Search results for: career model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17381

Search results for: career model

11891 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin

Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin

Abstract:

The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.

Keywords: climate change, climatic model, dry events, precipitation projections

Procedia PDF Downloads 149
11890 Developing an Online Application for Mental Skills Training and Development

Authors: Arjun Goutham, Chaitanya Sridhar, Sunita Maheshwari, Robin Uthappa, Prasanna Gopinath

Abstract:

In alignment with the growth in the sporting industry, a number of people playing and competing in sports are growing exponentially across the globe. However, the number of sports psychology experts are not growing at a similar rate, especially in the Asian and more so, Indian context. Hence, the access to actionable mental training solutions specific to individual athletes is limited. Also, the time constraint an athlete faces due to their intense training schedule makes one-on-one sessions difficult. One of the means to bridge that gap is through technology. Technology makes individualization possible. It allows for easy access to specific-qualitative content/information and provides a medium to place individualized assessments, analysis, solutions directly into an athlete's hands. This enables mental training awareness, education, and real-time actionable solutions possible for athletes in-spite of the limitation of available sports psychology experts in their region. Furthermore, many athletes are hesitant to seek support due to the stigma of appearing weak. Such individuals would prefer a more discreet way. Athletes who have strong mental performance tend to produce better results. The mobile application helps to equip athletes with assessing and developing their mental strategies directed towards improving performance on an ongoing basis. When an athlete understands their strengths and limitations in their mental application, they can focus specifically on applying the strategies that work and improve on zones of limitation. With reports, coaches get to understand the unique inner workings of an athlete and can utilize the data & analysis to coach them with better precision and use coaching styles & communication that suits better. Systematically capturing data and supporting athletes(with individual-specific solutions) or teams with assessment, planning, instructional content, actionable tools & strategies, reviewing mental performance and the achievement of objectives & goals facilitate for a consistent mental skills development at all levels of sporting stages of an athlete's career. The mobile application will help athletes recognize and align with their stable attributes such as their personalities, learning & execution modalities, challenges & requirements of their sport, etc and help develop dynamic attributes like states, beliefs, motivation levels, focus etc. with practice and training. It will provide measurable analysis on a regular basis and help them stay aligned to their objectives & goals. The solutions are based on researched areas of influence on sporting performance individually or in teams.

Keywords: athletes, mental training, mobile application, performance, sports

Procedia PDF Downloads 275
11889 On the Evaluation of Different Turbulence Models through the Displacement of Oil-Water Flow in Porous Media

Authors: Sidique Gawusu, Xiaobing Zhang

Abstract:

Turbulence models play a significant role in all computational fluid dynamics based modelling approaches. There is, however, no general turbulence model suitable for all flow scenarios. Therefore, a successful numerical modelling approach is only achievable if a more appropriate closure model is used. This paper evaluates different turbulence models in numerical modelling of oil-water flow within the Eulerian-Eulerian approach. A comparison among the obtained numerical results and published benchmark data showed reasonable agreement. The domain was meshed using structured mesh, and grid test was performed to ascertain grid independence. The evaluation of the models was made through analysis of velocity and pressure profiles across the domain. The models were tested for their suitability to accurately obtain a scalable and precise numerical experience. As a result, it is found that all the models except Standard-ω provide comparable results. The study also revealed new insights on flow in porous media, specifically oil reservoirs.

Keywords: turbulence modelling, simulation, multi-phase flows, water-flooding, heavy oil

Procedia PDF Downloads 283
11888 Transpersonal Model of an Individual's Creative Experiencef

Authors: Anatoliy Kharkhurin

Abstract:

Modifications that the prefix ‘trans-‘ refers to start within a person. This presentation focuses on the transpersonal that goes beyond the individual (trans-personal) to encompass wider aspects of humanities, specifically peak experience as a culminating stage of the creative act. It proposes a model according to which the peak experience results from a harmonious vibration of four spheres, which transcend an individual’s capacities and bring one to a qualitatively different level of experience. Each sphere represents an aspect of creative activity: superconscious, intellectual, emotive and active. Each sphere corresponds to one of four creative functions: authenticity, novelty, aesthetics, and utility, respectively. The creative act starts in the superconscious sphere: the supreme pleasure of Creation is reflected in creative pleasure, which is realized in creative will. These three instances serve as a source of force axes, which penetrate other spheres, and in place of infiltration establish restrictive, expansive, and integrative principles, respectively; the latter balances the other two and ensures a harmonious vibration within a sphere. This Hegelian-like triad is realized within each sphere in the form of creative capacities. The intellectual sphere nurtures capacities to invent and to elaborate, which are integrated by capacity to conceptualize. The emotive sphere nurtures satiation and restrictive capacities integrated by capacity to balance. The active sphere nurtures goal orientation and stabilization capacities integrated by capacity for self-expression. All four spheres vibrate within each other – the superconscious sphere being in the core of the structure followed by intellectual, emotive, and active spheres, respectively – thereby reflecting the path of creative production. If the spheres vibrate in-phase, their amplitudes amplify the creative energy; if in antiphase – the amplitudes reduce the creative energy. Thus, creative act is perceived as continuum with perfectly harmonious vibration within and between the spheres on one side and perfectly disharmonious vibration on the other.

Keywords: creativity, model, transpersonal, peak experience

Procedia PDF Downloads 358
11887 Application of RayMan Model in Quantifying the Impacts of the Built Environment and Surface Properties on Surrounding Temperature

Authors: Maryam Karimi, Rouzbeh Nazari

Abstract:

Introduction: Understanding thermal distribution in the micro-urban climate has now been necessary for urban planners or designers due to the impact of complex micro-scale features of Urban Heat Island (UHI) on the built environment and public health. Hence, understanding the interrelation between urban components and thermal pattern can assist planners in the proper addition of vegetation to build-environment, which can minimize the UHI impact. To characterize the need for urban green infrastructure (UGI) through better urban planning, this study proposes the use of RayMan model to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (Tmrt). Methods: We utilized the RayMan model to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning and street design. The estimated Tmrt value will be compared with existing surface and air temperature data to find the actual temperature felt by pedestrians. Results: Our current results suggest a strong relationship between sky-view factor (SVF) and increased surface temperature in megacities based on current urban morphology. Conclusion: This study will help with Quantifying the impacts of the built environment and surface properties on surrounding temperature, identifying priority urban neighborhoods by analyzing Tmrt and air quality data at the pedestrian level, and characterizing the need for urban green infrastructure cooling potential.

Keywords: built environment, urban planning, urban cooling, extreme heat

Procedia PDF Downloads 127
11886 Fair Federated Learning in Wireless Communications

Authors: Shayan Mohajer Hamidi

Abstract:

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.

Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization

Procedia PDF Downloads 79
11885 Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations

Authors: Muhammed Ashiq Villanthenkodath, Shreya Pal

Abstract:

Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization.

Keywords: economic globalization, ecological footprint, India, dynamic ARDL simulation model

Procedia PDF Downloads 129
11884 Determination Power and Sample Size Zero-Inflated Negative Binomial Dependent Death Rate of Age Model (ZINBD): Regression Analysis Mortality Acquired Immune Deficiency De ciency Syndrome (AIDS)

Authors: Mohd Asrul Affendi Bin Abdullah

Abstract:

Sample size calculation is especially important for zero inflated models because a large sample size is required to detect a significant effect with this model. This paper verify how to present percentage of power approximation for categorical and then extended to zero inflated models. Wald test was chosen to determine power sample size of AIDS death rate because it is frequently used due to its approachability and its natural for several major recent contribution in sample size calculation for this test. Power calculation can be conducted when covariates are used in the modeling ‘excessing zero’ data and assist categorical covariate. Analysis of AIDS death rate study is used for this paper. Aims of this study to determine the power of sample size (N = 945) categorical death rate based on parameter estimate in the simulation of the study.

Keywords: power sample size, Wald test, standardize rate, ZINBDR

Procedia PDF Downloads 439
11883 Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah

Abstract:

Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece.

Keywords: Frictions Stir Welding (FSW), temperature distribution, Finite Element Method (FEM), altair hyperwork

Procedia PDF Downloads 550
11882 Rural Households' Sources of Water and Willingness to Pay for Improved Water Services in South-West, Nigeria

Authors: Alaba M. Dare, Idris A. Ayinde, Adebayo M. Shittu, Sam O. Sam-Wobo

Abstract:

Households' source of water is one of the core development indicators recently gaining pre-eminence in Nigeria. This study examined rural households' sources of water, Willingness to Pay (WTP) and factors influencing mean WTP. A cross-sectional survey which involved the use of questionnaire was used. A dichotomous choice (DC) with follow up was used as elicitation method. A multi-stage random sampling technique was used to select 437 rural households. Descriptive statistics and Tobit model were used for data estimation. The result revealed that about 70% fetched from unimproved water sources. Most (74.4%) respondents showed WTP for improved water sources. Age (p < 0.01), sex (p < 0.01), education (p < 0.01), occupation (p < 0.01), income (p < 0.01), price of water (P < 0.01), quantity of water (p < 0.01), household size (p < 0.01) and distance (p < 0.01) to existing water sources significantly influenced rural households' WTP for these services. The inference from this study showed that rural dweller sources of water is highly primitive and deplorable. Governments and stakeholders should prioritize the provision of rural water at an affordable price by rural dwellers.

Keywords: households, source of water, willingness to pay (WTP), tobit model

Procedia PDF Downloads 386
11881 Effect of Surfactant Concentration on Dissolution of Hydrodynamically Trapped Sparingly Soluble Oil Micro Droplets

Authors: Adil Mustafa, Ahmet Erten, Alper Kiraz, Melikhan Tanyeri

Abstract:

Work presented here is based on a novel experimental technique used to hydrodynamically trap oil microdroplets inside a microfluidic chip at the junction of microchannels known as stagnation point. Hydrodynamic trapping has been recently used to trap and manipulate a number of particles starting from microbeads to DNA and single cells. Benzyl Benzoate (BB) is used as droplet material. The microdroplets are trapped individually at stagnation point and their dissolution was observed. Experiments are performed for two concentrations (10mM or 10µM) of AOT surfactant (Docusate Sodium Salt) and two flow rates for each case. Moreover, experimental data is compared with Zhang-Yang-Mao (ZYM) model which studies dissolution of liquid microdroplets in the presence of a host fluid experiencing extensional creeping flow. Industrial processes like polymer blending systems in which heat or mass transport occurs experience extensional flow and an insight into these phenomena is of significant importance to many industrial processes. The experimental technique exploited here gives an insight into the dissolution of liquid microdroplets under extensional flow regime. The comparison of our experimental results with ZYM model reveals that dissolution of microdroplets at lower surfactant concentration (10µM) fits the ZYM model at saturation concentration (Cs) value reported in literature (Cs = 15×10⁻³Kg\m³) while for higher surfactant concentration (10mM) which is also above the critical micelle concentration (CMC) of surfactant (5mM) the data fits ZYM model at (Cs = 45×10⁻³Kg\m³) which is 3X times the value reported in literature. The difference in Cs value from the literature shows enhancement in dissolution rate of sparingly soluble BB microdroplets at surfactant concentrations higher than CMC. Enhancement in the dissolution of sparingly soluble materials is of great importance in pharmaceutical industry. Enhancement in the dissolution of sparingly soluble drugs is a key research area for drug design industry. The experimental method is also advantageous because it is robust and has no mechanical contact with droplets under study are freely suspended in the fluid as compared existing methods used for testing dissolution of drugs. The experiments also give an insight into CMC measurement for surfactants.

Keywords: extensional flow, hydrodynamic trapping, Zhang-Yang-Mao, CMC

Procedia PDF Downloads 350
11880 Morpho-Dynamic Modelling of the Western 14 Km of the Togolese Coast

Authors: Sawsan Eissa, Omnia Kabbany

Abstract:

The coastline of Togo has been historically suffering from erosion for decades, which requires a solution to help control and reduce the erosion to allow for the development of the coastal area. A morpho-dynamic model using X-beach software was developed for the Western 14 Km of the Togolese coast. The model was coupled with the hydrodynamic module of DELFT 3D, flow, and the Wave module, SWAN. The data used as input included a recent bathymetric survey, a recent shoreline topographic survey, aerial photographs, ERA 5 water level and wave data, and recent test results of seabed samples. A number of scenarios were modeled: do nothing scenario, groynes, detached breakwaters system with different crest levels and alignments. The findings showed that groynes is not expected to be effective for protection against erosion, and that the best option is a system of detached breakwater, partially emerged-partially submerged couples with periodical maintenance.

Keywords: hydrodynamics, morphology, Togo, Delft3D, SWAN, XBeach, coastal erosion, detached breakwaters

Procedia PDF Downloads 74
11879 Piezoelectric Approach on Harvesting Acoustic Energy

Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap

Abstract:

An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.

Keywords: piezoelectric, acoustic, energy harvester

Procedia PDF Downloads 283
11878 Association between Occupational Characteristics and Well-Being: An Exploratory Study of Married Working Women in New Delhi, India

Authors: Kanchan Negi

Abstract:

Background: Modern and urban occupational culture have driven demands for people to work long hours and weekends and take work to home at times. Research on the health effects of these exhaustive temporal work patterns is scant or contradictory. This study examines the relationship between work patterns and wellbeing in a sample of women living in the metropolitan hub of Delhi. Method: This study is based on the data collected from 360 currently married women between age 29 and 49 years, working in the urban capital hub of India, i.e., Delhi. The women interviewed were professionals from the education, health, banking and information and technology (IT) sector. Bivariate analysis was done to study the characteristics of the sample. Logistic regression analysis was used to estimate the physical and psychological wellbeing across occupational characteristics. Results: Most of the working women were below age 35 years; around 30% of women worked in the education sector, 23% in health, 21% in banking and 26% in the IT sector. Over 55% of women were employed in the private sector and only 36% were permanent employees. Nearly 30% of women worked for more than the standard 8 hours a day. The findings from logistic regression showed that compared to women working in the education sector, those who worked in the banking and IT sector more likely to have physical and psychological health issues (OR 2.07-4.37, CI 1.17-4.37); women who bear dual burden of responsibilities had higher odds of physical and psychological health issues than women who did not (OR 1.19-1.85 CI 0.96-2.92). Women who worked for more than 8 hours a day (OR 1.15, CI 1.01-1.30) and those who worked for more than five days a week (OR 1.25, CI 1.05-1.35) were more likely to have physical health issues than women who worked for 6-8 hours a day and five days e week, respectively. Also, not having flexible work timings and compensatory holidays increased the odds of having physical and psychological health issues among working women (OR 1.17-1.29, CI 1.01-1.47). Women who worked in the private sector, those employed temporarily and who worked in the non-conducive environments were more likely to have psychological health issues as compared to women in the public sector, permanent employees and those who worked in a conducive environment, respectively (OR 1.33-1.67, CI 1.09-2.91). Women who did not have poor work-life balance had reduced the odds of psychological health issues than women with poor work-life balance (OR 0.46, CI 0.25-0.84). Conclusion: Poor wellbeing significantly linked to strenuous and rigid work patterns, suggesting that modern and urban work culture may contribute to the poor wellbeing of working women. Noticing the recent decline in female workforce participation in Delhi, schemes like Flexi-timings, compensatory holidays, work-from-home and daycare facilities for young ones must be welcomed; these policies already exist in some private sector firms, and the public sectors companies should also adopt such changes to ease the dual burden as homemaker and career maker. This could encourage women in the urban areas to readily take up the jobs with less juggle to manage home and work.

Keywords: occupational characteristics, urban India, well-being, working women

Procedia PDF Downloads 209
11877 An Investigation of Item Bias in Free Boarding and Scholarship Examination in Turkey

Authors: Yeşim Özer Özkan, Fatma Büşra Fincan

Abstract:

Biased sample is a regression of an observation, design process and all of the specifications lead to tendency of a side or the situation of leaving from the objectivity. It is expected that, test items are answered by the students who come from different social groups and the same ability not to be different from each other. The importance of the expectation increases especially during student selection and placement examinations. For example, all of the test items should not be beneficial for just a male or female group. The aim of the research is an investigation of item bias whether or not the exam included in 2014 free boarding and scholarship examination in terms of gender variable. Data which belong to 5th, 6th, and 7th grade the secondary education students were obtained by the General Directorate of Measurement, Evaluation and Examination Services in Turkey. 20% students were selected randomly within 192090 students. Based on 38418 students’ exam paper were examined for determination item bias. Winsteps 3.8.1 package program was used to determine bias in analysis of data, according to Rasch Model in respect to gender variable. Mathematics items tests were examined in terms of gender bias. Firstly, confirmatory factor analysis was applied twenty-five math questions. After that, NFI, TLI, CFI, IFI, RFI, GFI, RMSEA, and SRMR were examined in order to be validity and values of goodness of fit. Modification index values of confirmatory factor analysis were examined and then some of the items were omitted because these items gave an error in terms of model conformity and conceptual. The analysis shows that in 2014 free boarding and scholarship examination exam does not include bias. This is an indication of the gender of the examination to be made in favor of or against different groups of students.

Keywords: gender, item bias, placement test, Rasch model

Procedia PDF Downloads 233
11876 On Supporting a Meta-Design Approach in Socio-Technical Ontology Engineering

Authors: Mesnan Silalahi, Dana Indra Sensuse, Indra Budi

Abstract:

Many research have revealed the fact of the complexity of ontology building process that there is a need to have a new approach which addresses the socio-technical aspects in the collaboration to reach a consensus. Meta-design approach is considered applicable as a method in the methodological model in a socio-technical ontology engineering. Principles in the meta-design framework is applied in the construction phases on the ontology. A portal is developed to support the meta-design principles requirements. To validate the methodological model semantic web applications were developed and integrated in the portal and also used as a way to show the usefulness of the ontology. The knowledge based system will be filled with data of Indonesian medicinal plants. By showing the usefulness of the developed ontology in a web semantic application, we motivate all stakeholders to participate in the development of knowledge based system of medicinal plants in Indonesia.

Keywords: socio-technical, metadesign, ontology engineering methodology, semantic web application

Procedia PDF Downloads 442
11875 Cybersecurity Protection Structures: The Case of Lesotho

Authors: N. N. Mosola, K. F. Moeketsi, R. Sehobai, N. Pule

Abstract:

The Internet brings increasing use of Information and Communications Technology (ICT) services and facilities. Consequently, new computing paradigms emerge to provide services over the Internet. Although there are several benefits stemming from these services, they pose several risks inherited from the Internet. For example, cybercrime, identity theft, malware etc. To thwart these risks, this paper proposes a holistic approach. This approach involves multidisciplinary interactions. The paper proposes a top-down and bottom-up approach to deal with cyber security concerns in developing countries. These concerns range from regulatory and legislative areas, cyber awareness, research and development, technical dimensions etc. The main focus areas are highlighted and a cybersecurity model solution is proposed. The paper concludes by combining all relevant solutions into a proposed cybersecurity model to assist developing countries in enhancing a cyber-safe environment to instill and promote a culture of cybersecurity.

Keywords: cybercrime, cybersecurity, computer emergency response team, computer security incident response team

Procedia PDF Downloads 163
11874 Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste

Authors: Phakamas Rachamontree, Theerawut Phusantisampan, Natthakorn Woravutthikul, Peerapong Pornwongthong, Malinee Sriariyanun

Abstract:

A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model, which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contain 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production.

Keywords: single cell protein, response surface methodology, yeast, cassava processing waste

Procedia PDF Downloads 408
11873 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 77
11872 Comparing Stability Index MAPping (SINMAP) Landslide Susceptibility Models in the Río La Carbonera, Southeast Flank of Pico de Orizaba Volcano, Mexico

Authors: Gabriel Legorreta Paulin, Marcus I. Bursik, Lilia Arana Salinas, Fernando Aceves Quesada

Abstract:

In volcanic environments, landslides and debris flows occur continually along stream systems of large stratovolcanoes. This is the case on Pico de Orizaba volcano, the highest mountain in Mexico. The volcano has a great potential to impact and damage human settlements and economic activities by landslides. People living along the lower valleys of Pico de Orizaba volcano are in continuous hazard by the coalescence of upstream landslide sediments that increased the destructive power of debris flows. These debris flows not only produce floods, but also cause the loss of lives and property. Although the importance of assessing such process, there is few landslide inventory maps and landslide susceptibility assessment. As a result in México, no landslide susceptibility models assessment has been conducted to evaluate advantage and disadvantage of models. In this study, a comprehensive study of landslide susceptibility models assessment using GIS technology is carried out on the SE flank of Pico de Orizaba volcano. A detailed multi-temporal landslide inventory map in the watershed is used as framework for the quantitative comparison of two landslide susceptibility maps. The maps are created based on 1) the Stability Index MAPping (SINMAP) model by using default geotechnical parameters and 2) by using findings of volcanic soils geotechnical proprieties obtained in the field. SINMAP combines the factor of safety derived from the infinite slope stability model with the theory of a hydrologic model to produce the susceptibility map. It has been claimed that SINMAP analysis is reasonably successful in defining areas that intuitively appear to be susceptible to landsliding in regions with sparse information. The validations of the resulting susceptibility maps are performed by comparing them with the inventory map under LOGISNET system which provides tools to compare by using a histogram and a contingency table. Results of the experiment allow for establishing how the individual models predict the landslide location, advantages, and limitations. The results also show that although the model tends to improve with the use of calibrated field data, the landslide susceptibility map does not perfectly represent existing landslides.

Keywords: GIS, landslide, modeling, LOGISNET, SINMAP

Procedia PDF Downloads 320
11871 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control

Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak

Abstract:

With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.

Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation

Procedia PDF Downloads 469
11870 A Method for Reduction of Association Rules in Data Mining

Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa

Abstract:

The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.

Keywords: data mining, association rules, rules reduction, artificial intelligence

Procedia PDF Downloads 165
11869 Does Stock Markets Asymmetric Information Affect Foreign Capital Flows?

Authors: Farid Habibi Tanha, Mojtaba Jahanbazi, Morteza Foroutan, Rasidah Mohd Rashid

Abstract:

This paper depicts the effects of asymmetric information in determining capital inflows to be captured through stock market microstructure. The model can explain several stylized facts regarding the capital immobility. The first phase of the research involves in collecting and refining 150,000,000 daily data of 11 stock markets over a period of one decade in an effort to minimize the impact of survivorship bias. Three micro techniques were used to measure information asymmetries. The final phase analyzes the model through panel data approach. As a unique contribution, this research will provide valuable information regarding negative effects of information asymmetries in stock markets on attracting foreign investments. The results of this study can be directly considered by policy makers to monitor and control changes of capital flow in order to keep market conditions in a healthy manner, by preventing and managing possible shocks to avoid sudden reversals and market failures.

Keywords: asymmetric information, capital inflow, market microstructure, investment

Procedia PDF Downloads 323
11868 Predictive Modeling of Bridge Conditions Using Random Forest

Authors: Miral Selim, May Haggag, Ibrahim Abotaleb

Abstract:

The aging of transportation infrastructure presents significant challenges, particularly concerning the monitoring and maintenance of bridges. This study investigates the application of Random Forest algorithms for predictive modeling of bridge conditions, utilizing data from the US National Bridge Inventory (NBI). The research is significant as it aims to improve bridge management through data-driven insights that can enhance maintenance strategies and contribute to overall safety. Random Forest is chosen for its robustness, ability to handle complex, non-linear relationships among variables, and its effectiveness in feature importance evaluation. The study begins with comprehensive data collection and cleaning, followed by the identification of key variables influencing bridge condition ratings, including age, construction materials, environmental factors, and maintenance history. Random Forest is utilized to examine the relationships between these variables and the predicted bridge conditions. The dataset is divided into training and testing subsets to evaluate the model's performance. The findings demonstrate that the Random Forest model effectively enhances the understanding of factors affecting bridge conditions. By identifying bridges at greater risk of deterioration, the model facilitates proactive maintenance strategies, which can help avoid costly repairs and minimize service disruptions. Additionally, this research underscores the value of data-driven decision-making, enabling better resource allocation to prioritize maintenance efforts where they are most necessary. In summary, this study highlights the efficiency and applicability of Random Forest in predictive modeling for bridge management. Ultimately, these findings pave the way for more resilient and proactive management of bridge systems, ensuring their longevity and reliability for future use.

Keywords: data analysis, random forest, predictive modeling, bridge management

Procedia PDF Downloads 27
11867 A Numerical Study on the Effects of N2 Dilution on the Flame Structure and Temperature Distribution of Swirl Diffusion Flames

Authors: Yasaman Tohidi, Shidvash Vakilipour, Saeed Ebadi Tavallaee, Shahin Vakilipoor Takaloo, Hossein Amiri

Abstract:

The numerical modeling is performed to study the effects of N2 addition to the fuel stream on the flame structure and temperature distribution of methane-air swirl diffusion flames with different swirl intensities. The Open source Field Operation and Manipulation (OpenFOAM) has been utilized as the computational tool. Flamelet approach along with modified k-ε model is employed to model the flame characteristics.  The results indicate that the presence of N2 in the fuel stream leads to the flame temperature reduction. By increasing of swirl intensity, the flame structure changes significantly. The flame has a conical shape in low swirl intensity; however, it has an hour glass-shape with a shorter length in high swirl intensity. The effects of N2 dilution decrease the flame length in all swirl intensities; however, the rate of reduction is more noticeable in low swirl intensity.

Keywords: swirl diffusion flame, N2 dilution, OpenFOAM, swirl intensity

Procedia PDF Downloads 171
11866 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair

Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar

Abstract:

Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.

Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol

Procedia PDF Downloads 208
11865 Islamic Banking: A New Trend towards the Development of Banking Law

Authors: Inese Tenberga

Abstract:

Undoubtedly, the focus of the present capitalist system of finance has shifted from the concept of productivity of money to the ‘cult of money’, which is characterized by such notions as speculative activity, squander, self-profit, vested interest, etc. The author is certain that a civilized society cannot follow this economic path any longer and therefore suggests that one solution would be to integrate the Islamic financial model in the banking sector of the EU to overcome its economic vulnerability and structurally transform its economies or build resilience against shocks and crisis. The researcher analyses the Islamic financial model, which is providing the basis for the concept of non-productivity of money, and proposes to consider it as a new paradigm of economic thinking. The author argues that it seeks to establish a broad-based economic well-being with an optimum rate of economic growth, socio-economic justice, equitable distribution of income and wealth. Furthermore, the author analyses and proposes to use the experience of member states of the Islamic Development Bank for the formation of a new EU interest free banking. It is offered to create within the EU banking system a credit sector and investment sector respectively. As a part of the latter, it is recommended to separate investment banks specializing in speculative investments and non­speculative investment banks. Meanwhile, understanding of the idea of Islamic banking exclusively from the perspective of the manner of yielding profit that differs from credit banking, without considering the legal, social, ethical guidelines of Islam impedes to value objectively the advantages of this type of financial activities at the non-Islamic jurisdictions. However, the author comes to the conclusion the imperative of justice and virtue, which is inherent to all of us, exists regardless of religion. The author concludes that the global community should adopt the experience of the Muslim countries and focus on the Islamic banking model.

Keywords: credit sector, EU banking system, investment sector, Islamic banking

Procedia PDF Downloads 178
11864 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model

Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo

Abstract:

Considering the energetic crisis that is hitting Europe, it becomes more and more necessary to change the energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy not only to satisfy energy needs and fulfill the required consumption but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energetic communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next ten years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.

Keywords: ARIMA, electricity consumption, forecasting models, time series

Procedia PDF Downloads 179
11863 Thriving Organisations: Recommendations to Create a Workplace Culture That Prioritises Both Well-being and Performance Equally

Authors: Clare Victoria Martin

Abstract:

With reports of increased mental health problems and a lack of proactive, consistent well-being initiatives, well-being is a topical issue in the workplace, as well as a wider public health concern. Additionally, workplace well-being is closely linked to performance, both from a business perspective and in psychological research. Businesses are therefore becoming increasingly motivated to promote well-being, yet there are still barriers, including a lack of evidence-based workplace interventions, issues with measuring effectiveness and problems creating lasting cultural change. This review aimed to collate workplace well-being research to propose a comprehensive new model for delivering evidence-based workplace well-being training with a real potential for lasting impact. Method: A narrative review was conducted to meta-synthesise relevant research. Thematic analysis was then adopted as a systematic method of identifying key themes from the review to lead to practical recommendations. Interventions focusing on strengths, psychological capital, mindfulness and positivity (SPMP) dominated the research in this area, suggesting benefits of incorporating all four into training. However, to avoid a ‘quick fix’ mentality, the concept of training ‘well-being ambassadors’ as a preventative counterpart to mental health ‘first aiders’ was proposed alongside a new ‘REST and RISE’ model: well-being interventions should be ‘relatable’, ‘enjoyable’, ‘sociable’ and ‘trackable’ (REST) in order to increase ‘resilience’, ‘innovation’, ‘strengths’ and ‘engagement’ (RISE). If the REST principles are applied to interventions focusing on SPMP, research suggests individuals will RISE. Future research should empirically test this new well-being ambassador programme and REST/RISE model in an applied setting.

Keywords: performance, positive psychology, thriving, workplace well-being

Procedia PDF Downloads 123
11862 Molecular Simulation of Competitive Adsorption of CO₂-Shale Oil in Kerogen with Different Moisture Content

Authors: Shanshan Yang, Zhengfu Ning, Ying Kang

Abstract:

The competitive adsorption between shale oil and CO₂ in kerogen is of great significance for CO₂ enhanced oil recovery (CO₂-EOR) and CO₂ storage. In this paper, molecular dynamics (MD) method is used to construct dry kerogen model, and grand canonical Monte Carlo (GCMC) method is used to construct shale reservoir kerogen model with different moisture content. Considering the influence of moisture content and shale oil composition, the competitive adsorption behavior of shale oil and CO₂ in kerogen is simulated, and the feasibility of CO₂ storage was evaluated. The results show that the presence of moisture content significantly reduces the ability of CO₂ to replace shale oil. With the increase of moisture content, the adsorption capacity of shale oil decreases, and the effect of CO₂ replacement of shale oil is improved. The adsorption capacity of long chain alkanes in shale oil decreases under moisture condition, and the competitive adsorption effect between short chain alkanes and CO₂ is more obvious. This study provides an effective guide to quantitatively reveal the competitive adsorption between CO₂ and shale oil from the microscopic perspective.

Keywords: competitive adsorption, kerogen, moisture content, shale oil, carbon dioxide, molecular simulation

Procedia PDF Downloads 7