Search results for: sensory processing patterns
1416 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 931415 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping
Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope
Abstract:
The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing
Procedia PDF Downloads 821414 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines
Authors: R. T. Aggangan
Abstract:
Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand
Procedia PDF Downloads 3331413 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques
Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar
Abstract:
The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion
Procedia PDF Downloads 751412 Analyzing Natural and Social Resources for the Planning of Complex Development Based on Ecotourism: A Case Study from Hungary and Slovakia
Authors: Barnabás Körmöndi
Abstract:
The recent crises have affected societies worldwide, resulting in the irresponsible exploitation of natural resources and the unattainability of sustainability. Regions that are economically underdeveloped, such as the Bodrogköz in Eastern Hungary and Slovakia, experience these issues more severely. The aim of this study is to analyze the natural and social resources of the Bodrogköz area for the planning of complex development based on ecotourism. The objective is to develop ecotourism opportunities in this least developed area of the borderland of Hungary and Slovakia. The study utilizes desk research, deep interviews, focus group meetings, and remote sensing methods. Desk research is aimed at providing a comprehensive understanding of the area, while deep interviews and focus group meetings were conducted to understand the stakeholders' perspectives on the potential for ecotourism. Remote sensing methods were used to better understand changes in the natural environment. The study identified the potential for ecotourism development in the Bodrogköz area due to its near-natural habitats along its bordering rivers and rich cultural heritage. The analysis revealed that ecotourism could promote the region's sustainable development, which is essential for its economic growth. Additionally, the study identified the possible threats to the natural environment during ecotourism development and suggested strategies to mitigate these threats. This study highlights the significance of ecotourism in promoting sustainable development in underdeveloped areas such as the Bodrogköz. It provides a basis for future research on ecotourism development and sustainable planning in similar regions. The analysis is based on the data collected through desk research, deep interviews, focus group meetings, and remote sensing. The assessment was conducted through content analysis, which allowed for the identification of themes and patterns in the data. The study addressed the question of how to develop ecotourism in the least developed area of the borderland of Hungary and Slovakia and promote sustainable development in the region. In conclusion, the study highlights the potential for ecotourism development in Bodrogköz and identifies the natural and social resources that contribute to its development. The study emphasizes the need for sustainable development to promote economic growth and mitigate any environmental threats. The findings can inform the development of future strategic plans for ecotourism, promoting sustainable development in underdeveloped regions.Keywords: ecotourism, natural resources, remote sensing, social development
Procedia PDF Downloads 641411 Risk of Mortality and Spectrum of Second Primary Malignancies in Mantle Cell Lymphoma before and after Ibrutinib Approval: A Population-Based Study
Authors: Karthik Chamari, Vasudha Rudraraju, Gaurav Chaudhari
Abstract:
Background: Mantle cell lymphoma (MCL) is one of the mature B cell non-Hodgkin lymphomas (NHL). The course of MCL is moderately aggressive and variable, and it has median overall survival of 8 to 10 years. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, was approved by the United States (US) Food and Drug Administration in November of 2013 for the treatment of MCL patients who have received at least one prior therapy. In this study, we aimed to evaluate whether there has been a change in survival and patterns of second primary malignancies (SPMs) among the MCL population in the US after ibrutinib approval. Methods: Using the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)-18, we conducted a retrospective study with patients diagnosed with MCL (ICD-0-3 code 9673/3) between 2007 and 2018. We divided patients into two six-year cohorts, pre-ibrutinib approval (2007-2012) and post-ibrutinib approval (2013-2018), and compared relative survival rates (RSRs) and standardized incidence ratios (SIRs) of SPMs between cohorts. Results: We included 9,257 patients diagnosed with MCL between 2007 and 2018 in the SEER-18 survival and SIR registries. Of these, 4,205 (45%) patients were included in the pre-ibrutinib cohort, and 5052 (55%) patients were included in the post-ibrutinib cohort. The median follow-up duration for the pre-ibrutinib cohort was 54 months (range 0 to 143 months), and the post-ibrutinib cohort was 20 months (range 0 to 71 months). There was a significant difference in the five-year RSRs between pre-ibrutinib and post-ibrutinib cohorts (57.5% vs. 62.6%, p < 0.005). Out of the 9,257 patients diagnosed with MCL, 920 developed SPMs. A higher proportion of SPMs occurred in the post-ibrutinib cohort (63%) when compared with the pre-ibrutinib cohort (37%). Non-hematological malignancies comprised most of all SPMs. A higher incidence of non-hematological malignancies occurred in the post-ibrutinib cohort (SIR 1.42, 95% CI 1.29 to 1.56) when compared with the pre-ibrutinib cohort (SIR 1.14, 95% CI 1 to 1.3). There was a statistically significant increase in the incidence of cancers of the respiratory tract (SIR 1.77, 95% CI 1.43 to 2.18), urinary tract (SIR 1.61, 95% CI 1.23 to 2.06) when compared with other non-hematological malignancies in post-ibrutinib cohort. Conclusions: Our study results suggest the relative survival rates have increased since the approval of ibrutinib for mantle cell lymphoma patients. Additionally, for some unclear reasons, the incidence of SPM’s (non-hematological malignancies), mainly cancers of the respiratory tract, urinary tract, have increased in the six years following the approval of ibrutinib. Further studies should be conducted to determine the cause of these findings.Keywords: mantle cell lymphoma, Ibrutinib, relative survival analysis, secondary primary cancers
Procedia PDF Downloads 1851410 German for Business Lawyers: A Practical Example of a German University of Applied Sciences
Authors: Angelika Dorawa, Lena Kreppel
Abstract:
Writing in the disciplines plays a major role at Universities. On the one hand, lectures look at the substance of assignments and on the other hand, they expect students to meet professional standards of layout and proofreading. However, the integration of writing concepts into the range of subjects is new to German Universities of Applied Sciences, which are focused on technical and scientific contexts. The Westphalian University of Applied Sciences (WH) established a successful program Talente_schreiben (Writing_Talents) that was funded by the Federal Ministry of Education and Research to improve written language skills for first-semester students at the WH. Besides having the main focus on basic language skills on all language levels, we also concentrate on subject-specific programs such as writing in the disciplines and are pioneers in this field in Germany. Since 2013, we started to include learning-to-write programs since first-semester students of Business Law studies must complete a writing assignment in the form and writing style of a legal opinion in order to fulfill their undergraduate degree requirements. To support our students at its best, our course for business lawyers focuses not only on the writing skills per se, but also on teaching both, the content and the particular discourse of the discipline. Hence, a specialist in German studies and a faculty tutor share the experience of processing, producing and reflecting a text. Whereas the German studies specialist refers to the rhetorical context such as orthography, grammar etc., the tutor acts as a guide on the side referring to the course content itself. In our presentation, we want to give an insight of the practice of a business law discipline, the combination of rhetoric and composition and discuss the methodological and didactic approaches.Keywords: German for business lawyers, talent development, pioneer program, Germany
Procedia PDF Downloads 3251409 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model
Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han
Abstract:
Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model
Procedia PDF Downloads 3621408 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage
Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves
Abstract:
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.Keywords: apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit damage, electronic device
Procedia PDF Downloads 3051407 A Self-Built Corpus-Based Study of Four-Word Lexical Bundles in Native English Teachers’ EFL Classroom Discourse in Northeast China: The Significance of Stance
Authors: Fang Tan
Abstract:
This research focuses on the appropriate use of lexical bundles in spoken discourse, particularly in English as a Foreign Language (EFL) classrooms in Northeast China. While previous studies have mainly examined lexical bundles in written discourse, there is a need to investigate their usage in spoken discourse due to the limited availability of spoken discourse corpora. English teachers’ use of lexical bundles is crucial for effective teaching and communication in the EFL classroom. The aim of this study is to investigate the functions of four-word lexical bundles in native English teachers’ EFL oral English classes in Northeast China. Specifically, the research focuses on the usage of stance bundles, which were found to be the most significant type of bundle in the analyzed corpus. By comparing the self-built university spoken English classroom discourse corpus with the other self-built university English for General Purposes (EGP) corpus, the study aims to highlight the difference in bundle usage between native and non-native teachers in EFL classrooms. The research employs a corpus-based study. The observed corpus consists of more than 300,000 tokens, in which the data has been collected in the past five years. The reference corpus is composed of over 800,000 tokens, in which the data has been collected over 12 years. All the primary data collection involved transcribing and annotating spoken English classes taught by native English teachers. The analysis procedures included identifying and categorizing four-word lexical bundles, with specific emphasis on stance bundles. Frequency counts, and comparisons with the Chinese English teachers’ corpus were conducted to identify patterns and differences in bundle usage. The research addresses the following questions: 1) What are the functions of four-word lexical bundles in native English teachers’ EFL oral English classes? 2) How do stance bundles differ in usage between native and non-native English teachers’ classes? 3) What implications can be drawn for English teachers’ professional development based on the findings? In conclusion, this study provides valuable insights into the usage of four-word lexical bundles, particularly stance bundles, in native English teachers’ EFL oral English classes in Northeast China. The research highlights the difference in bundle usage between native and non-native English teachers’ classes and provides implications for English teachers’ professional development. The findings contribute to the understanding of lexical bundle usage in EFL classroom discourse and have theoretical importance for language teaching methodologies. The self-built university English classroom discourse corpus used in this research is a valuable resource for future studies in this field.Keywords: EFL classroom discourse, four-word lexical bundles, stance, implication
Procedia PDF Downloads 651406 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge
Authors: Yulan Wu
Abstract:
The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 731405 Neurocognitive and Executive Function in Cocaine Addicted Females
Authors: Gwendolyn Royal-Smith
Abstract:
Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function
Procedia PDF Downloads 4021404 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body
Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi
Abstract:
The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.Keywords: Accu-Check, diabetes, neural network, pattern recognition
Procedia PDF Downloads 1471403 Study of Bis(Trifluoromethylsulfonyl)Imide Based Ionic Liquids by Gas Chromatography
Authors: F. Mutelet, L. Cesari
Abstract:
Development of safer and environmentally friendly processes and products is needed to achieve sustainable production and consumption patterns. Ionic liquids, which are of great interest to the chemical and related industries because of their attractive properties as solvents, should be considered. Ionic liquids are comprised of an asymmetric, bulky organic cation and a weakly coordinating organic or inorganic anion. A large number of possible combinations allows for the ability to ‘fine tune’ the solvent properties for a specific purpose. Physical and chemical properties of ionic liquids are not only influenced by the nature of the cation and the nature of cation substituents but also by the polarity and the size of the anion. These features infer to ionic liquids numerous applications, in organic synthesis, separation processes, and electrochemistry. Separation processes required a good knowledge of the behavior of organic compounds with ionic liquids. Gas chromatography is a useful tool to estimate the interactions between organic compounds and ionic liquids. Indeed, retention data may be used to determine infinite dilution thermodynamic properties of volatile organic compounds in ionic liquids. Among others, the activity coefficient at infinite dilution is a direct measure of solute-ionic liquid interaction. In this work, infinite dilution thermodynamic properties of volatile organic compounds in specific bis(trifluoromethylsulfonyl)imide based ionic liquids measured by gas chromatography is presented. It was found that apolar compounds are not miscible in this family of ionic liquids. As expected, the solubility of organic compounds is related to their polarity and hydrogen-bond. Through activity coefficients data, the performance of these ionic liquids was evaluated for different separation processes (benzene/heptane, thiophene/heptane and pyridine/heptane). Results indicate that ionic liquids may be used for the extraction of polar compounds (aromatics, alcohols, pyridine, thiophene, tetrahydrofuran) from aliphatic media. For example, 1-benzylpyridinium bis(trifluoromethylsulfonyl) imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide are more efficient for the extraction of aromatics or pyridine from aliphatics than classical solvents. Ionic liquids with long alkyl chain length present important capacity values but their selectivity values are low. In conclusion, we have demonstrated that specific bis(trifluoromethylsulfonyl)imide based ILs containing polar chain grafted on the cation (for example benzyl or cyclohexyl) increases considerably their performance in separation processes.Keywords: interaction organic solvent-ionic liquid, gas chromatography, solvation model, COSMO-RS
Procedia PDF Downloads 1091402 Remote Sensing and GIS-Based Environmental Monitoring by Extracting Land Surface Temperature of Abbottabad, Pakistan
Authors: Malik Abid Hussain Khokhar, Muhammad Adnan Tahir, Hisham Bin Hafeez Awan
Abstract:
Continuous environmental determinism and climatic change in the entire globe due to increasing land surface temperature (LST) has become a vital phenomenon nowadays. LST is accelerating because of increasing greenhouse gases in the environment which results of melting down ice caps, ice sheets and glaciers. It has not only worse effects on vegetation and water bodies of the region but has also severe impacts on monsoon areas in the form of capricious rainfall and monsoon failure extensive precipitation. Environment can be monitored with the help of various geographic information systems (GIS) based algorithms i.e. SC (Single), DA (Dual Angle), Mao, Sobrino and SW (Split Window). Estimation of LST is very much possible from digital image processing of satellite imagery. This paper will encompass extraction of LST of Abbottabad using SW technique of GIS and Remote Sensing over last ten years by means of Landsat 7 ETM+ (Environmental Thematic Mapper) and Landsat 8 vide their Thermal Infrared (TIR Sensor) and Optical Land Imager (OLI sensor less Landsat 7 ETM+) having 100 m TIR resolution and 30 m Spectral Resolutions. These sensors have two TIR bands each; their emissivity and spectral radiance will be used as input statistics in SW algorithm for LST extraction. Emissivity will be derived from Normalized Difference Vegetation Index (NDVI) threshold methods using 2-5 bands of OLI with the help of e-cognition software, and spectral radiance will be extracted TIR Bands (Band 10-11 and Band 6 of Landsat 7 ETM+). Accuracy of results will be evaluated by weather data as well. The successive research will have a significant role for all tires of governing bodies related to climate change departments.Keywords: environment, Landsat 8, SW Algorithm, TIR
Procedia PDF Downloads 3551401 A Study Investigating Word Association Behaviour in People with Acquired Language and Communication Disorders
Authors: Angela Maria Fenu
Abstract:
The aim of this study was to better characterize the nature of word association responses in people with aphasia. The participants selected for the experimental group were 4 individuals with mild Broca’s aphasia. The control group consisted of 51 cognitively intact age- and gender-matched individuals. The participants were asked to perform a word association task in which they had to say the first word they thought of when hearing each cue. The cue words (n= 16) were the translation in Italian of the set of English cue words of a published study. The participants from the experimental group were administered the word association test every two weeks for a period of two months when they received speech-language therapy A combination of analytical approaches to measure the data was used. To analyse different patterns of word association responses in both groups, the nature of the relationship between the cue and the response was examined: responses were divided into five categories of association. To investigate the similarity between aphasic and non-aphasic subjects, the stereotypy of responses was examined.While certain stimulus words (nouns, adjectives) elicited responses from Broca’s aphasics that tended to resemble those made by non-aphasic subjects; others (adverbs, verbs) showed the tendency to elicit responses different from the ones given by normal subjects. This suggests that some mechanisms underlying certain types of associations are degraded in aphasics individuals, while others display little evidence of disruption. The high number of paradigmatic associations given in response to a noun or an adjective might imply that the mechanisms, largely semantic, underlying paradigmatic associations are relatively preserved in Broca’s aphasia, but it might also mean that some words are more easily processed depending on their grammatical class (nouns, adjectives). The most significant variation was noticed when the grammatical class of the cue word was an adverb. Unlike the normal individuals, the experimental subjects gave the most idiosyncratic associations, which are often produced when the attempt to give a paradigmatic response fails. In turn, the failure to retrieve paradigmatic responses when the cue is an adverb might suggest that Broca’s aphasics are more sensitive to this grammatical class.The findings from this study suggest that, from research on word associations in people with aphasia, important data can arise concerning the specific lexical retrieval impairments that characterize the different types of aphasia and the various treatments that might positively influence the kinds of word association responses affected by language disruption.Keywords: aphasia therapy, clinical linguistics, word-association behaviour, mental lexicon
Procedia PDF Downloads 881400 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 561399 Transcranial and Sacral Magnetic Stimulation as a Therapeutic Resource for Urinary Incontinence – A Brief Bibliographic Review
Authors: Ana Lucia Molina
Abstract:
Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique for the investigation and modulation of cortical excitability in humans. The modulation of the processing of different cortical areas can result in several areas for rehabilitation, showing great potential in the treatment of motor disorders. In the human brain, the supplementary motor area (SMA) is involved in the control of the pelvic floor muscles (MAP), where dysfunctions of these muscles can lead to urinary incontinence. Peripheral magnetic stimulation, specifically sacral magnetic stimulation, has been used as a safe and effective treatment option for patients with lower urinary tract dysfunction. A systematic literature review was carried out (Pubmed, Medline and Google academic database) without a time limit using the keywords: "transcranial magnetic stimulation", "sacral neuromodulation", and "urinary incontinence", where 11 articles attended to the inclusion criteria. Results: Thirteen articles were selected. Magnetic stimulation is a non-invasive neuromodulation technique widely used in the evaluation of cortical areas and their respective peripheral areas, as well as in the treatment of lesions of brain origin. With regard to pelvic-perineal disorders, repetitive transcranial stimulation showed significant effects in controlling urinary incontinence, as well as sacral peripheral magnetic stimulation, in addition to exerting the potential to restore bladder sphincter function. Conclusion: Data from the literature suggest that both transcranial stimulation and peripheral stimulation are non-invasive references that can be promising and effective means of treatment in pelvic and perineal disorders. More prospective and randomized studies on a larger scale are needed, adapting the most appropriate and resolving parameters.Keywords: urinary incontinence, non-invasive neuromodulation, sacral neuromodulation, transcranial magnetic stimulation.
Procedia PDF Downloads 981398 Microwave Single Photon Source Using Landau-Zener Transitions
Authors: Siddhi Khaire, Samarth Hawaldar, Baladitya Suri
Abstract:
As efforts towards quantum communication advance, the need for single photon sources becomes imminent. Due to the extremely low energy of a single microwave photon, efforts to build single photon sources and detectors in the microwave range are relatively recent. We plan to use a Cooper Pair Box (CPB) that has a ‘sweet-spot’ where the two energy levels have minimal separation. Moreover, these qubits have fairly large anharmonicity making them close to ideal two-level systems. If the external gate voltage of these qubits is varied rapidly while passing through the sweet-spot, due to Landau-Zener effect, the qubit can be excited almost deterministically. The rapid change of the gate control voltage through the sweet spot induces a non-adiabatic population transfer from the ground to the excited state. The qubit eventually decays into the emission line emitting a single photon. The advantage of this setup is that the qubit can be excited without any coherent microwave excitation, thereby effectively increasing the usable source efficiency due to the absence of control pulse microwave photons. Since the probability of a Landau-Zener transition can be made almost close to unity by the appropriate design of parameters, this source behaves as an on-demand source of single microwave photons. The large anharmonicity of the CPB also ensures that only one excited state is involved in the transition and multiple photon output is highly improbable. Such a system has so far not been implemented and would find many applications in the areas of quantum optics, quantum computation as well as quantum communication.Keywords: quantum computing, quantum communication, quantum optics, superconducting qubits, flux qubit, charge qubit, microwave single photon source, quantum information processing
Procedia PDF Downloads 981397 Spray Drying: An Innovative and Sustainable Method of Preserving Fruits
Authors: Adepoju Abiola Lydia, Adeyanju James Abiodun, Abioye A. O.
Abstract:
Spray drying, an innovative and sustainable preservation method, is increasingly gaining recognition for its potential to enhance food security by extending the shelf life of fruits. This technique involves the atomization of fruit pulp into fine droplets, followed by rapid drying with hot air, resulting in a powdered product that retains much of the original fruit's nutritional value, flavor, and color. By encapsulating sensitive bioactive compounds within a dry matrix, spray drying mitigates nutrient degradation and extends product usability. This technology aligns with sustainability goals by reducing post-harvest losses, minimizing the need for preservatives, and lowering energy consumption compared to conventional drying methods. Furthermore, spray drying enables the use of imperfect or surplus fruits, contributing to waste reduction and providing a continuous supply of nutritious fruit-based ingredients regardless of seasonal variations. The powdered form enhances versatility, allowing incorporation into various food products, thus broadening the scope of fruit utilization. Innovations in spray drying, such as the use of novel carrier agents and optimization of processing parameters, enhance the quality and functionality of the final product. Moreover, the scalability of spray drying makes it suitable for both industrial applications and smaller-scale operations, supporting local economies and food systems. In conclusion, spray drying stands out as a key technology in enhancing food security by ensuring a stable supply of high-quality, nutritious food ingredients while fostering sustainable agricultural practices.Keywords: spray drying, sustainable, process parameters, carrier agents, fruits
Procedia PDF Downloads 221396 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model
Authors: Can Huang, Xiaoliang Wang, Qingquan Liu
Abstract:
Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH
Procedia PDF Downloads 641395 Effect of Ultrasonic Assisted High Pressure Soaking of Soybean on Soymilk Properties
Authors: Rahul Kumar, Pavuluri Srinivasa Rao
Abstract:
This study investigates the effect of ultrasound-assisted high pressure (HP) treatment on the soaking characteristic of soybeans and extracted soy milk quality. The soybean (variety) was subjected to sonication (US) at ambient temperature for 15 and 30 min followed by HP treatment in the range of 200-400 MPa for dwell times 5-10 min. The bean samples were also compared with HPP samples (200-400 MPa; 5-10 mins), overnight soaked samples(12-15 h) and thermal treated samples (100°C/30 min) followed by overnight soaking for 12-15 h soaking. Rapid soaking within 40 min was achieved by the combined US-HPP treatment, and it reduced the soaking time by about 25 times in comparison to overnight soaking or thermal treatment followed by soaking. Reducing the soaking time of soybeans is expected to suppress the development of undesirable beany flavor of soy milk developed during normal soaking milk extraction. The optimum moisture uptake by the sonicated-pressure treated soybeans was 60-62% (w.b) similar to that obtained after overnight soaking for 12-15 h or thermal treatment followed by overnight soaking. pH of soy milk was not much affected by the different US-HPP treatments and overnight soaking which centered around the range of 6.6-6.7 much like the normal cow milk. For milk extracted from thermally treated soy samples, pH reduced to 6.2. Total soluble solids were found to be maximum for the normal overnight soaked soy samples, and it was in the range of 10.3-10.6. For the HPP treated soy milk, the TSS reduced to 7.4 while sonication further reduced it to 6.2. TSS was found to be getting reduced with increasing time of ultrasonication. Further reduction in TSS to 2.3 was observed in soy milk produced from thermally treated samples following overnight soaking. Our results conclude that thermally treated beans' milk is less stable and more acidic, soaking is very rapid compared to overnight soaking hence milk productivity can be enhanced with less development of undesirable beany flavor.Keywords: beany flavor, high pressure processing, high pressure, soybean, soaking, milk, ultrasound, wet basis
Procedia PDF Downloads 2561394 Effects of Ultraviolet Treatment on Microbiological Load and Phenolic Content of Vegetable Juice
Authors: Kubra Dogan, Fatih Tornuk
Abstract:
Due to increasing consumer demand for the high-quality food products and awareness regarding the health benefits of different nutrients in food minimal processing becomes more popular in modern food preservation. To date, heat treatment is often used for inactivation of spoilage microorganisms in foods. However, it may cause significant changes in the quality and nutritional properties of food. In order to overcome the detrimental effects of heat treatment, several alternatives of non-thermal microbial inactivation processes have been investigated. Ultraviolet (UV) inactivation is a promising and feasible method for better quality and longer shelf life as an alternative to heat treatment, which aims to inhibit spoilage and pathogenic microorganisms and to inactivate the enzymes in vegetable juice production. UV-C is a sub-class of UV treatment which shows the highest microcidal effect between 250-270 nm. The wavelength of 254 nm is used for the surface disinfection of certain liquid food products such as vegetable juice. Effects of UV-C treatment on microbiological load and quality parameter of vegetable juice which is a mix of celery, carrot, lemon and orange was investigated. Our results showed that storing of UV-C applied vegetable juice for three months, reduced the count of TMAB by 3.5 log cfu/g and yeast-mold by 2 log cfu/g compared to control sample. Total phenolic content was found to be 514.3 ± 0.6 mg gallic acid equivalent/L, and there wasn’t a significant difference compared to control. The present work suggests that UV-C treatment is an alternative method for disinfection of vegetable juice since it enables adequate microbial inactivation, longer shelf life and has minimal effect on degradation of quality parameters of vegetable juice.Keywords: heat treatment, phenolic content, shelf life, ultraviolet (UV-C), vegetable juice
Procedia PDF Downloads 2101393 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 401392 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.Keywords: deep learning, data mining, gender predication, MOOCs
Procedia PDF Downloads 1481391 Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder
Authors: Jun-Lun Jiang, Bing-Sheng Yu
Abstract:
Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution.Keywords: glass polishing powder, acid solution, recycling, composite cathodes of solid oxide fuel, cell (SOFC), perovskite, glycine-nitrate combustion(GNP) method
Procedia PDF Downloads 2721390 Representation of Phonemic Changes in Arabic Dialect of Yemen: Speech Disorder and Consonant Substitution
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Adham Al Yaari, Montaha Al Yaari, Ayman Al Yaari, Aayah Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
Introduction: Like many dialects, the Arabic dialect of Yemen (ADY) exhibited utterance phonemic distinction- vowel deletion, lengthening, and insertion- that were investigated using speakers from different dialectal backgrounds, with particular focus on the difference typically developing and achieving speakers and those suffering linguistic problems make. Phonological variations were found to be inevitable, suggesting further investigation of consonants to see to what extent they are prone to such phonemic changes. This study investigates the patterns of consonant substitution in ADY by examining if there is a clear-cut line between normal and pathological consonants to decide which of these consonants is substituted more. Methods: A total of hundred and twenty nine Yemeni male participants (age= 6-13) were enrolled in this study. Participants were preassigned into two groups (Articulation disorders (AD) group= 42 and typically developing and achieving group (TD) = 70), each of which consists of five sub-groups in decided sociolinguistic classification. In a 45 minute-session, 180 pictures of commonly used verbs (4 pics/m.) were presented to participants who were asked to impulsively describe these verbs before their production was psychoneurolinguistically and statistically analyzed. Results: There was a pattern of consonant substitution in some dialects that participants from both groups have in common: Voiceless consonants (/t/, /ṣ/,/s/, /ḥ, /k/, /ʃ/, /f//, and /k/) in northern and eastern dialects; voiced consonants (/q/, /gh/, /Ʒ/, /g/,/ḍ/, /b/, and /d/) in southern, eastern, western and central dialects; and voiceless and voiced consonants(/t/, /f/, /Ø/, /ṣ/, /s/, /q/, /gh/, /Ʒ/, /g/,/ḍ/, and /b/) in southern dialect. Voiceless consonants (/t/, /ṣ/,/s/, /ḥ, /k/, /ʃ/, /f//, /Ø/and /k/) found to be substituted more by ADY speakers of both AD and TD groups followed by voiced consonants (/q/, /gh/, /Ʒ/, /g/,/ḍ/,/d/ /b/, and /ð/), nasals (/m/, /n/), mute (/h/), semi-vowels (/w/ and /j/) and laterals (/l/ and /r/). Unexpectedly, a short vowel (/æ/) and two long vowels (/u: and /a:/) were found to substitute consonants in ADY both by AD and TD participants. Conclusions: AD and TD participants of ADY substitute consonants in their dialectal speech. Consonant substitution processes cover not only consonants but extend to include monophthongs. The finding that speakers of ADY substitute consonants in multisyllabic words is probably due to the fact that the sociolinguistic factor plays a pivotal role in the problematic substitution of consonants in ADY speakers. Larger longitudinal studies are necessary to further investigate the effect of sociolinguistic background on phonological variations, notably sound change in the speech of Yemeni TD speakers compared to those with linguistic impairments.Keywords: consonant substitution, Arabic dialect of Yemen, phonetics, phonology, syllables, articulation disorders
Procedia PDF Downloads 441389 Generation of Charged Nanoparticles and Their Contribution to the Thin Film and Nanowire Growth during Chemical Vapour Deposition
Authors: Seung-Min Yang, Seong-Han Park, Sang-Hoon Lee, Seung-Wan Yoo, Chan-Soo Kim, Nong-Moon Hwang
Abstract:
The theory of charged nanoparticles suggested that in many Chemical Vapour Depositions (CVD) processes, Charged Nanoparticles (CNPs) are generated in the gas-phase and become a building block of thin films and nanowires. Recently, the nanoparticle-based crystallization has become a big issue since the growth of nanorods or crystals by the building block of nanoparticles was directly observed by transmission electron microscopy observations in the liquid cell. In an effort to confirm charged gas-phase nuclei, that might be generated under conventional processing conditions of thin films and nanowires during CVD, we performed an in-situ measurement using differential mobility analyser and particle beam mass spectrometer. The size distribution and number density of CNPs were affected by process parameters such as precursor flow rate and working temperature. It was shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. The electrostatic interaction between CNPs and the growing surface induces the self-assembly into films and nanowires. In addition, the charge-enhanced atomic diffusion makes CNPs liquid-like quasi solid. As a result, CNPs tend to land epitaxial on the growing surface, which results in the growth of single crystalline nanowires with a smooth surface.Keywords: chemical vapour deposition, charged nanoparticle, electrostatic force, nanostructure evolution, differential mobility analyser, particle beam mass spectrometer
Procedia PDF Downloads 4521388 Crystallinity, Antimicrobial Activity and Dyeing Properties of Chitosan-G-Poly(N-Acryloyl Morpholine) Copolymer
Authors: Fakhreia A. Al Sagheer, Enas I. Ibrahim, Khaled D. Khalil
Abstract:
N-Acryloyl morpholine, NAM, was grafted onto chitosan utilizing homogeneous conditions with 1% acetic acid as the solvent, and potassium persulfate and sodium sulfite as the redox initiator. The effects of various reaction parameters, such as time, temperature, and monomer and initiator concentrations, on the percentage of grafting (G%) and the grafting efficiency (E%) were determined. The graft copolymer showed a remarkably improved crystallinity, as compared to the unmodified chitosan, based on the FESEM, XRD, and DSC results. Chitosan-g-poly(N-acryloyl morpholine) (Cs-PNAM), the copolymer obtained by using this procedure, was characterized by utilizing FTIR, FESEM, TGA, and XRD analysis. As expected, the results of an evaluation of antibacterial and antifungal activities show that the grafted chitosan copolymers exhibit stronger inhibitory effects against both types of microbes than does chitosan. Moreover, the size of the inhibition zone created by the graft copolymer was observed to be proportional to its G% corresponding to its morpholine content. Fortunately, the graft copolymer showed a marked growth inhibition against candidiasis (C.Albicans and C.Kefyr). We conclude that the graft copolymer may be highly effective in the prevention and treatment of candidiasis. In addition, the extent and pH dependence of uptake of different types of dyes (acidic: EBT, and MV; and basic: MB) by grafted chitosan in pH 6.5 aqueous solutions was determined. The results show that, the grafted copolymer exhibited a greater affinity to absorb the acid dyes more than the basic ones especially at relatively low temperature. Thus the modified chitosan can be used, in wastewater treatment, as efficient economic absorbent especially for anionic dyes from the industrial processing effluents.Keywords: chitosan, N-Acryloyl morpholine, homogeneous grafting, antimicrobial activity, dye uptake
Procedia PDF Downloads 3701387 Chemical Composition of Volatiles Emitted from Ziziphus jujuba Miller Collected during Different Growth Stages
Authors: Rose Vanessa Bandeira Reidel, Bernardo Melai, Pier Luigi Cioni, Luisa Pistelli
Abstract:
Ziziphus jujuba Miller is a common species of the Ziziphus genus (Rhamnaceae family) native to the tropics and subtropics known for its edible fruits, fresh consumed or used in healthy food, as flavoring and sweetener. Many phytochemicals and biological activities are described for this species. In this work, the aroma profiles emitted in vivo by whole fresh organs (leaf, bud flower, flower, green and red fruits) were analyzed separately by mean of solid phase micro-extraction (SPME) coupled with gas chromatography mass spectrometry (GC-MS). The emitted volatiles from different plant parts were analysed using Supelco SPME device coated with polydimethylsiloxane (PDMS, 100µm). Fresh plant material was introduced separately into a glass conical flask and allowed to equilibrate for 20 min. After the equilibration time, the fibre was exposed to the headspace for 15 min at room temperature, the fibre was re-inserted into the needle and transferred to the injector of the CG and CG-MS system, where the fibre was desorbed. All the data were submitted to multivariate statistical analysis, evidencing many differences amongst the selected plant parts and their developmental stages. A total of 144 compounds were identified corresponding to 94.6-99.4% of the whole aroma profile of jujube samples. Sesquiterpene hydrocarbons were the main chemical class of compounds in leaves also present in similar percentage in flowers and bud flowers where (E, E)-α-farnesene was the main constituent in all cited plant parts. This behavior can be due to a protection mechanism against pathogens and herbivores as well as resistance to abiotic factors. The aroma of green fruits was characterized by high amount of perillene while the red fruits release a volatile blend mainly constituted by different monoterpenes. The terpenoid emission of flesh fruits has important function in the interaction with animals including attraction of seed dispersers and it is related to a good quality of fruits. This study provides for the first time the chemical composition of the volatile emission from different Ziziphus jujuba organs. The SPME analyses of the collected samples showed different patterns of emission and can contribute to understand their ecological interactions and fruit production management.Keywords: Rhamnaceae, aroma profile, jujube organs, HS-SPME, GC-MS
Procedia PDF Downloads 256