Search results for: acid soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6061

Search results for: acid soil

601 Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of Single Cell Proteins and Polyhydroxyalkanoates From Organic Waste

Authors: P. Joris, E. Lombard, X. Cameleyre, G. Navarro, A. Paillet, N. Gorret, S. E. Guillouet

Abstract:

Today, on the international space station, multiple supplies are needed per year to supply food and spare parts and to take out waste. But as it is planned to go longer and further into space these supplies will no longer be possible. The astronaut life support system must be able of continuously transform waste into valuable compounds. Two types of production were identified as critical and could be be supplemented by microorganisms. On the one hand, since microgravity causes rapid muscle loss, single cell proteins (SCPs) could be used as protein rich feed or food. On the other hand, having enough building materials to build an advanced habitat will not be possible only by transporting space goods from earth to mars for example. The bacterium Cupriavidus. necator is well known for its ability to produce a large amount of proteins or of polyhydroxyalkanoate biopolymers (PHAs) depending on its implementation. By coupling the life support system to a 3D-printer, astronauts could be supplied with an unlimited amount of building materials. Additionally, based on the design of the life support system, waste streams have been identified: urea from the crew urine and volatile fatty acids (VFAs) from a first stage of organic waste (excrement and food waste) treatment through anaerobic digestion. Thus, the objective of this, within the Spaceship.Fr project, was to demonstrate the feasibility of producing SCPs and PHAs from VFAs and urea in bioreactor. Because life support systems operate continuously as loops, continuous culture experiments were chosen and the effect of the bioreactor dilution rate on biomass composition was investigated. Total transformation of the carbon source into biomass with high SCP or PHA content was achieved in all cases. We will present the transformation performances of VFAs and urea by the bacteria in bioreactor in terms of titers, yields and productivities but also in terms of the quality of SCP and PHA produced, nucleic acid content. We will further discuss the envisioned integration of our process within life support systems.

Keywords: life support system, space travel, waste treatment, single cell proteins, polyhydroxyalkanoates, bioreactor

Procedia PDF Downloads 98
600 Waste Management Option for Bioplastics Alongside Conventional Plastics

Authors: Dan Akesson, Gauthaman Kuzhanthaivelu, Martin Bohlen, Sunil K. Ramamoorthy

Abstract:

Bioplastics can be defined as polymers derived partly or completely from biomass. Bioplastics can be biodegradable such as polylactic acid (PLA) and polyhydroxyalkonoates (PHA); or non-biodegradable (biobased polyethylene (bio-PE), polypropylene (bio-PP), polyethylene terephthalate (bio-PET)). The usage of such bioplastics is expected to increase in the future due to new found interest in sustainable materials. At the same time, these plastics become a new type of waste in the recycling stream. Most countries do not have separate bioplastics collection for it to be recycled or composted. After a brief introduction of bioplastics such as PLA in the UK, these plastics are once again replaced by conventional plastics by many establishments due to lack of commercial composting. Recycling companies fear the contamination of conventional plastic in the recycling stream and they said they would have to invest in expensive new equipment to separate bioplastics and recycle it separately. This project studies what happens when bioplastics contaminate conventional plastics. Three commonly used conventional plastics were selected for this study: polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In order to simulate contamination, two biopolymers, either polyhydroxyalkanoate (PHA) or thermoplastic starch (TPS) were blended with the conventional polymers. The amount of bioplastics in conventional plastics was either 1% or 5%. The blended plastics were processed again to see the effect of degradation. The results from contamination showed that the tensile strength and the modulus of PE was almost unaffected whereas the elongation is clearly reduced indicating the increase in brittleness of the plastic. Generally, it can be said that PP is slightly more sensitive to the contamination than PE. This can be explained by the fact that the melting point of PP is higher than for PE and as a consequence, the biopolymer will degrade more quickly. However, the reduction of the tensile properties for PP is relatively modest. Impact strength is generally a more sensitive test method towards contamination. Again, PE is relatively unaffected by the contamination but for PP there is a relatively large reduction of the impact properties already at 1% contamination. PET is polyester, and it is, by its very nature, more sensitive to degradation than PE and PP. PET also has a much higher melting point than PE and PP, and as a consequence, the biopolymer will quickly degrade at the processing temperature of PET. As for the tensile strength, PET can tolerate 1% contamination without any reduction of the tensile strength. However, when the impact strength is examined, it is clear that already at 1% contamination, there is a strong reduction of the properties. The thermal properties show the change in the crystallinity. The blends were also characterized by SEM. Biphasic morphology can be seen as the two polymers are not truly blendable which also contributes to reduced mechanical properties. The study shows that PE is relatively robust against contamination, while polypropylene (PP) is sensitive and polyethylene terephthalate (PET) can be quite sensitive towards contamination.

Keywords: bioplastics, contamination, recycling, waste management

Procedia PDF Downloads 205
599 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 75
598 The Effects of Orally Administered Bacillus Coagulans and Inulin on Prevention and Progression of Rheumatoid Arthritis in Rats

Authors: Khadijeh Abhari, Seyed Shahram Shekarforoush, Saeid Hosseinzadeh

Abstract:

Probiotics have been considered as an approach to treat and prevent a wide range of inflammatory diseases. The spore forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic, inulin, also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. An in vivo trial was conducted to evaluate the effects of probiotic B. coagulans, and inulin, either separately or in combination, on down regulate immune responses and progression of rheumatoid arthritis using induced arthritis rat model. Forty-eight male Wistar rats were randomly divided into 6 groups and fed as follow: 1) control: Normal healthy rats fed by standard diet, 2) Disease control (RA): Arthritic induced (RA) rats fed by standard diet, 3) Prebiotic (PRE): RA+ 5% w/w long chain inulin, 4) Probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) Synbiotic (SYN): RA+ 5% w/w long chain inulin and 109 spores/day B. coagulans and 6) Treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with mentioned diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund’s adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by biochemical parameters and paw thickness. Biochemical assay for Fibrinogen (Fn), Serum Amyloid A (SAA), TNF-α and Alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28 and 35 (1, 2 and 3 weeks post RA induction). Pretreatment with PRE, PRO and SYN diets significantly inhibit SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in production of pro-inflammatory cytokines, TNF-α, was seen in PRE, PRO and SYN groups (P < 0.001) which was similar to the effect of the anti-inflammatory drug Indomethacin. Further, there were no significant anti-inflammatory effects observed following different treatments using α1AGp as a RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001). Conclusion: Results of this study support that oral intake of probiotic B. coagulans and inulin are able to improve biochemical and clinical parameters of induced RA in rat.

Keywords: rheumatoid arthritis, bacillus coagulans, inulin, animal model

Procedia PDF Downloads 340
597 Exploration of Probiotics and Anti-Microbial Agents in Fermented Milk from Pakistani Camel spp. Breeds

Authors: Deeba N. Baig, Ateeqa Ijaz, Saloome Rafiq

Abstract:

Camel is a religious and culturally significant animal in Asian and African regions. In Pakistan Dromedary and Bactrian are common camel breeds. Other than the transportation use, it is a pivotal source of milk and meat. The quality of its milk and meat is predominantly dependent on the geographical location and variety of vegetation available for the diet. Camel milk (CM) is highly nutritious because of its reduced cholesterol and sugar contents along with enhanced minerals and vitamins level. The absence of beta-lactoglobulin (like human milk), makes CM a safer alternative for infants and children having Cow Milk Allergy (CMA). In addition to this, it has a unique probiotic profile both in raw and fermented form. Number of Lactic acid bacteria (LAB) including lactococcus, lactobacillus, enterococcus, streptococcus, weissella, pediococcus and many other bacteria have been detected. From these LAB Lactobacilli, Bifidobacterium and Enterococcus are widely used commercially for fermentation purpose. CM has high therapeutic value as its effectiveness is known against various ailments like fever, arthritis, asthma, gastritis, hepatitis, Jaundice, constipation, postpartum care of women, anti-venom, dropsy etc. It also has anti-diabetic, anti-microbial, antitumor potential along with its robust efficacy in the treatment of auto-immune disorders. Recently, the role of CM has been explored in brain-gut axis for the therapeutics of neurodevelopmental disorders. In this connection, a lot of grey area was available to explore the probiotics and therapeutics latent in the CM available in Pakistan. Thus, current study was designed to explore the predominant probiotic flora and antimicrobial potential of CM from different local breeds of Pakistan. The probiotics have been identified through biochemical, physiological and ribo-typing methods. In addition to this, bacteriocins (antimicrobial-agents) were screened through PCR-based approach. Results of this study revealed that CM from different breeds of camel depicted a number of similar probiotic candidates along with the range of limited variability. However, the nucleotide sequence analysis of selected anti-listerial bacteriocins exposed least variability. As a conclusion, the CM has sufficient probiotic availability and significant anti-microbial potential.

Keywords: bacteriocins, camel milk, probiotics potential, therapeutics

Procedia PDF Downloads 115
596 Optimization of Fermentation Conditions for Extracellular Production of the Oncolytic Enzyme, L-Asparaginase, by New Subsp. Streptomyces Rochei Subsp. Chromatogenes NEAE-K Using Response Surface Methodology under Solid State Fermentation

Authors: Noura El-Ahmady El-Naggar

Abstract:

L-asparaginase is an important enzyme as therapeutic agents used in combination therapy with other drugs in the treatment of acute lymphoblastic leukemia in children. L-asparaginase producing actinomycete strain, NEAE-K, was isolated from soil sample and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as new subsp. Streptomyces rochei subsp. chromatogenes NEAE-K and sequencing product (1532 bp) was deposited in the GenBank database under accession number KJ200343. The study was conducted to screen parameters affecting the production of L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K on solid state fermentation using Plackett–Burman experimental design. Sixteen different independent variables including incubation time, moisture content, inoculum size, temperature, pH, soybean meal+ wheat bran, dextrose, fructose, L-asparagine, yeast extract, KNO3, K2HPO4, MgSO4.7H2O, NaCl, FeSO4. 7H2O, CaCl2, and three dummy variables were screened in Plackett–Burman experimental design of 20 trials. The most significant independent variables affecting enzyme production (dextrose, L-asparagine and K2HPO4) were further optimized by the central composite design. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K from solid state fermentation: g/L (soybean meal+ wheat bran 15, dextrose 3, fructose 4, L-asparagine 8, yeast extract 2, KNO3 1, K2HPO4 2, MgSO4.7H2O 0.5, NaCl 0.1, FeSO4. 7H2O 0.02, CaCl2 0.01), incubation time 7 days, moisture content 50%, inoculum size 3 mL, temperature 30°C, pH 8.5.

Keywords: streptomyces rochei subsp. chromatogenes neae-k, 16s rrna, identification, solid state fermentation, l-asparaginase production, plackett-burman design, central composite design

Procedia PDF Downloads 394
595 Production and Evaluation of Physicochemical, Nutritional, Sensorial and Microbiological Properties of Mixed Fruit Juice Blend Prepared from Apple, Orange and Mosambi

Authors: Himalaya Patir, Bitupon Baruah, Sanjay Gayary, Subhajit Ray

Abstract:

In recent age significant importance is given for the development of nutritious and health beneficial foods. Fruit juices collected from different fruits when blended that improves not only the physicochemical and nutritional properties but also enhance the sensorial or organoleptic properties. The study was carried out to determine the physico-chemical, nutritional, microbiological analysis and sensory evaluation of mixed fruit juice blend. Juice of orange (Citrus sinensis), apple (Malus domestica), mosambi (Citrus limetta) were blended in the ratio of sample-I (30% apple:30% orange:40% mosambi), sample-II ( 40% apple :30% orange :30% mosambi), sample-III (30% apple :40% orange :30% mosambi) , sample-IV (50% apple :30% orange :20% mosambi), sample-V (30% apple:20% orange:50% mosambi), sample-VI (20% apple :50% orange :30% mosambi) to evaluate all quality characteristics. Their colour characteristics in terms of hue angle, chroma and colour difference (∆E) were evaluated. The physico-chemical parameters analysis carried out were total soluble solids (TSS), total titratable acidity (TTA), pH, acidity (FA), volatile acidity (VA), pH, and vitamin C. There were significant differences (p˂0.05) in the TSS of the samples. However, sample-V (30% apple: 20% orange: 50% mosambi) provides the highest TSS of 9.02gm and significantly differed from other samples (p˂0.05). Sample-IV (50% apple: 30% orange: 20% mosambi) was shown the highest titratable acidity (.59%) in comparison to other samples. The highest value of pH was found as 5.01 for sample-IV (50% apple: 30% orange: 20% mosambi). Sample-VI (20% apple: 50% orange :30% mosambi) blend has the highest hue angle, chroma and colour changes of 72.14,25.29 and 54.48 and vitamin C, i.e. Ascorbic acid (.33g/l) content compared to other samples. The nutritional compositions study showed that, sample- VI (20% apple: 50% orange: 30% mosambi) has the significantly higher carbohydrate (51.67%), protein (.78%) and ash (1.24%) than other samples, while sample-V (30% apple: 20% orange: 50% mosambi) has higher dietary fibre (12.84%) and fat (2.82%) content. Microbiological analysis of all samples in terms of total plate count (TPC) ranges from 44-60 in 101 dilution and 4-5 in 107 dilutions and was found satisfactory. Moreover, other pathogenic bacterial count was found nil. The general acceptability of the mixed fruit juice blend samples were moderately liked by the panellists, and sensorial quality studies showed that sample-V (30% apple: 20% orange: 50% mosambi) contains highest overall acceptability of 8.37 over other samples and can be considered good for consumption.

Keywords: microbiological, nutritional, physico-chemical, sensory properties

Procedia PDF Downloads 159
594 Geographic Information System-Based Map for Best Suitable Place for Cultivating Permanent Trees in South-Lebanon

Authors: Allaw Kamel, Al-Chami Leila

Abstract:

It is important to reduce the human influence on natural resources by identifying an appropriate land use. Moreover, it is essential to carry out the scientific land evaluation. Such kind of analysis allows identifying the main factors of agricultural production and enables decision makers to develop crop management in order to increase the land capability. The key is to match the type and intensity of land use with its natural capability. Therefore; in order to benefit from these areas and invest them to obtain good agricultural production, they must be organized and managed in full. Lebanon suffers from the unorganized agricultural use. We take south Lebanon as a study area, it is the most fertile ground and has a variety of crops. The study aims to identify and locate the most suitable area to cultivate thirteen type of permanent trees which are: apples, avocados, stone fruits in coastal regions and stone fruits in mountain regions, bananas, citrus, loquats, figs, pistachios, mangoes, olives, pomegranates, and grapes. Several geographical factors are taken as criterion for selection of the best location to cultivate. Soil, rainfall, PH, temperature, and elevation are main inputs to create the final map. Input data of each factor is managed, visualized and analyzed using Geographic Information System (GIS). Management GIS tools are implemented to produce input maps capable of identifying suitable areas related to each index. The combination of the different indices map generates the final output map of the suitable place to get the best permanent tree productivity. The output map is reclassified into three suitability classes: low, moderate, and high suitability. Results show different locations suitable for different kinds of trees. Results also reflect the importance of GIS in helping decision makers finding a most suitable location for every tree to get more productivity and a variety in crops.

Keywords: agricultural production, crop management, geographical factors, Geographic Information System, GIS, land capability, permanent trees, suitable location

Procedia PDF Downloads 132
593 Nanoparticles-Protein Hybrid-Based Magnetic Liposome

Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek

Abstract:

Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues1. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics2. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI)3. The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology4. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III)/Iron(II) chloride with the leaf extract of Dhatura Inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.

Keywords: nanoparticles-protein hybrid, magnetic liposome, medical, pharmaceutical science

Procedia PDF Downloads 235
592 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis

Authors: Asif Arshid, Ying Huang, Denver Tolliver

Abstract:

Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.

Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade

Procedia PDF Downloads 126
591 Investigation of Dry-Blanching and Freezing Methods of Fruits

Authors: Epameinondas Xanthakis, Erik Kaunisto, Alain Le-Bail, Lilia Ahrné

Abstract:

Fruits and vegetables are characterized as perishable food matrices due to their short shelf life as several deterioration mechanisms are being involved. Prior to the common preservation methods like freezing or canning, fruits and vegetables are being blanched in order to inactivate deteriorative enzymes. Both conventional blanching pretreatments and conventional freezing methods hide drawbacks behind their beneficial impacts on the preservation of those matrices. Conventional blanching methods may require longer processing times, leaching of minerals and nutrients due to the contact with the warm water which in turn leads to effluent production with large BOD. An important issue of freezing technologies is the size of the formed ice crystals which is also critical for the final quality of the frozen food as it can cause irreversible damage to the cellular structure and subsequently to degrade the texture and the colour of the product. Herein, the developed microwave blanching methodology and the results regarding quality aspects and enzyme inactivation will be presented. Moreover, heat transfer phenomena, mass balance, temperature distribution, and enzyme inactivation (such as Pectin Methyl Esterase and Ascorbic Acid Oxidase) of our microwave blanching approach will be evaluated based on measurements and computer modelling. The present work is part of the COLDμWAVE project which aims to the development of an innovative environmentally sustainable process for blanching and freezing of fruits and vegetables with improved textural and nutritional quality. In this context, COLDµWAVE will develop tailored equipment for MW blanching of vegetables that has very high energy efficiency and no water consumption. Furthermore, the next steps of this project regarding the development of innovative pathways in MW assisted freezing to improve the quality of frozen vegetables, by exploring in depth previous results acquired by the authors, will be presented. The application of MW assisted freezing process on fruits and vegetables it is expected to lead to improved quality characteristics compared to the conventional freezing. Acknowledgments: COLDμWAVE has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grand agreement No 660067.

Keywords: blanching, freezing, fruits, microwave blanching, microwave

Procedia PDF Downloads 251
590 Evaluating the Effect of Climate Change and Land Use/Cover Change on Catchment Hydrology of Gumara Watershed, Upper Blue Nile Basin, Ethiopia

Authors: Gashaw Gismu Chakilu

Abstract:

Climate and land cover change are very important issues in terms of global context and their responses to environmental and socio-economic drivers. The dynamic of these two factors is currently affecting the environment in unbalanced way including watershed hydrology. In this paper individual and combined impacts of climate change and land use land cover change on hydrological processes were evaluated through applying the model Soil and Water Assessment Tool (SWAT) in Gumara watershed, Upper Blue Nile basin Ethiopia. The regional climate; temperature and rainfall data of the past 40 years in the study area were prepared and changes were detected by using trend analysis applying Mann-Kendall trend test. The land use land cover data were obtained from land sat image and processed by ERDAS IMAGIN 2010 software. Three land use land cover data; 1973, 1986, and 2013 were prepared and these data were used for base line, model calibration and change study respectively. The effects of these changes on high flow and low flow of the catchment have also been evaluated separately. The high flow of the catchment for these two decades was analyzed by using Annual Maximum (AM) model and the low flow was evaluated by seven day sustained low flow model. Both temperature and rainfall showed increasing trend; and then the extent of changes were evaluated in terms of monthly bases by using two decadal time periods; 1973-1982 was taken as baseline and 2004-2013 was used as change study. The efficiency of the model was determined by Nash-Sutcliffe (NS) and Relative Volume error (RVe) and their values were 0.65 and 0.032 for calibration and 0.62 and 0.0051 for validation respectively. The impact of climate change was higher than that of land use land cover change on stream flow of the catchment; the flow has been increasing by 16.86% and 7.25% due to climate and LULC change respectively, and the combined change effect accounted 22.13% flow increment. The overall results of the study indicated that Climate change is more responsible for high flow than low flow; and reversely the land use land cover change showed more significant effect on low flow than high flow of the catchment. From the result we conclude that the hydrology of the catchment has been altered because of changes of climate and land cover of the study area.

Keywords: climate, LULC, SWAT, Ethiopia

Procedia PDF Downloads 367
589 Effect of Feeding Broilers on Diets Enriching With Omega-3 Fatty Acids Sources

Authors: Khalid Mahmoud Gaafar

Abstract:

In human diets , ω-6 and ω-3 are important essential fatty acids for immunity and health. However, considerable alteration in dietary patterns and contents has resulted in change of the consumption of such fatty acids ,with subsequent increase in the consumption of ω-6 fatty acids and a marked decrease in the consumption of ω-3 fatty acids. This dietary alteration has led to an imbalance in the ratio for ω-6/ω-3, which at 20:1 now differs considerably from the original ratio (1:1). Therefore, dietary supplements such as eggs and meat enriched with omega 3 are necessary to increase the consumption of ω-3 to meet the recommended need for ω-3. Foods that supply ω-6 fatty acids include soybean, palm , sunflower, and rapeseed oils, whereas foods that supply ω-3 fatty acids such as linseed and fish oils. Lin seed oils contain Alpha – linolenic acid (ALA), which can be converted to DHA and EPA in the birds body, with linseed oil containing more than 50% ALA. On the other hand, high doses of omega 6 sources in the diet may have deleterious effects on humans. Maintaining an optimum ratio of ω-3 and ω-6fatty acids not only improves performance but also prevents these health risks. The ratio of n-6:ω-3 fatty acids also plays an important role in the immune response, production performance of broilers and designing meat enriched with ω-3 polyunsaturated fatty acids (PUFAs). Birds of three experimental groups fed on basal starter (0-2nd weeks), grower (3rd -4th weeks) and finisher (5th week) rations. The first is control group fed during the grower-finisher periods on basic diet with two replicate (one fed on basic diet contain vegetable oil and the other don’t) without any additives. The three experimental groups (T1 – T2 –T3) fed during the grower- finisher periods on diets free from vegetable oils and contain of 5% of extruded mixture of soybean and linseed (60%:40%). The second (T2) and third (T3) experimental groups supplemented with vitamin B12 and enzyme mixture. The first experimental groups don’t receive vitamins or enzymes. The obtained results showed a significant increased growth performance, immune response, highest antioxidant activity and serum HDL with lowest serum LDL and triglycerides levels in all experimental groups compared with control group, which was highly significant in group fed on vitamin B6.

Keywords: omega fatty acids, broiler, feeding, human health, growth performance, immunity

Procedia PDF Downloads 98
588 In Silico Analysis of Deleterious nsSNPs (Missense) of Dihydrolipoamide Branched-Chain Transacylase E2 Gene Associated with Maple Syrup Urine Disease Type II

Authors: Zainab S. Ahmed, Mohammed S. Ali, Nadia A. Elshiekh, Sami Adam Ibrahim, Ghada M. El-Tayeb, Ahmed H. Elsadig, Rihab A. Omer, Sofia B. Mohamed

Abstract:

Maple syrup urine (MSUD) is an autosomal recessive disease that causes a deficiency in the enzyme branched-chain alpha-keto acid (BCKA) dehydrogenase. The development of disease has been associated with SNPs in the DBT gene. Despite that, the computational analysis of SNPs in coding and noncoding and their functional impacts on protein level still remains unknown. Hence, in this study, we carried out a comprehensive in silico analysis of missense that was predicted to have a harmful influence on DBT structure and function. In this study, eight different in silico prediction algorithms; SIFT, PROVEAN, MutPred, SNP&GO, PhD-SNP, PANTHER, I-Mutant 2.0 and MUpo were used for screening nsSNPs in DBT including. Additionally, to understand the effect of mutations in the strength of the interactions that bind protein together the ELASPIC servers were used. Finally, the 3D structure of DBT was formed using Mutation3D and Chimera servers respectively. Our result showed that a total of 15 nsSNPs confirmed by 4 software (R301C, R376H, W84R, S268F, W84C, F276C, H452R, R178H, I355T, V191G, M444T, T174A, I200T, R113H, and R178C) were found damaging and can lead to a shift in DBT gene structure. Moreover, we found 7 nsSNPs located on the 2-oxoacid_dh catalytic domain, 5 nsSNPs on the E_3 binding domain and 3 nsSNPs on the Biotin Domain. So these nsSNPs may alter the putative structure of DBT’s domain. Furthermore, we detected all these nsSNPs are on the core residues of the protein and have the ability to change the stability of the protein. Additionally, we found W84R, S268F, and M444T have high significance, and they affected Leucine, Isoleucine, and Valine, which reduces or disrupt the function of BCKD complex, E2-subunit which the DBT gene encodes. In conclusion, based on our extensive in-silico analysis, we report 15 nsSNPs that have possible association with protein deteriorating and disease-causing abilities. These candidate SNPs can aid in future studies on Maple Syrup Urine Disease type II base in the genetic level.

Keywords: DBT gene, ELASPIC, in silico analysis, UCSF chimer

Procedia PDF Downloads 187
587 Yield Level, Variability and Yield Gap of Maize (Zea Mays L.) Under Variable Climate Condition of the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Soil moisture and nutrient availability are the two key edaphic factors that affect crop yields and are directly or indirectly affected by climate variability and change. The study examined climate-induced yield level, yield variability and gap of maize during 1981-2010 main growing season in the Central Rift Valley (CRV) of Ethiopia. Pearson correlation test was employed to see the relationship between climate variables and yield. The coefficient of variation (CV) was used to analyze annual yield variability. Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate the growth and yield of maize for the study period. The result indicated that maize grain yield was strongly (P<0.01) and positively correlated with seasonal rainfall (r=0.67 at Melkassa and r = 0.69 at Ziway) in the CRV while day temperature affected grain yield negatively (r= -0.44) at Ziway (P<0.05) during the simulation period. Variations in total seasonal rainfall at Melkassa and Ziway explained 44.9 and 48.5% of the variation in yield, respectively, under optimum nutrition. Following variation in rainfall, high yield variability (CV=23.5%, Melkassa and CV=25.3%, Ziway) was observed for optimum nutrient simulation than the corresponding nutrient limited simulation (CV=16%, Melkassa and 24.1%, Ziway) in the study period. The observed farmers’ yield was 72, 52 and 43% of the researcher-managed, water-limited and potential yield of the crop, respectively, indicating a wide maize yield gap in the region. The study revealed rainfed crop production in the CRV is prone to yield variabilities due to its high dependence on seasonal rainfall and nutrient level. Moreover, the high coefficient of variation in the yield gap for the 30-year period also foretells the need for dependable water supply at both locations. Given the wide yield gap especially during lower rainfall years across the simulation periods, it signifies the requirement for a more dependable application of irrigation water and a potential shift to irrigated agriculture; hence, adopting options that can improve water availability and nutrient use efficiency would be crucial for crop production in the area.

Keywords: climate variability, crop model, water availability, yield gap, yield variability

Procedia PDF Downloads 52
586 Safety Evaluation of Post-Consumer Recycled PET Materials in Chilean Industry by Overall Migration Tests

Authors: Evelyn Ilabaca, Ximena Valenzuela, Alejandra Torres, María José Galotto, Abel Guarda

Abstract:

One of the biggest problems in food packaging industry, especially with the plastic materials, is the fact that these materials are usually obtained from non-renewable resources and also remain as waste after its use, causing environmental issues. This is an international concern and particular attention is given to reduction, reuse and recycling strategies for decreasing the waste from plastic packaging industry. In general, polyethylenes represent most plastic waste and recycling process of post-consumer polyethylene terephthalate (PCR-PET) has been studied. US Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and Southern Common Market (MERCOSUR) have generated different legislative documents to control the use of PCR-PET in the production of plastic packaging intended direct food contact in order to ensure the capacity of recycling process to remove possible contaminants that can migrate into food. Consequently, it is necessary to demonstrate by challenge test that the recycling process is able to remove specific contaminants, obtaining a safe recycled plastic to human health. These documents establish that the concentration limit for substitute contaminants in PET is 220 ppb (ug/kg) and the specific migration limit is 10 ppb (ug/kg) for each contaminant, in addition to assure the sensorial characteristics of food are not affected. Moreover, under the Commission Regulation (EU) N°10/2011 on plastic materials and articles intended to come into contact with food, it is established that overall migration limit is 10 mg of substances per 1 dm2 of surface area of the plastic material. Thus, the aim of this work is to determine the safety of PCR-PET-containing food packaging materials in Chile by measuring their overall migration, and their comparison with the established limits at international level. This information will serve as a basis to provide a regulation to control and regulate the use of recycled plastic materials in the manufacture of plastic packaging intended to be in direct contact with food. The methodology used involves a procedure according to EN-1186:2002 with some modifications. The food simulants used were ethanol 10 % (v/v) and acetic acid 3 % (v/v) as aqueous food simulants, and ethanol 95 % (v/v) and isooctane as substitutes of fatty food simulants. In this study, preliminary results showed that Chilean food packaging plastics with different PCR-PET percentages agree with the European Legislation for food aqueous character.

Keywords: contaminants, polyethylene terephthalate, plastic food packaging, recycling

Procedia PDF Downloads 259
585 Therapeutic Effect of Cichorium Intybus Aerial Parts Extract against Oxidative Stress and Nephropathy Induced by Streptozotocin in Rats

Authors: Josline Salib, Sayed El-Toumy, Abeer Salama, Enayat Omara, Emad Hassan

Abstract:

Diabetic nephropathy is an important cause of morbidity and mortality and is now among the most common causes of end-stage renal failure (ESRF) in developed countries. Thus, the aim of the present study was to investigate the phenolic compounds content of Cichorium intybus aerial parts extracts as well as the therapeutic effects on diabetic nephropathy, oxidative stress, and anti-inflammatory by characterizing biochemical, histopathological changes and immunohistochemistry in an experimental diabetic rat model as compared with Amaryl. Ten known compounds of flavonoids, coumarins and phenolic acid derivatives were isolated from the C. intybus aqueous methanolic extract. Structures of the isolated compounds were established by chromatography, UV and 1D⁄2D 1H⁄ 13C spectroscopy. The aqueous methanol extract of C. intybus aerial parts was administered to Streptozotocin diabetes rats at doses (100 and 200 mg/kg) for 21 days. After treatment, blood glucose, serum insulin, urea, creatinine, and TNF-α were evaluated. Enzymatic scavengers including catalase (CAT), glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) were determined to evaluate the oxidative status in the renal tissue. Diabetic rats treated with C. intybus extract showed a dose-dependent reduction of fasting blood glucose and kidney antioxidant status in comparison to the diabetic control group. The extract was able to enhance the antioxidant defenses of the kidney by increasing the reduced GSH and CAT content and decreasing MDA content in addition to significantly decreasing kidney nitric oxide content compared to diabetic control rats. Furthermore, the histopathological findings in C. intybus extract administered rats were observed at markedly lesser extent than the diabetic control group. Also, inducible nitric oxide synthase (iNOS) levels were decreased significantly after the administration of high-dose C. intybus extract in diabetic rats. Showing significant antihyperglycemic and antioxidant properties of C. intybus aerial parts extract, which is attributed to its polyphenolic content, may offer a potential source for the treatment of diabetes.

Keywords: antioxidant activity, anti-diabetic nephropathy, cichorium intybus aerial parts, phenolic compounds

Procedia PDF Downloads 105
584 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis

Authors: Asowata Osamede

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.

Keywords: power-conversion, meteonorm, PV panels, DC-DC converters

Procedia PDF Downloads 132
583 The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield

Authors: Oqba Basal, András Szabó

Abstract:

Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (Glycine max (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar 'Boglár'. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha-1 of N-fertilizer (35 N) and 105 kg ha-1 of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with Bradyrhizobium japonicum inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N2-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed.

Keywords: drought stress, inoculation, N-fertilizer, soybean physiology, yield

Procedia PDF Downloads 136
582 Construction and Demolition Waste Management in Indian Cities

Authors: Vaibhav Rathi, Soumen Maity, Achu R. Sekhar, Abhijit Banerjee

Abstract:

Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities.

Keywords: building materials, construction and demolition waste, cities, environmental pollution, resource efficiency

Procedia PDF Downloads 293
581 Proteomic Analysis of Cytoplasmic Antigen from Brucella canis to Characterize Immunogenic Proteins Responded with Naturally Infected Dogs

Authors: J. J. Lee, S. R. Sung, E. J. Yum, S. C. Kim, B. H. Hyun, M. Her, H. S. Lee

Abstract:

Canine brucellosis is a critical problem in dogs leading to reproductive diseases which are mainly caused by Brucella canis. There are, nonetheless, not clear symptoms so that it may go unnoticed in most of the cases. Serodiagnosis for canine brucellosis has not been confirmed. Moreover, it has substantial difficulties due to broad cross-reactivity between the rough cell wall antigens of B. canis and heterospecific antibodies present in normal, uninfected dogs. Thus, this study was conducted to characterize the immunogenic proteins in cytoplasmic antigen (CPAg) of B. canis, which defined the antigenic sensitivity of the humoral antibody responses to B. canis-infected dogs. In analysis of B. canis CPAg, first, we extracted and purified the cytoplasmic proteins from cultured B. canis by hot-saline inactivation, ultrafiltration, sonication, and ultracentrifugation step by step according to the sonicated antigen extract method. For characterization of this antigen, we checked the sort and range of each protein on SDS-PAGE and verified the immunogenic proteins leading to reaction with antisera of B. canis-infected dogs. Selected immunodominant proteins were identified using MALDI-MS/MS. As a result, in an immunoproteomic assay, several polypeptides in CPAg on one or two-dimensional electrophoresis (DE) were specifically reacted to antisera from B. canis-infected dogs but not from non-infected dogs. The polypeptides with approximate 150, 80, 60, 52, 33, 26, 17, 15, 13, 11 kDa on 1-DE were dominantly recognized by antisera from B. canis-infected dogs. In the immunoblot profiles on 2-DE, ten immunodominant proteins in CPAg were detected with antisera of infected dogs between pI 3.5-6.5 at approximate 35 to 10 KDa, without any nonspecific reaction with sera in non-infected dogs. Ten immunodominant proteins identified by MALDI-MS/MS were identified as superoxide dismutase, bacteroferritin, amino acid ABC transporter substrate-binding protein, extracellular solute-binding protein family3, transaldolase, 26kDa periplasmic immunogenic protein, Rhizopine-binding protein, enoyl-CoA hydratase, arginase and type1 glyceraldehyde-3-phosphate dehydrogenase. Most of these proteins were determined by their cytoplasmic or periplasmic localization with metabolism and transporter functions. Consequently, this study discovered and identified the prominent immunogenic proteins in B. canis CPAg, highlighting that those antigenic proteins may accomplish a specific serodiagnosis for canine brucellosis. Furthermore, we will evaluate those immunodominant proteins for applying to the advanced diagnostic methods with high specificity and accuracy.

Keywords: Brucella canis, Canine brucellosis, cytoplasmic antigen, immunogenic proteins

Procedia PDF Downloads 129
580 Novel Adomet Analogs as Tools for Nucleic Acids Labeling

Authors: Milda Nainyte, Viktoras Masevicius

Abstract:

Biological methylation is a methyl group transfer from S-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases), which represent more than 3 % of the proteins in the cell. As a general mechanism, the methyl group from AdoMet replaces a hydrogen atom of nucleophilic center producing methylated DNA and S-adenosyl-L-homocysteine (AdoHcy). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. Two types of MTase catalyzed labeling of biopolymers are known, referred as two-step and one-step. During two-step labeling, an alkylating fragment is transferred onto DNA in a sequence-specific manner and then the reporter group, such as biotin, is attached for selective visualization using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at 100 %, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the one-step labeling, AdoMet analog is designed with the reporter group already attached to the functional group. Thus, the one-step labeling method would be more comfortable tool for labeling of biopolymers in order to prevent additional chemical reactions and selection of reaction conditions. Also, time costs would be reduced. However, effective AdoMet analog appropriate for one-step labeling of biopolymers and containing cleavable bond, required for reduction of PCR interferation, is still not known. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of Activated Groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Herein we describe synthetic procedures for the preparation of N-biotinoyl-N’-(pent-4-ynoyl)cystamine starting from the coupling of cystamine with pentynoic acid and finally attaching the biotin as a reporter group. The synthesis of the first AdoMet based cofactor containing a cleavable reporter group and appropriate for one-step labeling was developed.

Keywords: adoMet analogs, DNA alkylation, cofactor, methyltransferases

Procedia PDF Downloads 182
579 Nutritional Value and Leaf Disease Resistance of Different Varieties of Wheat

Authors: Danutė Jablonskytė-Raščė, Vidas Damanauskas

Abstract:

The wheat (Triticum) genus is divided into many species, of which only two are widely distributed in the world - common wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.). Common (soft) wheat is the most common type of wheat in the world and the most suitable for the harsh climate of Lithuania, but the grains have lower protein content and poorer nutritional properties. Durum wheat is characterized by a high protein content of the grain, but it is a crop of warmer climates grown in southern countries, Italy, Spain, the United States, Egypt, etc. Today's important issue is food, its resources and quality. The research focuses on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the warming climate conditions. Climatic conditions change the distribution of fungi and their hosts. Plants that have grown in our climate for many years have adapted to the use of fungicides, so the aim is to study cereal varieties grown in warmer climates and compare them with our country's varieties, studying their nutritional value and the spread of fungal diseases. The field experiments of different varieties of wheat were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2023. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). The research was designed to identify the resistance to leaf diseases and the nutritional value of various wheat varieties. This research aims to focus on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the conditions of the warming climate. The study found that hot and humid summer weather led to the spread of foliar diseases in wheat. Tan spot (Pyrenophora tritici-repentis) is mostly spread in wheat crops. This disease had an average prevalence of 86.90%. The wheat crop was sparse, so this year was unfavorable for the spread of powdery mildew (Blumeria graminis). Dry weather prevailed during the period of flowering of cereals, which prevented the spread of ear diseases. Examining the qualitative indicators of grain, it was found that durum wheat had the best parameters.

Keywords: varieties, wheat, leaf disease, grain quality

Procedia PDF Downloads 22
578 Sustainable Solutions for Urban Problems: Industrial Container Housing for Endangered Communities in Maranhao, Brazil

Authors: Helida Thays Gomes Soares, Conceicao De Maria Pinheiro Correia, Fabiano Maciel Soares, Kleymer Silva

Abstract:

There is great discussion around populational increase in urban areas of the global south, and, consequently, the growth of inappropriate housing and the different ways humans have found to solve housing problems around the world. Sao Luís, the capital of the state of Maranhao is a good example. The 1.6 million inhabitant metropole is a colonial tropical city that shelters 22% of the population of Maranhão, brazilian state that still carries the scars of slavery in past centuries. In 2016, Brazilian Institute of Geography and Statistic found that 20% of Maranhão’s inhabitants were living in houses with external walls made of non-durable materials, like recycled wood, cardboard or soil. Out of this problematic, this study aims to propose interventions not only in the physical structure of irregular housing, but also to serve as a guide to intervene in the way eco-friendly, communitarian housing is seen by extreme poor zones inside metropolitan regions around big cities in the global south. The adaptation and reuse of industrial containers from the Harbor of Itaqui for housing is also an aim of the project. The great volume of discarded industrial containers may be an opportunity to solve housing deficit in the city. That way, through field research in São Luís’ neighborhoods mostly occupied by inappropriate housing, the study intends to raise ethnographical and physical values that help to shape new uses of industrial containers and recycled building materials, bringing the community into the process of shaping new-housing for local housing programs, changing the mindset of a concrete/brick model of building. The study used a general feasibility analysis of local engineers regarding strength of the locally used container for construction purposes, and also researched in-loco the current impressions of risky areas inhabitants of housing, traditional housing and the role they played as city shapers, evaluating their perceptions of what means to live and how their houses represent their personality.

Keywords: container housing, civil construction, housing deficit, participatory design, sustainability

Procedia PDF Downloads 176
577 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing

Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima

Abstract:

Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.

Keywords: reverse osmosis, washing condition optimization, hypochlorous acid, biofouling control

Procedia PDF Downloads 337
576 Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application

Authors: K. Masera, A. K. Hossain

Abstract:

Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 & A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 oC) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 °C and 20 °C), densities (at 15 °C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels.

Keywords: biodiesel, blending, characterisation, CI engine

Procedia PDF Downloads 152
575 Palladium/Platinum Complexes of Tridentate 4-Acylpyrazolone Thiosemicarbazone with Antioxidant Properties

Authors: Omoruyi G. Idemudia, Alexander P. Sadimenko

Abstract:

The need for the development of new sustainable bioactive compounds with unique properties that can become potential replacement for commonly used medicinal drugs has continued to gain tremendous research concerns because of the problems of disease resistant to these medicinal drugs and their toxicity effects. NOS-donor heterocycles are particularly of interest as they have showed good pharmacological activities in the midst of their interesting chelating properties towards metal ions, an important characteristic for transition metal based drugs design. These new compounds have also gained application as dye sensitizers in solar cell panels for the generation of renewable solar energy, as greener water purification polymer for supply and management of clean water and as catalysts which are used to reduce the amount of pollutants from industrial reaction processes amongst others, because of their versatile properties. Di-ketone acylpyrazolones and their azomethine schiff bases have been employed as pharmaceuticals as well as analytical reagents, and their application as transition metal complexes have being well established. In this research work, a new 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one-thiosemicarbazone was synthesized from the reaction of 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one and thiosemicarbazide in methanol. The pure isolate of the thiosemicarbazone was further reacted with aqueous solutions of palladium and platinum salts to obtain their metal complexes, in an effort towards the discovery of transition metal based synthetic drugs. These compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one thiosemicarbazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group according to x-ray crystallography. The tridentate NOS ligand formed a tetrahedral geometry on coordinating with metal ions. Reported compounds showed varying antioxidant free radical scavenging activities against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 100, 200, 300, 400 and 500 µg/ml concentrations. The platinum complex have shown a very good antioxidant property against DPPH with an IC50 of 76.03 µg/ml compared with standard ascorbic acid (IC50 of 74.66 µg/ml) and as such have been identified as a potential anticancer candidate.

Keywords: acylpyrazolone, free radical scavenging activities, tridentate ligand, x-ray crystallography

Procedia PDF Downloads 168
574 Dietary Patterns and Adherence to the Mediterranean Diet among Breast Cancer Female Patients in Lebanon: A Cross-Sectional Study

Authors: Yasmine Aridi, Lara Nasreddine, Maya Khalil, Arafat Tfayli, Anas Mugharbel, Farah Naja

Abstract:

Breast cancer is the most commonly diagnosed cancer site among women worldwide and the second most common cause of cancer mortality. Breast cancer rates differ vastly between geographical areas, countries, and within the same country. In Lebanon, the proportion of breast cancer to all other sites of tumor is 38.2%; these rates are still lower than those observed worldwide, but remain the highest among Arab countries. Studies and evidence based reviews show a strong association between breast cancer development and prognosis and dietary habits, specifically the Mediterranean diet (MD). As such, the aim of this study is to examine dietary patterns and adherence to the MD among a sample of 182 breast cancer female patients in Beirut, Lebanon. Subjects were recruited from two major hospitals; a private medical center and a public hospital. All subjects were administered two questionnaires: socio- demographics and Mediterranean diet adherence. Five Mediterranean scores were calculated: MS, MSDPS, PMDI, PREDIMED and DDS. The mean age of the participants was 53.78 years. The overall adherence to the Mediterranean diet (MD) was low since the sample means of 3 out of the 5 calculated scores were less than the scores’ medians. Given that 4 out of the 5 Mediterranean scores significantly varied between the recruitment sites, women in the private medical center were found to adhere more to the MD. Our results also show that the majority of the sample population’s intakes are exceeding the recommendations for total and saturated fat, while meeting the requirements for fiber, EPA, DHA and Linolenic Acid. Participants in the private medical center were consuming significantly more calories, carbohydrates, fiber, sugar, Lycopene, Calcium, Iron and Folate and less fat. After conducting multivariate linear regression analyses, the following significant results were observed: positive associations between MD (CPMDI, PREDIMED) and monthly income & current state of health, while negative associations between MD (MSDPS, PREDIMED) and age & employment status. Our findings indicated a low overall adherence to the MD and identified factors associated with it; which suggests a need to address dietary habits among BC patients in Lebanon, specifically encouraging them to adhere to their traditional Mediterranean diet.

Keywords: Adherence, Breast cancer, Dietary patterns, Mediterranean diet, Nutrition

Procedia PDF Downloads 405
573 Biological Control of Karnal Bunt by Pseudomonas fluorescens

Authors: Geetika Vajpayee, Sugandha Asthana, Pratibha Kumari, Shanthy Sundaram

Abstract:

Pseudomonas species possess a variety of promising properties of antifungal and growth promoting activities in the wheat plant. In the present study, Pseudomonas fluorescens MTCC-9768 is tested against plant pathogenic fungus Tilletia indica, causing Karnal bunt, a quarantine disease of wheat (Triticum aestivum) affecting kernels of wheat. It is one of the 1/A1 harmful diseases of wheat worldwide under EU legislation. This disease develops in the growth phase by the spreading of microscopically small spores of the fungus (teliospores) being dispersed by the wind. The present chemical fungicidal treatments were reported to reduce teliospores germination, but its effect is questionable since T. indica can survive up to four years in the soil. The fungal growth inhibition tests were performed using Dual Culture Technique, and the results showed inhibition by 82.5%. The interaction of antagonist bacteria-fungus causes changes in the morphology of hyphae, which was observed using Lactophenol cotton blue staining and Scanning Electron Microscopy (SEM). The rounded and swollen ends, called ‘theca’ were observed in interacted fungus as compared to control fungus (without bacterial interaction). This bacterium was tested for its antagonistic activity like protease, cellulose, HCN production, Chitinase, etc. The growth promoting activities showed increase production of IAA in bacteria. The bacterial secondary metabolites were extracted in different solvents for testing its growth inhibiting properties. The characterization and purification of the antifungal compound were done by Thin Layer Chromatography, and Rf value was calculated (Rf value = 0.54) and compared to the standard antifungal compound, 2, 4 DAPG (Rf value = 0.54). Further, the in vivo experiments showed a significant decrease in the severity of disease in the wheat plant due to direct injection method and seed treatment. Our results indicate that the extracted and purified compound from the antagonist bacteria, P. fluorescens MTCC-9768 may be used as a potential biocontrol agent against T. indica. This also concludes that the PGPR properties of the bacteria may be utilized by incorporating it into bio-fertilizers.

Keywords: antagonism, Karnal bunt, PGPR, Pseudomonas fluorescens

Procedia PDF Downloads 382
572 Structural Property and Mechanical Behavior of Polypropylene–Elemental Sulfur (S8) Composites: Effect of Sulfur Loading

Authors: S. Vijay Kumar, Kishore K. Jena, Saeed M. Alhassan

Abstract:

Elemental sulfur is currently produced on the level of 70 million tons annually by petroleum refining, majority of which is used in the production of sulfuric acid, fertilizer and other chemicals. Still, over 6 million tons of elemental sulfur is generated in excess, which creates exciting opportunities to develop new chemistry to utilize sulfur as a feedstock for polymers. Development of new polymer composite materials using sulfur is not widely explored and remains an important challenge in the field. Polymer nanocomposites prepared by carbon nanotube, graphene, silica and other nanomaterials were well established. However, utilization of sulfur as filler in the polymer matrix could be an interesting study. This work is to presents the possibility of utilizing elemental sulfur as reinforcing fillers in the polymer matrix. In this study we attempted to prepare polypropylene/sulfur nanocomposite. The physical, mechanical and morphological properties of the newly developed composites were studied according to the sulfur loading. In the sample preparation, four levels of elemental sulfur loading (5, 10, 20 and 30 wt. %) were designed. Composites were prepared by the melt mixing process by using laboratory scale mini twin screw extruder at 180°C for 15 min. The reaction time and temperature were maintained constant for all prepared composites. The structure and crystallization behavior of composites was investigated by Raman, FTIR, XRD and DSC analysis. It was observed that sulfur interfere with the crystalline arrangement of polypropylene and depresses the crystallization, which affects the melting point, mechanical and thermal stability. In the tensile test, one level of test temperature (room temperature) and crosshead speed (10 mm/min) was designed. Tensile strengths and tensile modulus of the composites were slightly decreased with increasing in filler loading, however, percentage of elongation improved by more than 350% compared to neat polypropylene. The effect of sulfur on the morphology of polypropylene was studied with TEM and SEM techniques. Microscope analysis revels that sulfur is homogeneously dispersed in polymer matrix and behaves as single phase arrangement in the polymer. The maximum elongation for the polypropylene can be achieved by adjusting the sulfur loading in the polymer. This study reviles the possibility of using elemental sulfur as a solid plasticizer in the polypropylene matrix.

Keywords: crystallization, elemental sulfur, morphology, thermo-mechanical properties, polypropylene, polymer nanocomposites

Procedia PDF Downloads 329