Search results for: recycling cost estimates
1792 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt
Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar
Abstract:
Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt
Procedia PDF Downloads 5751791 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction
Authors: Sandeep Kaushal
Abstract:
Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS
Procedia PDF Downloads 1101790 Effect of High Intensity Ultrasonic Treatment on the Micro Structure, Corrosion and Mechanical Behavior of ac4c Aluminium Alloy
Authors: A.Farrag Farrag, A. M. El-Aziz Abdel Aziz, W. Khlifa Khlifa
Abstract:
Ultrasonic treatment is a promising process nowadays in the engineering field due to its high efficiency and it is a low-cost process. It enhances mechanical properties, corrosion resistance, and homogeneity of the microstructure. In this study, the effect of ultrasonic treatment and several casting conditions on microstructure, hardness and corrosion behavior of AC4C aluminum alloy was examined. Various ultrasonic treatments of the AC4C alloys were carried out to prepare billets for thixocasting process. Treatment temperatures varied from about 630oC and cooled down to under ultrasonic field. Treatment time was about 90s. A 600-watts ultrasonic system with 19.5 kHz and intensity of 170 W/cm2 was used. Billets were reheated to semisolid state and held for 5 minutes at 582 oC and temperatures (soaking) using high-frequency induction system, then thixocasted using a die casting machine. Microstructures of the thixocast parts were studied using optical and SEM microscopes. On the other hand, two samples were conventionally cast and poured at 634 oC and 750 oC. The microstructure showed a globular none dendritic grains for AC4C with the application of UST at 630-582 oC, Less dendritic grains when the sample was conventionally cast without the application of UST and poured at 624 oC and a fully dendritic microstructure When the sample was cast and poured at 750 oC without UST .The ultrasonic treatment during solidification proved that it has a positive influence on the microstructure as it produced the finest and globular grains thus it is expected to increase the mechanical properties of the alloy. Higher values of corrosion resistance and hardness were recorded for the ultrasound-treated sample in comparison to cast one.Keywords: ultrasonic treatment, aluminum alloys, corrosion behaviour, mechanical behaviour, microstructure
Procedia PDF Downloads 3551789 The Impact of the Core Competencies in Business Management to the Existence and Progress of Traditional Foods Business with the Case of Study: Gudeg Sagan Yogyakarta
Authors: Lutfi AuliaRahman, Hari Rizki Ananda
Abstract:
The traditional food is a typical food of a certain region that has a taste of its own unique and typically consumed by a society in certain areas, one of which is Gudeg, a regional specialties traditional food of Yogyakarta and Central Java which is made of young jackfruit cooked in coconut milk, edible with rice and served with thick coconut milk (areh), chicken, eggs, tofu and sambal goreng krecek. However, lately, the image of traditional food has declined among people, so with gudeg, which today's society, especially among young people, tend to prefer modern types of food such as fast food and some other foods that are popular. Moreover, traditional food usually only preferred by consumers of local communities and lack of demand by consumers from different areas for different tastes. Thus, the traditional food producers increasingly marginalized and their consumers are on the wane. This study aimed to evaluate the management used by producers of traditional food with a case study of Gudeg Sagan which located in the city of Yogyakarta, with the ability of their management in creating core competencies, which includes the competence of cost, competence of flexibility, competence of quality, competence of time, and value-based competence. And then, in addition to surviving and continuing to exist with the existing external environment, Gudeg Sagan can increase the number of consumers and also reach a broader segment of teenagers and adults as well as consumers from different areas. And finally, in this paper will be found positive impact on the creation of the core competencies of the existence and progress of the traditional food business based on case study of Gudeg Sagan.Keywords: Gudeg Sagan, traditional food, core competencies, existence
Procedia PDF Downloads 2561788 Nutritionists' Perspective on the Conception of a Telenutrition Platform for Diabetes Care: Qualitative Study
Authors: Choumous Mannoubi, Dahlia Kairy, Brigitte Vachon
Abstract:
The use of technology allows clinicians to provide an individualized approach in a cost-effective manner and to reach a broader client base more easily. Such interventions can be effective in ensuring self-management and follow-up of people with diabetes, reducing the risk of complications by improving accessibility to care services, and better adherence to health recommendations. Consideration of users' opinions and fears to inform the design and implementation stages of these telehealth services seems to be essential to improve their acceptance and usability. The objective of this study is to describe the telepractice of nutritionists supporting the therapeutic management of diabetic patients and document the functional requirements of nutritionists for the design of a tele-nutrition platform. To best identify the requirements and constraints of nutritionists, we conducted individual semi-structured interviews with 10 nutritionists who offered tele-nutrition services. Using a qualitative design with a descriptive approach based on the Nutrition Care Process Model (mNCP) framework, we explored in depth the state of nutritionists' telepractice in public and private health care settings, as well as their requirements for teleconsultation. Qualitative analyses revealed that nutritionists primarily used telephone calls during the COVID 19 pandemic to provide teleconsultations. Nutritionists identified the following important features for the design of a tele-nutrition platform: it should support interprofessional collaboration, allow for the development and monitoring of a care plan, integrate with the existing IT environment, be easy to use, accommodate different levels of patient literacy, and allow for easy sharing of educational materials to support nutrition education.Keywords: telehealth, nutrition, diabetes, telenutrition, teleconsultation, telemonitoring
Procedia PDF Downloads 1401787 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.Keywords: road safety, crash prediction, exploratory analysis, machine learning
Procedia PDF Downloads 1161786 Telemedicine in Physician Assistant Education: A Partnership with Community Agency
Authors: Martina I. Reinhold, Theresa Bacon-Baguley
Abstract:
A core challenge of physician assistant education is preparing professionals for lifelong learning. While this conventionally has encompassed scientific advances, students must also embrace new care delivery models and technologies. Telemedicine, the provision of care via two-way audio and video, is an example of a technological advance reforming health care. During a three-semester sequence of Hospital Community Experiences, physician assistant students were assigned experiences with Answer Health on Demand, a telemedicine collaborative. Preceding the experiences, the agency lectured on the application of telemedicine. Students were then introduced to the technology and partnered with a provider. Prior to observing the patient-provider interaction, patient consent was obtained. Afterwards, students completed a reflection paper on lessons learned and the potential impact of telemedicine on their careers. Thematic analysis was completed on the students’ reflection papers (n=13). Preceding the lecture and experience, over 75% of students (10/13) were unaware of telemedicine. Several stated they were 'skeptical' about the effectiveness of 'impersonal' health care appointments. After the experience, all students remarked that telemedicine will play a large role in the future of healthcare and will provide benefits by improving access in rural areas, decreasing wait time, and saving cost. More importantly, 30% of students (4/13) commented that telemedicine is a technology they can see themselves using in their future practice. Initial results indicate that collaborative interaction between students and telemedicine providers enhanced student learning and exposed students to technological advances in the delivery of care. Further, results indicate that students perceived telemedicine more favorably as a viable delivery method after the experience.Keywords: collaboration, physician assistant education, teaching innovative health care delivery method, telemedicine
Procedia PDF Downloads 1991785 Fabrication of 2D Nanostructured Hybrid Material-Based Devices for High-Performance Supercapacitor Energy Storage
Authors: Sunil Kumar, Vinay Kumar, Mamta Bulla, Rita Dahiya
Abstract:
Supercapacitors have emerged as a leading energy storage technology, gaining popularity in applications like digital telecommunications, memory backup, and hybrid electric vehicles. Their appeal lies in a long cycle life, high power density, and rapid recharge capabilities. These exceptional traits attract researchers aiming to develop advanced, cost-effective, and high-energy-density electrode materials for next-generation energy storage solutions. Two-dimensional (2D) nanostructures are highly attractive for fabricating nanodevices due to their high surface-to-volume ratio and good compatibility with device design. In the current study, a composite was synthesized by combining MoS2 with reduced graphene oxide (rGO) under optimal conditions and characterized using various techniques, including XRD, FTIR, SEM and XPS. The electrochemical properties of the composite material were assessed through cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The supercapacitor device demonstrated a specific capacitance of 153 F g-1 at a current density of 1 Ag-1, achieving an excellent energy density of 30.5 Wh kg-1 and a power density of 600 W kg-1. Additionally, it maintained excellent cyclic stability over 5000 cycles, establishing it as a promising candidate for efficient and durable energy storage solutions. These findings highlight the dynamic relationship between electrode materials and offer valuable insights for the development and enhancement of high-performance symmetric devices.Keywords: 2D material, energy density, galvanostatic charge-discharge, hydrothermal reactor, specific capacitance
Procedia PDF Downloads 211784 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints
Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu
Abstract:
Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning
Procedia PDF Downloads 631783 Multi-Criteria Optimal Management Strategy for in-situ Bioremediation of LNAPL Contaminated Aquifer Using Particle Swarm Optimization
Authors: Deepak Kumar, Jahangeer, Brijesh Kumar Yadav, Shashi Mathur
Abstract:
In-situ remediation is a technique which can remediate either surface or groundwater at the site of contamination. In the present study, simulation optimization approach has been used to develop management strategy for remediating LNAPL (Light Non-Aqueous Phase Liquid) contaminated aquifers. Benzene, toluene, ethyl benzene and xylene are the main component of LNAPL contaminant. Collectively, these contaminants are known as BTEX. In in-situ bioremediation process, a set of injection and extraction wells are installed. Injection wells supply oxygen and other nutrient which convert BTEX into carbon dioxide and water with the help of indigenous soil bacteria. On the other hand, extraction wells check the movement of plume along downstream. In this study, optimal design of the system has been done using PSO (Particle Swarm Optimization) algorithm. A comprehensive management strategy for pumping of injection and extraction wells has been done to attain a maximum allowable concentration of 5 ppm and 4.5 ppm. The management strategy comprises determination of pumping rates, the total pumping volume and the total running cost incurred for each potential injection and extraction well. The results indicate a high pumping rate for injection wells during the initial management period since it facilitates the availability of oxygen and other nutrients necessary for biodegradation, however it is low during the third year on account of sufficient oxygen availability. This is because the contaminant is assumed to have biodegraded by the end of the third year when the concentration drops to a permissible level.Keywords: groundwater, in-situ bioremediation, light non-aqueous phase liquid, BTEX, particle swarm optimization
Procedia PDF Downloads 4491782 Inhouse Inhibitor for Mitigating Corrosion in the Algerian Oil and Gas Industry
Authors: Hadjer Didouh, Mohamed Hadj Meliani, Izzeddine Sameut Bouhaik
Abstract:
As global demand for natural gas intensifies, Algeria is increasing its production to meet this rising need, placing significant strain on the nation's extensive pipeline infrastructure. Sonatrach, Algeria's national oil and gas company, faces persistent challenges from metal corrosion, particularly microbiologically influenced corrosion (MIC), leading to substantial economic losses. This study investigates the corrosion-inhibiting properties of Calotropis procera extracts, known as karanka, as a sustainable alternative to conventional inhibitors, which often pose environmental risks. The Calotropis procera extracts were evaluated for their efficacy on carbon steel API 5L X52 through electrochemical techniques, including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), under simulated operational conditions at varying concentrations, particularly at 10%, and elevated temperatures up to 60°C. The results demonstrated remarkable inhibition efficiency, achieving 96.73% at 60°C, attributed to the formation of a stable protective film on the metal surface that suppressed anodic and cathodic corrosion reactions. Scanning electron microscopy (SEM) confirmed the stability and adherence of these protective films, while EIS analysis indicated a significant increase in charge transfer resistance, highlighting the extract's effectiveness in enhancing corrosion resistance. The abundant availability of Calotropis procera in Algeria and its low-cost extraction processes present a promising opportunity for sustainable biocorrosion management strategies in the oil and gas industry, reinforcing the potential of plant-based extracts as viable alternatives to synthetic inhibitors for environmentally friendly corrosion control.Keywords: corrosion inhibition, calotropis procera, microbiologically influenced corrosion, eco-friendly inhibitor
Procedia PDF Downloads 321781 Mechanical Properties and Microstructural Analyzes of Epoxy Resins Reinforced with Satin Tissue
Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța
Abstract:
Although the volumes of fibre reinforced polymer composites (FRPs) used for aircraft applications is a relatively small percentage of total use, the materials often find their most sophisticated applications in this industry. In aerospace, the performance criteria placed upon materials can be far greater than in other areas – key aspects are light-weight, high-strength, high-stiffness, and good fatigue resistance. Composites were first used by the military before the technology was applied to commercial planes. Nowadays, composites are widely used, and this has been the result of a gradual direct substitution of metal components followed by the development of integrated composite designs as confidence in FRPs has increased. The airplane uses a range of components made from composites, including the fin and tailplane. In the last years, composite materials are increasingly used in automotive applications due to the improvement of material properties. In the aerospace and automotive sector, the fuel consumption is proportional to the weight of the body of the vehicle. A minimum of 20% of the cost can be saved if it used polymer composites in place of the metal structures and the operating and maintenance costs are alco very low. Glass fiber-epoxy composites are widely used in the making of aircraft and automobile body parts and are not only limited to these fields but also used in ship building, structural applications in civil engineering, pipes for the transport of liquids, electrical insulators in reactors. This article was establish the high-performance of composite material, a type glass-epoxy used in automotive and aeronautic domains, concerning the tensile and flexural tests and SEM analyzes.Keywords: glass-epoxy composite, traction and flexion tests, SEM analysis, acoustic emission (AE) signals
Procedia PDF Downloads 1061780 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell
Authors: Sujit Kumar Guchhait, Subir Paul
Abstract:
One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM
Procedia PDF Downloads 3061779 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel
Authors: F. M. Pisano, M. Ciminello
Abstract:
Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.Keywords: interactive dashboards, optical fibers, structural health monitoring, visual analytics
Procedia PDF Downloads 1281778 Reusability of Coimmobilized Enzymes
Authors: Aleksandra Łochowicz, Daria Świętochowska, Loredano Pollegioni, Nazim Ocal, Franck Charmantray, Laurence Hecquet, Katarzyna Szymańska
Abstract:
Multienzymatic cascade reactions are nowadays widely used in pharmaceutical, chemical and cosmetics industries to produce high valuable compounds. They can be carried out in two ways, step by step and one-pot. If two or more enzymes are in the same reaction vessel is necessary to work out the compromise to run the reaction in optimal conditions for each enzyme. So far most of the reports of multienzymatic cascades concern on usage of free enzymes. Unfortunately using free enzymes as catalysts of reactions accomplish high cost. What is more, free enzymes are soluble in solvents which makes reuse impossible. To overcome this obstacle enzymes can be immobilized what provides heterogeneity of biocatalyst that enables reuse and easy separation of the enzyme from solvents and reaction products. Usually, immobilization increase also the thermal and operational stability of enzyme. The advantages of using immobilized multienzymes are enhanced enzyme stability, improved cascade enzymatic activity via substrate channeling, and ease of recovery for reuse. The one-pot immobilized multienzymatic cascade can be carried out in mixed or coimmobilized type. When biocatalysts are coimmobilized on the same carrier the are in close contact to each other which increase the reaction rate and catalytic efficiency, and eliminate the lag time. However, in this type providing the optimal conditions both in the process of immobilization and cascade reaction for each enzyme is complicated. Herein, we examined immobilization of 3 enzymes: D-amino acid oxidase from Rhodotorula gracilis, commercially available catalase and transketolase from Geobacillus stearothermophilus. As a support we used silica monoliths with hierarchical structure of pores. Then we checked their stability and reusability in one-pot cascade of L-erythrulose and hydroxypuryvate acid synthesis.Keywords: biocatalysts, enzyme immobilization, multienzymatic reaction, silica carriers
Procedia PDF Downloads 1541777 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm
Authors: Muhammad Umar Kiani, Muhammad Shahbaz
Abstract:
Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process
Procedia PDF Downloads 4121776 Public Preferences for Lung Cancer Screening in China: A Discrete Choice Experiment
Authors: Zixuan Zhao, Lingbin Du, Le Wang, Youqing Wang, Yi Yang, Jingjun Chen, Hengjin Dong
Abstract:
Objectives: Few results from public attitudes for lung cancer screening are available both in China and abroad. This study aimed to identify preferred lung cancer screening modalities in a Chinese population and predict uptake rates of different modalities. Materials and Methods: A discrete choice experiment questionnaire was administered to 392 Chinese individuals aged 50–74 years who were at high risk for lung cancer. Each choice set had two lung screening options and an option to opt-out, and respondents were asked to choose the most preferred one. Both mixed logit analysis and stepwise logistic analysis were conducted to explore whether preferences were related to respondent characteristics and identify which kinds of respondents were more likely to opt out of any screening. Results: On mixed logit analysis, attributes that were predictive of choice at 1% level of statistical significance included the screening interval, screening venue, and out-of-pocket costs. The preferred screening modality seemed to be screening by low-dose computed tomography (LDCT) + blood test once a year in a general hospital at a cost of RMB 50; this could increase the uptake rate by 0.40 compared to the baseline setting. On stepwise logistic regression, those with no endowment insurance were more likely to opt out; those who were older and housewives/househusbands, and those with a health check habit and with commercial endowment insurance were less likely to opt out from a screening programme. Conclusions: There was considerable variance between real risk and self-perceived risk of lung cancer among respondents, and further research is required in this area. Lung cancer screening uptake can be increased by offering various screening modalities, so as to help policymakers further design the screening modality.Keywords: lung cancer, screening, China., discrete choice experiment
Procedia PDF Downloads 2651775 A Coupled Stiffened Skin-Rib Fully Gradient Based Optimization Approach for a Wing Box Made of Blended Composite Materials
Authors: F. Farzan Nasab, H. J. M. Geijselaers, I. Baran, A. De Boer
Abstract:
A method is introduced for the coupled skin-rib optimization of a wing box where mass minimization is the objective and local buckling is the constraint. The structure is made of composite materials where continuity of plies in multiple adjacent panels (blending) has to be satisfied. Blending guarantees the manufacturability of the structure; however, it is a highly challenging constraint to treat and has been under debate in recent research in the same area. To fulfill design guidelines with respect to symmetry, balance, contiguity, disorientation and percentage rule of the layup, a reference for the stacking sequences (stacking sequence table or SST) is generated first. Then, an innovative fully gradient-based optimization approach in relation to a specific SST is introduced to obtain the optimum thickness distribution all over the structure while blending is fulfilled. The proposed optimization approach aims to turn the discrete optimization problem associated with the integer number of plies into a continuous one. As a result of a wing box deflection, a rib is subjected to load values which vary nonlinearly with the amount of deflection. The bending stiffness of a skin affects the wing box deflection and thus affects the load applied to a rib. This indicates the necessity of a coupled skin-rib optimization approach for a more realistic optimized design. The proposed method is examined with the optimization of the layup of a composite stiffened skin and rib of a wing torsion box subjected to in-plane normal and shear loads. Results show that the method can successfully prescribe a valid design with a significantly cheap computation cost.Keywords: blending, buckling optimization, composite panels, wing torsion box
Procedia PDF Downloads 4121774 New 5’-O- and 6-Substituted Purine Nucleoside Analogs: Synthesis and Cytotoxic Activity on Selected Human Cancer Cell Lines
Authors: Meral Tuncbilek, Duygu Sac, Irem Durmaz, Rengul Cetin Atalay
Abstract:
Nucleoside analogs are a pharmacologically diverse family that includes cytotoxic compounds, antiviral agents, and immunosuppressive molecules. Purine nucleoside derivatives such as fludarabine, cladribine, and pentostatin are significant drugs used in chemotherapy for the treatment of solid tumors and hematological malignancies. In this study, we synthesized novel purine ribonucleoside analogs containing a 4-(4-substituted phenylsulfonyl) piperazine in the substituent at N6- and O-substituted sulfonyl group at 5’-position as putative cytotoxic agents. The newly obtained compounds were then characterized for their cytotoxicity in human cancer cell lines. The 5’, 6-disubstituted 9-(β-D-ribofuranosyl)purine derivatives (44-67) were readily obtained from commercially available inosine in seven steps in very cost effective synthesis approach. The newly synthesized compounds were first evaluated for their anti-tumor activities against human liver (Huh7), colon (HCT116) and breast (MCF7) carcinoma cell lines. The IC50 values were in micromolar concentrations with 5’, 6-disubstituted purine nucleoside derivatives. Time-dependent IC50 values for each molecule were also calculated in comparison with known cytotoxic agents Camptothecin (CPT), 5-Fluorouracil (5-FU), Cladribine, Pentostatine and Fludarabine. N6-(4-trifluoromethyl phenyl) / N6-(4-bromophenyl) and 5’-O-(4-methoxybenzene sulfonyl) / 5’-O-(benzenesulfonyl) derivatives 54, 64 displayed the best cytotoxic activity with IC50 values of 8.8, 7 µM against MCF7 cell line. The N6-(4-methylphenyl) analog 50 was also very active (IC50= 10.7 μM) against HCT116 cell line. Furthermore, compound 64 had a better cytotoxic activity than the known cell growth inhibitors 5-FU and Fludarabine on Huh7 (1.5 vs 30.7, 29.9 μM for 5-FU and Fludarabine).Keywords: cytotoxic activity, Huh7, HCT116, MCF7, nucleoside, synthesis
Procedia PDF Downloads 2471773 Long-Term Modal Changes in International Traffic - Example of the Polish Eastern Border
Authors: Tomasz Komornicki
Abstract:
The possibilities of cross-border traffic depend on the degree of permeability of a given border as well as the state of the existing transport infrastructure. The aim of this paper is to identify the impact of economic transformation, EU accession, and infrastructure development on modal shifts in border traffic through the Polish eastern boundary. In the 1980s railway was still the main mode of cross-border transport in Poland. At the beginning of the 1990s, the role of the road and rail transborder passenger traffic was similar, but since 1993, the role of rail was decreasing. The general decline in rail infrastructure in Poland continued uninterruptedly until accession to the European Union. The slow opposite trend can be observed later as a result of the inflow of European funds. In the countries neighbouring Poland from the east, these processes took place with some delay, and the loss of railway position was not so drastic. Therefore, cross-border railway connections have been maintained for quite a long time since the break-up of the USSR. However, finally, cross-border rail transport proved to be completely inflexible in relation to both economic, geopolitical, and transport transformations. It has been shown that the current modal split of the passenger border traffic was shaped by the following factors: a) closure of many transborder railway lines, especially local ones; b) the signing of an agreement on minor border traffic with Ukraine; c) rapidly growing number of citizens of Ukraine working in Poland (unofficial transportation of workers by car directly to their workplaces in Poland); d) the emergence of low-cost air connections between Ukraine and Poland and the growing role of air transport in the Russia-Poland relationship. The summary points to the possibility of a renewed increase in the importance of rail transport on the eastern border of the European Union.Keywords: modal change, border, rail transport, Poland
Procedia PDF Downloads 2061772 Retail of Organic Food in Poland
Authors: Joanna Smoluk-Sikorska, Władysława Łuczka
Abstract:
Organic farming is an important element of sustainable agriculture. It has been developing very dynamically in Poland, especially since Poland’s accession to the EU. Nevertheless, properly functioning organic market is a necessary condition justifying development of organic agriculture. Despite significant improvement, this market in Poland is still in the initial stage of growth. An important element of the market is distribution, especially retail, which offers specified product range to consumers. Therefore, there is a need to investigate retail outlets offering organic food in order to improve functioning of this part of the market. The inquiry research conducted in three types of outlets offering organic food, between 2011 and 2012 in the 8 largest Polish cities, shows that the majority of outlets offer cereals, processed fruit and vegetables as well as spices and the least shops – meat and sausages. The distributors mostly indicate unsatisfactory product range of suppliers as the reason for this situation. The main providers of the outlets are wholesalers, particularly in case of processed products, and in fresh products – organic farms. A very important distribution obstacle is dispersion of producers, which generates high transportation costs and what follows that, high price of organics. In the investigated shops, the most often used price calculation method is a cost method. The majority of the groceries and specialist shops apply margins between 21 and 40%. The margin in specialist outlets is the highest, in regard to the qualified service and advice. In turn, most retail networks declare the margin between 0 and 20%, which is consistent with low-price strategy applied in these shops. Some lacks in the product range of organics and in particular high prices cause that the demand volume is rather low. Therefore there is a need to support certain market actions, e.g. on-farm processing or promotion.Keywords: organic food, retail, product range, supply sources
Procedia PDF Downloads 3001771 Does Clinical Guidelines Affect Healthcare Quality and Populational Health: Quebec Colorectal Cancer Screening Program
Authors: Nizar Ghali, Bernard Fortin, Guy Lacroix
Abstract:
In Quebec, colonoscopies volumes have continued to rise in recent years in the absence of effective monitoring mechanism for the appropriateness and the quality of these exams. In 2010, November, Quebec Government introduced the colorectal cancer-screening program in the objective to control for volume and cost imperfection. This program is based on clinical standards and was initiated for first group of institutions. One year later, Government adds financial incentives for participants institutions. In this analysis, we want to assess for the causal effect of the two components of this program: clinical pathways and financial incentives. Especially we assess for the reform effect on healthcare quality and population health in the context that medical remuneration is not directly dependent on this additional funding offered by the program. We have data on admissions episodes and deaths for 8 years. We use multistate model analog to difference in difference approach to estimate reform effect on the transition probability between different states for each patient. Our results show that the reform reduced length of stay without deterioration in hospital mortality or readmission rate. In the other hand, the program contributed to decrease the hospitalization rate and a less invasive treatment approach for colorectal surgeries. This is a sign of healthcare quality and population health improvement. We demonstrate in this analysis that physicians’ behavior can be affected by both clinical standards and financial incentives even if offered to facilities.Keywords: multi-state and multi-episode transition model, healthcare quality, length of stay, transition probability, difference in difference
Procedia PDF Downloads 2161770 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells
Authors: B. Samuel Raj, Solomon R. D. Jebakumar
Abstract:
Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell
Procedia PDF Downloads 3541769 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1231768 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management
Authors: Thewodros K. Geberemariam
Abstract:
The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space
Procedia PDF Downloads 1561767 Greywater Treatment Using Activated Biochar Produced from Agricultural Waste
Authors: Pascal Mwenge, Tumisang Seodigeng
Abstract:
The increase in urbanisation in South Africa has led to an increase in water demand and a decline in freshwater supply. Despite this, poor water usage is still a major challenge in South Africa, for instance, freshwater is still used for non-drinking applications. The freshwater shortage can be alleviated by using other sources of water for non-portable purposes such as greywater treated with activated biochar produced from agricultural waste. The success of activated biochar produced from agricultural waste to treat greywater can be both economically and environmentally beneficial. Greywater treated with activated biochar produced from agricultural waste is considered a cost-effective wastewater treatment. This work was aimed at determining the ability of activated biochar to remove Total Suspended Solids (TSS), Ammonium (NH4-N), Nitrate (NO3-N), and Chemical Oxygen Demand (COD) from greywater. The experiments were carried out in 800 ml laboratory plastic cylinders used as filter columns. 2.5 cm layer of gravel was used at the bottom and top of the column to sandwich the activated biochar material. Activated biochar (200 g and 400 g) was loaded in a column and used as a filter medium for greywater. Samples were collected after a week and sent for analysis. Four types of greywater were treated: Kitchen, floor cleaning water, shower and laundry water. The findings showed: 95% removal of TSS, 76% of NO3-N and 63% of COD on kitchen greywater and 85% removal of NH4-N on bathroom greywater, as highest removal of efficiency of the studied pollutants. The results showed that activated biochar produced from agricultural waste reduces a certain amount of pollutants from greywater. The results also indicated the ability of activated biochar to treat greywater for onsite non-potable reuse purposes.Keywords: activated biochar produced from agriculture waste, ammonium, NH₄-N, chemical oxygen demand, COD, greywater, nitrate, NO₃-N, total suspended solids, TSS
Procedia PDF Downloads 2061766 Holistic Approach to Assess the Potential of Using Traditional and Advance Insulation Materials for Energy Retrofit of Office Buildings
Authors: Marco Picco, Mahmood Alam
Abstract:
Improving the energy performance of existing buildings can be challenging, particularly when facades cannot be modified, and the only available option is internal insulation. In such cases, the choice of the most suitable material becomes increasingly complex, as in addition to thermal transmittance and capital cost, the designer needs to account for the impact of the intervention on the internal spaces, and in particular the loss of usable space due to the additional layers of materials installed. This paper explores this issue by analysing a case study of an average office building needing to go through a refurbishment in order to reach the limits imposed by current regulations to achieve energy efficiency in buildings. The building is simulated through dynamic performance simulation under three different climate conditions in order to evaluate its energy needs. The use of Vacuum Insulated Panels as an option for energy refurbishment is compared to traditional insulation materials (XPS, Mineral Wool). For each scenario, energy consumptions are calculated and, in combination with their expected capital costs, used to perform a financial feasibility analysis. A holistic approach is proposed, taking into account the impact of the intervention on internal space by quantifying the value of the lost usable space and used in the financial feasibility analysis. The proposed approach highlights how taking into account different drivers will lead to the choice of different insulation materials, showing how accounting for the economic value of space can make VIPs an attractive solution for energy retrofitting under various climate conditions.Keywords: vacuum insulated panels, building performance simulation, payback period, building energy retrofit
Procedia PDF Downloads 1571765 Integrating Nursing Informatics to Improve Patient-Centered Care: A Project to Reduce Patient Waiting Time at the Blood Pressure Counter
Authors: Pi-Chi Wu, Tsui-Ping Chu, Hsiu-Hung Wang
Abstract:
Background: The ability to provide immediate medical service in outpatient departments is one of the keys to patient satisfaction. Objectives: This project used electronic equipment to integrate nursing care information to patient care at a blood pressure diagnostic counter. Through process reengineering, the average patient waiting time decreased from 35 minutes to 5 minutes, while service satisfaction increased from a score of 2.7 to 4.6. Methods: Data was collected from a local hospital in Southern Taiwan from a daily average of 2,200 patients in the outpatient department. Previous waiting times were affected by (1) space limitations, (2) the need to help guide patient mobility, (3) the need for nurses to appease irate patients and give instructions, (4), the need for patients to replace lost counter tickets, (5) the need to re-enter information, (6) the replacement of missing patient information. An ad hoc group was established to enhance patient satisfaction and shorten waiting times for patients to see a doctor. A four step strategy consisting of (1) counter relocation, (2) queue reorganization, (3) electronic information integration, (4) process reengineering was implemented. Results: Implementation of the developed strategy decreased patient waiting time from 35 minutes to an average of 5 minutes, and increased patient satisfaction scores from 2.7 to 6.4. Conclusion: Through the integration of information technology and process transformation, waiting times were drastically reduced, patient satisfaction increased, and nurses were allowed more time to engage in more cost-effective services. This strategy was simultaneously enacted in separate hospitals throughout Taiwan.Keywords: process reengineering, electronic information integration, patient satisfaction, patient waiting time
Procedia PDF Downloads 3801764 Highly Oriented and Conducting SNO2 Doped Al and SB Layers Grown by Automatic Spray Pyrolysis Method
Authors: A.Boularouk, F. Chouikh, M. Lamri, H. Moualkia, Y. Bouznit
Abstract:
The principal aim of this study is to considerably reduce the resistivity of the SnO2 thin layers. In this order, we have doped tin oxide with aluminum and antimony incorporation with different atomic percentages (0 and 4%). All the pure and doped SnO2 films were grown by simple, flexible and cost-effective Automatic Spray Pyrolysis Method (ASPM) on glass substrates at a temperature of 350 °C. The microstructural, optical, morphological and electrical properties of the films have been studied. The XRD results demonstrate that all films have polycrystalline nature with a tetragonal rutile structure and exhibit the (200) preferential orientation. It has been observed that all the dopants are soluble in the SnO2 matrix without forming secondary phases. However, dopant introduction does not modify the film growth orientation. The crystallite size of the pure SnO2 film is about 36 nm. The films are highly transparent in the visible region with an average transmittance reaching up to 80% and it slightly reduces with increasing doping concentration (Al and Sb). The optical band gap value was evaluated between 3.60 eV and 3.75 eV as a function of doping. The SEM image reveals that all films are nanostructured, densely continuous, with good adhesion to the substrate. We note again that the surface morphology change with the type and concentration dopant. The minimum resistivity is 0.689*10-4, which is observed for SnO2 film doped 4% Al. This film shows better properties and is considered the best among all films. Finally, we concluded that the physical properties of the pure and doped SnO2 films grown on a glass substrate by ASPM strongly depend on the type and concentration dopant (Al and Sb) and have highly desirable optical and electrical properties and are promising materials for several applications.Keywords: tin oxide, automatic spray, Al and Sb doped, transmittance, MEB, XRD and UV-VIS
Procedia PDF Downloads 721763 Experimental Studies on Flexural Behaviour on Beam Using Lathe Waste in SIFCON
Authors: R. Saravanakumar, A. Siva, R. Banupriya, K. Balasubramanian
Abstract:
Slurry infiltrated fibrous concrete (SIFCON) is one of the recently developed construction material that can be considered as a special type of high performance fibre reinforced concrete (HPFRC) with higher fibre content. Fibre reinforced concrete is essentially a composite material in which fibres out of waste having higher modulus of elasticity. SIFCON is a special type of high fibrous concrete and it is having a high cementious content and sand. The matrix usually consists of cement-sand slurry or fluent mortar. The construction industry is in need of finding cost effective materials for increasing the strength of concrete structures hence an endeavour has been made in the present investigations to study the influence of addition of waste material like Lathe waste from workshop at different dosages to the total weight of concrete. The waste of steel scrap material which is available from the lathe is used as a steel fibre for innovative construction industry. To get sustainable and environmental benefits, lathe scrap as recycled fibres with concrete are likely to be used. An experimental program was carried out to investigate the flexural behavior of Slurry infiltrated fibrous concrete (SIFCON) in which the fibres having an aspect ratio of 100 is used. The investigations were done using M25 mix and tests were carried out as per recommended procedures by appropriate codes. SIFCON specimens with 8%, 10% and 12% volume of fraction fibres are used in this study. Test results were presented in comparison of SIFCON with and without conventional steel reinforcement. The load carrying capacity of SIFCON specimen is higher than conventional concrete and it also reduced crack width. In the SIFCON specimen less number of cracks as compared with conventional concrete.Keywords: SIFCON, lathe waste, RCC, fibre volume, flexural behaviour
Procedia PDF Downloads 319