to functionalize various-shaped GNPs like nanostars by the molecules like ninhydrin. Ninhydrin is bactericidal, virucidal, fungicidal, antigen-antibody reactive, and used in fingerprint technology in forensics. The GNPs functionalized with ninhydrin efficiently will bind to the amino acids on the target protein, which is of eminent importance during the pandemic, especially where long-term treatments of COVID- 19 bring many side effects of the drugs. The photochemical method is adopted as it provides low thermal load, selective reactivity, selective activation, and controlled radiation in time, space, and energy. The GNPs exhibit their characteristic spectrum, but a distinctly blue or redshift in the peak will be observed after UV irradiation, ensuring efficient ninhydrin binding. Now, the bound ninhydrin in the GNP carrier, upon chemically reacting with any amino acid, will lead to the formation of Rhumann purple. A common method of GNP production includes citrate reduction of Au [III] derivatives such as aurochloric acid (HAuCl4) in water to Au [0] through a one-step synthesis of size-tunable GNPs. The following reagents are prepared to validate the approach. Reagent A solution 1 is0.0175 grams ninhydrin in 5 ml Millipore water Reagent B 30 µl of HAuCl₄.3H₂O in 3 ml of solution 1 Reagent C 1 µl of gold nanostars in 3 ml of solution 1 Reagent D 6 µl of cetrimonium bromide (CTAB) in 3 ml of solution1 ReagentE 1 µl of gold nanostars in 3 ml of ethanol ReagentF 30 µl of HAuCl₄.₃H₂O in 3 ml of ethanol ReagentG 30 µl of HAuCl₄.₃H₂O in 3 ml of solution 2 ReagentH solution 2 is0.0087 grams ninhydrin in 5 ml Millipore water ReagentI 30 µl of HAuCl₄.₃H₂O in 3 ml of water The reagents were irradiated at 254 nm for 15 minutes, followed by their UV Visible spectroscopy. The wavelength was selected based on the one reported for excitation of a similar molecule Pthalimide. It was observed that the solution B and G deviate around 600 nm, while C peaks distinctively at 567.25 nm and 983.9 nm. Though it is tough to say about the chemical reaction happening, butATR-FTIR of reagents will ensure that ninhydrin is not forming Rhumann purple in the absence of amino acids. Therefore, these experiments, we achieved the functionalization of gold nanostars with ninhydrin corroborated by the deviation in the spectrum obtained in a mixture of GNPs and ninhydrin irradiated with UV light. It prepares them as a carrier molecule totake up amino acids for targeted delivery or germicidal action.

Keywords: gold nanostars, ninhydrin, photochemical method, UV visible specgtroscopy

Procedia PDF Downloads 148
428 A Multi-Scale Study of Potential-Dependent Ammonia Synthesis on IrO₂ (110): DFT, 3D-RISM, and Microkinetic Modeling

Authors: Shih-Huang Pan, Tsuyoshi Miyazaki, Minoru Otani, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Ammonia (NH₃) is crucial in renewable energy and agriculture, yet its traditional production via the Haber-Bosch process faces challenges due to the inherent inertness of nitrogen (N₂) and the need for high temperatures and pressures. The electrocatalytic nitrogen reduction (ENRR) presents a more sustainable option, functioning at ambient conditions. However, its advancement is limited by selectivity and efficiency challenges due to the competing hydrogen evolution reaction (HER). The critical roles of protonation of N-species and HER highlight the necessity of selecting optimal catalysts and solvents to enhance ENRR performance. Notably, transition metal oxides, with their adjustable electronic states and excellent chemical and thermal stability, have shown promising ENRR characteristics. In this study, we use density functional theory (DFT) methods to investigate the ENRR mechanisms on IrO₂ (110), a material known for its tunable electronic properties and exceptional chemical and thermal stability. Employing the constant electrode potential (CEP) model, where the electrode - electrolyte interface is treated as a polarizable continuum with implicit solvation, and adjusting electron counts to equalize work functions in the grand canonical ensemble, we further incorporate the advanced 3D Reference Interaction Site Model (3D-RISM) to accurately determine the ENRR limiting potential across various solvents and pH conditions. Our findings reveal that the limiting potential for ENRR on IrO₂ (110) is significantly more favorable than for HER, highlighting the efficiency of the IrO₂ catalyst for converting N₂ to NH₃. This is supported by the optimal *NH₃ desorption energy on IrO₂, which enhances the overall reaction efficiency. Microkinetic simulations further predict a promising NH₃ production rate, even at the solution's boiling point¸ reinforcing the catalytic viability of IrO₂ (110). This comprehensive approach provides an atomic-level understanding of the electrode-electrolyte interface in ENRR, demonstrating the practical application of IrO₂ in electrochemical catalysis. The findings provide a foundation for developing more efficient and selective catalytic strategies, potentially revolutionizing industrial NH₃ production.

Keywords: density functional theory, electrocatalyst, nitrogen reduction reaction, electrochemistry

Procedia PDF Downloads 20
427 Bibliometric Analysis of Risk Assessment of Inland Maritime Accidents in Bangladesh

Authors: Armana Huq, Wahidur Rahman, Sanwar Kader

Abstract:

Inland waterways in Bangladesh play an important role in providing comfortable and low-cost transportation. However, a maritime accident takes away many lives and creates unwanted hazards every year. This article deals with a comprehensive review of inland waterway accidents in Bangladesh. Additionally, it includes a comparative study between international and local inland research studies based on maritime accidents. Articles from inland waterway areas are analyzed in-depth to make a comprehensive overview of the nature of the academic work, accident and risk management process and different statistical analyses. It is found that empirical analysis based on the available statistical data dominates the research domain. For this study, major maritime accident-related works in the last four decades in Bangladesh (1981-2020) are being analyzed for preparing a bibliometric analysis. A study of maritime accidents of passenger's vessels during (1995-2005) indicates that the predominant causes of accidents in the inland waterways of Bangladesh are collision and adverse weather (77%), out of which collision due to human error alone stands (56%) of all accidents. Another study refers that the major causes of waterway accidents are the collision (60.3%) during 2005-2015. About 92% of this collision occurs due to direct contact with another vessel during this period. Rest 8% of the collision occurs by contact with permanent obstruction on waterway roots. The overall analysis of another study from the last 25 years (1995-2019) shows that one of the main types of accidents is collisions, with about 50.3% of accidents being caused by collisions. The other accident types are cyclone or storm (17%), overload (11.3%), physical failure (10.3%), excessive waves (5.1%), and others (6%). Very few notable works are available in testing or comparing the methods, proposing new methods for risk management, modeling, uncertainty treatment. The purpose of this paper is to provide an overview of the evolution of marine accident-related research domain regarding inland waterway of Bangladesh and attempts to introduce new ideas and methods to abridge the gap between international and national inland maritime-related work domain which can be a catalyst for a safer and sustainable water transportation system in Bangladesh. Another fundamental objective of this paper is to navigate various national maritime authorities and international organizations to implement risk management processes for shipping accident prevention in waterway areas.

Keywords: inland waterways, safety, bibliometric analysis, risk management, accidents

Procedia PDF Downloads 182
426 Assessment of Cellular Metabolites and Impedance for Early Diagnosis of Oral Cancer among Habitual Smokers

Authors: Ripon Sarkar, Kabita Chaterjee, Ananya Barui

Abstract:

Smoking is one of the leading causes of oral cancer. Cigarette smoke affects various cellular parameters and alters molecular metabolism of cells. Epithelial cells losses their cytoskeleton structure, membrane integrity, cellular polarity that subsequently initiates the process of epithelial cells to mesenchymal transition due to long exposure of cigarette smoking. It changes the normal cellular metabolic activity which induces oxidative stress and enhances the reactive oxygen spices (ROS) formation. Excessive ROS and associated oxidative stress are considered to be a driving force in alteration in cellular phenotypes, polarity distribution and mitochondrial metabolism. Noninvasive assessment of such parameters plays essential role in development of routine screening system for early diagnosis of oral cancer. Electrical cell-substrate impedance sensing (ECIS) is one of such method applied for detection of cellular membrane impedance which can be correlated to cell membrane integrity. Present study intends to explore the alteration in cellular impedance along with the expression of cellular polarity molecules and cytoskeleton distributions in oral epithelial cells of habitual smokers and to correlate the outcome to that of clinically diagnosed oral leukoplakia and oral squamous cell carcinoma patients. Total 80 subjects were categorized into four study groups: nonsmoker (NS), cigarette smoker (CS), oral leukoplakia (OLPK) and oral squamous cell carcinoma (OSCC). Cytoskeleton distribution was analyzed by staining of actin filament and generation of ROS was measured using assay kit using standard protocol. Cell impedance was measured through ECIS method at different frequencies. Expression of E-cadherin and protease-activated receptor (PAR) proteins were observed through immune-fluorescence method. Distribution of actin filament is well organized in NS group however; distribution pattern was grossly varied in CS, OLPK and OSCC. Generation of ROS was low in NS which subsequently increased towards OSCC. Expressions of E-cadherin and change in cellular electrical impedance in different study groups indicated the hallmark of cancer progression from NS to OSCC. Expressions of E-cadherin, PAR protein, and cell impedance were decreased from NS to CS and farther OSCC. Generally, the oral epithelial cells exhibit apico-basal polarity however with cancer progression these cells lose their characteristic polarity distribution. In this study expression of polarity molecule and ECIS observation indicates such altered pattern of polarity among smoker group. Overall the present study monitored the alterations in intracellular ROS generation and cell metabolic function, membrane integrity in oral epithelial cells in cigarette smokers. Present study thus has clinical significance, and it may help in developing a noninvasive technique for early diagnosis of oral cancer amongst susceptible individuals.

Keywords: cigarette smoking, early oral cancer detection, electric cell-substrate impedance sensing, noninvasive screening

Procedia PDF Downloads 176
425 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building

Authors: A. Schuchter, M. Promegger

Abstract:

The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.

Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning

Procedia PDF Downloads 120
424 Disparities in Language Competence and Conflict: The Moderating Role of Cultural Intelligence in Intercultural Interactions

Authors: Catherine Peyrols Wu

Abstract:

Intercultural interactions are becoming increasingly common in organizations and life. These interactions are often the stage of miscommunication and conflict. In management research, these problems are commonly attributed to cultural differences in values and interactional norms. As a result, the notion that intercultural competence can minimize these challenges is widely accepted. Cultural differences, however, are not the only source of a challenge during intercultural interactions. The need to rely on a lingua franca – or common language between people who have different mother tongues – is another important one. In theory, a lingua franca can improve communication and ease coordination. In practice however, disparities in people’s ability and confidence to communicate in the language can exacerbate tensions and generate inefficiencies. In this study, we draw on power theory to develop a model of disparities in language competence and conflict in a multicultural work context. Specifically, we hypothesized that differences in language competence between interaction partners would be positively related to conflict such that people would report greater conflict with partners who have more dissimilar levels of language competence and lesser conflict with partners with more similar levels of language competence. Furthermore, we proposed that cultural intelligence (CQ) an intercultural competence that denotes an individual’s capability to be effective in intercultural situations, would weaken the relationship between disparities in language competence and conflict such that people would report less conflict with partners who have more dissimilar levels of language competence when the interaction partner has high CQ and more conflict when the partner has low CQ. We tested this model with a sample of 135 undergraduate students working in multicultural teams for 13 weeks. We used a round-robin design to examine conflict in 646 dyads nested within 21 teams. Results of analyses using social relations modeling provided support for our hypotheses. Specifically, we found that in intercultural dyads with large disparities in language competence, partners with the lowest level of language competence would report higher levels of interpersonal conflict. However, this relationship disappeared when the partner with higher language competence was also high in CQ. These findings suggest that communication in a lingua franca can be a source of conflict in intercultural collaboration when partners differ in their level of language competence and that CQ can alleviate these effects during collaboration with partners who have relatively lower levels of language competence. Theoretically, this study underscores the benefits of CQ as a complement to language competence for intercultural effectiveness. Practically, these results further attest to the benefits of investing resources to develop language competence and CQ in employees engaged in multicultural work.

Keywords: cultural intelligence, intercultural interactions, language competence, multicultural teamwork

Procedia PDF Downloads 165
423 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours

Authors: Fikret Yalcinkaya, Hamza Unsal

Abstract:

To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.

Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models

Procedia PDF Downloads 180
422 Using Structured Analysis and Design Technique Method for Unmanned Aerial Vehicle Components

Authors: Najeh Lakhoua

Abstract:

Introduction: Scientific developments and techniques for the systemic approach generate several names to the systemic approach: systems analysis, systems analysis, structural analysis. The main purpose of these reflections is to find a multi-disciplinary approach which organizes knowledge, creates universal language design and controls complex sets. In fact, system analysis is structured sequentially by steps: the observation of the system by various observers in various aspects, the analysis of interactions and regulatory chains, the modeling that takes into account the evolution of the system, the simulation and the real tests in order to obtain the consensus. Thus the system approach allows two types of analysis according to the structure and the function of the system. The purpose of this paper is to present an application of system analysis of Unmanned Aerial Vehicle (UAV) components in order to represent the architecture of this system. Method: There are various analysis methods which are proposed, in the literature, in to carry out actions of global analysis and different points of view as SADT method (Structured Analysis and Design Technique), Petri Network. The methodology adopted in order to contribute to the system analysis of an Unmanned Aerial Vehicle has been proposed in this paper and it is based on the use of SADT. In fact, we present a functional analysis based on the SADT method of UAV components Body, power supply and platform, computing, sensors, actuators, software, loop principles, flight controls and communications). Results: In this part, we present the application of SADT method for the functional analysis of the UAV components. This SADT model will be composed exclusively of actigrams. It starts with the main function ‘To analysis of the UAV components’. Then, this function is broken into sub-functions and this process is developed until the last decomposition level has been reached (levels A1, A2, A3 and A4). Recall that SADT techniques are semi-formal; however, for the same subject, different correct models can be built without having to know with certitude which model is the good or, at least, the best. In fact, this kind of model allows users a sufficient freedom in its construction and so the subjective factor introduces a supplementary dimension for its validation. That is why the validation step on the whole necessitates the confrontation of different points of views. Conclusion: In this paper, we presented an application of system analysis of Unmanned Aerial Vehicle components. In fact, this application of system analysis is based on SADT method (Structured Analysis Design Technique). This functional analysis proved the useful use of SADT method and its ability of describing complex dynamic systems.

Keywords: system analysis, unmanned aerial vehicle, functional analysis, architecture

Procedia PDF Downloads 204
421 Applying the Quad Model to Estimate the Implicit Self-Esteem of Patients with Depressive Disorders: Comparing the Psychometric Properties with the Implicit Association Test Effect

Authors: Yi-Tung Lin

Abstract:

Researchers commonly assess implicit self-esteem with the Implicit Association Test (IAT). The IAT’s measure, often referred to as the IAT effect, indicates the strengths of automatic preferences for the self relative to others, which is often considered an index of implicit self-esteem. However, based on the Dual-process theory, the IAT does not rely entirely on the automatic process; it is also influenced by a controlled process. The present study, therefore, analyzed the IAT data with the Quad model, separating four processes on the IAT performance: the likelihood that automatic association is activated by the stimulus in the trial (AC); that a correct response is discriminated in the trial (D); that the automatic bias is overcome in favor of a deliberate response (OB); and that when the association is not activated, and the individual fails to discriminate a correct answer, there is a guessing or response bias drives the response (G). The AC and G processes are automatic, while the D and OB processes are controlled. The AC parameter is considered as the strength of the association activated by the stimulus, which reflects what implicit measures of social cognition aim to assess. The stronger the automatic association between self and positive valence, the more likely it will be activated by a relevant stimulus. Therefore, the AC parameter was used as the index of implicit self-esteem in the present study. Meanwhile, the relationship between implicit self-esteem and depression is not fully investigated. In the cognitive theory of depression, it is assumed that the negative self-schema is crucial in depression. Based on this point of view, implicit self-esteem would be negatively associated with depression. However, the results among empirical studies are inconsistent. The aims of the present study were to examine the psychometric properties of the AC (i.e., test-retest reliability and its correlations with explicit self-esteem and depression) and compare it with that of the IAT effect. The present study had 105 patients with depressive disorders completing the Rosenberg Self-Esteem Scale, Beck Depression Inventory-II and the IAT on the pretest. After at least 3 weeks, the participants completed the second IAT. The data were analyzed by the latent-trait multinomial processing tree model (latent-trait MPT) with the TreeBUGS package in R. The result showed that the latent-trait MPT had a satisfactory model fit. The effect size of test-retest reliability of the AC and the IAT effect were medium (r = .43, p < .0001) and small (r = .29, p < .01) respectively. Only the AC showed a significant correlation with explicit self-esteem (r = .19, p < .05). Neither of the two indexes was correlated with depression. Collectively, the AC parameter was a satisfactory index of implicit self-esteem compared with the IAT effect. Also, the present study supported the results that implicit self-esteem was not correlated with depression.

Keywords: cognitive modeling, implicit association test, implicit self-esteem, quad model

Procedia PDF Downloads 127
420 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 133
419 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli

Authors: Ashima Sharma

Abstract:

Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.

Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding

Procedia PDF Downloads 209
418 Investigation of Processing Conditions on Rheological Features of Emulsion Gels and Oleogels Stabilized by Biopolymers

Authors: M. Sarraf, J. E. Moros, M. C. Sánchez

Abstract:

Oleogels are self-standing systems that are able to trap edible liquid oil into a tridimensional network and also help to use less fat by forming crystallization oleogelators. There are different ways to generate oleogelation and oil structuring, including direct dispersion, structured biphasic systems, oil sorption, and indirect method (emulsion-template). The selection of processing conditions as well as the composition of the oleogels is essential to obtain a stable oleogel with characteristics suitable for its purpose. In this sense, one of the ingredients widely used in food products to produce oleogels and emulsions is polysaccharides. Basil seed gum (BSG), with the scientific name Ocimum basilicum, is a new native polysaccharide with high viscosity and pseudoplastic behavior because of its high molecular weight in the food industry. Also, proteins can stabilize oil in water due to the presence of amino and carboxyl moieties that result in surface activity. Whey proteins are widely used in the food industry due to available, cheap ingredients, nutritional and functional characteristics such as emulsifier and a gelling agent, thickening, and water-binding capacity. In general, the interaction of protein and polysaccharides has a significant effect on the food structures and their stability, like the texture of dairy products, by controlling the interactions in macromolecular systems. Using edible oleogels as oil structuring helps for targeted delivery of a component trapped in a structural network. Therefore, the development of efficient oleogel is essential in the food industry. A complete understanding of the important points, such as the ratio oil phase, processing conditions, and concentrations of biopolymers that affect the formation and stability of the emulsion, can result in crucial information in the production of a suitable oleogel. In this research, the effects of oil concentration and pressure used in the manufacture of the emulsion prior to obtaining the oleogel have been evaluated through the analysis of droplet size and rheological properties of obtained emulsions and oleogels. The results show that the emulsion prepared in the high-pressure homogenizer (HPH) at higher pressure values has smaller droplet sizes and a higher uniformity in the size distribution curve. On the other hand, in relation to the rheological characteristics of the emulsions and oleogels obtained, the predominantly elastic character of the systems must be noted, as they present values of the storage modulus higher than those of losses, also showing an important plateau zone, typical of structured systems. In the same way, if steady-state viscous flow tests have been analyzed on both emulsions and oleogels, the result is that, once again, the pressure used in the homogenizer is an important factor for obtaining emulsions with adequate droplet size and the subsequent oleogel. Thus, various routes for trapping oil inside a biopolymer matrix with adjustable mechanical properties could be applied for the creation of the three-dimensional network in order to the oil absorption and creating oleogel.

Keywords: basil seed gum, particle size, viscoelastic properties, whey protein

Procedia PDF Downloads 66
417 Spatial Mapping of Variations in Groundwater of Taluka Islamkot Thar Using GIS and Field Data

Authors: Imran Aziz Tunio

Abstract:

Islamkot is an underdeveloped sub-district (Taluka) in the Tharparkar district Sindh province of Pakistan located between latitude 24°25'19.79"N to 24°47'59.92"N and longitude 70° 1'13.95"E to 70°32'15.11"E. The Islamkot has an arid desert climate and the region is generally devoid of perennial rivers, canals, and streams. It is highly dependent on rainfall which is not considered a reliable surface water source and groundwater is the only key source of water for many centuries. To assess groundwater’s potential, an electrical resistivity survey (ERS) was conducted in Islamkot Taluka. Groundwater investigations for 128 Vertical Electrical Sounding (VES) were collected to determine the groundwater potential and obtain qualitatively and quantitatively layered resistivity parameters. The PASI Model 16 GL-N Resistivity Meter was used by employing a Schlumberger electrode configuration, with half current electrode spacing (AB/2) ranging from 1.5 to 100 m and the potential electrode spacing (MN/2) from 0.5 to 10 m. The data was acquired with a maximum current electrode spacing of 200 m. The data processing for the delineation of dune sand aquifers involved the technique of data inversion, and the interpretation of the inversion results was aided by the use of forward modeling. The measured geo-electrical parameters were examined by Interpex IX1D software, and apparent resistivity curves and synthetic model layered parameters were mapped in the ArcGIS environment using the inverse Distance Weighting (IDW) interpolation technique. Qualitative interpretation of vertical electrical sounding (VES) data shows the number of geo-electrical layers in the area varies from three to four with different resistivity values detected. Out of 128 VES model curves, 42 nos. are 3 layered, and 86 nos. are 4 layered. The resistivity of the first subsurface layers (Loose surface sand) varied from 16.13 Ωm to 3353.3 Ωm and thickness varied from 0.046 m to 17.52m. The resistivity of the second subsurface layer (Semi-consolidated sand) varied from 1.10 Ωm to 7442.8 Ωm and thickness varied from 0.30 m to 56.27 m. The resistivity of the third subsurface layer (Consolidated sand) varied from 0.00001 Ωm to 3190.8 Ωm and thickness varied from 3.26 m to 86.66 m. The resistivity of the fourth subsurface layer (Silt and Clay) varied from 0.0013 Ωm to 16264 Ωm and thickness varied from 13.50 m to 87.68 m. The Dar Zarrouk parameters, i.e. longitudinal unit conductance S is from 0.00024 to 19.91 mho; transverse unit resistance T from 7.34 to 40080.63 Ωm2; longitudinal resistance RS is from 1.22 to 3137.10 Ωm and transverse resistivity RT from 5.84 to 3138.54 Ωm. ERS data and Dar Zarrouk parameters were mapped which revealed that the study area has groundwater potential in the subsurface.

Keywords: electrical resistivity survey, GIS & RS, groundwater potential, environmental assessment, VES

Procedia PDF Downloads 110