Search results for: feed forward network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6841

Search results for: feed forward network

1441 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: building energy prediction, data mining, demand response, electricity market

Procedia PDF Downloads 317
1440 Developing Artificial Neural Networks (ANN) for Falls Detection

Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai

Abstract:

The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.

Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold

Procedia PDF Downloads 497
1439 e-Learning Security: A Distributed Incident Response Generator

Authors: Bel G Raggad

Abstract:

An e-Learning setting is a distributed computing environment where information resources can be connected to any public network. Public networks are very unsecure which can compromise the reliability of an e-Learning environment. This study is only concerned with the intrusion detection aspect of e-Learning security and how incident responses are planned. The literature reported great advances in intrusion detection system (ids) but neglected to study an important ids weakness: suspected events are detected but an intrusion is not determined because it is not defined in ids databases. We propose an incident response generator (DIRG) that produces incident responses when the working ids system suspects an event that does not correspond to a known intrusion. Data involved in intrusion detection when ample uncertainty is present is often not suitable to formal statistical models including Bayesian. We instead adopt Dempster and Shafer theory to process intrusion data for the unknown event. The DIRG engine transforms data into a belief structure using incident scenarios deduced by the security administrator. Belief values associated with various incident scenarios are then derived and evaluated to choose the most appropriate scenario for which an automatic incident response is generated. This article provides a numerical example demonstrating the working of the DIRG system.

Keywords: decision support system, distributed computing, e-Learning security, incident response, intrusion detection, security risk, statefull inspection

Procedia PDF Downloads 438
1438 Matching Law in Autoshaped Choice in Neural Networks

Authors: Giselle Maggie Fer Castañeda, Diego Iván González

Abstract:

The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.

Keywords: matching law, neural networks, computational models, behavioral sciences

Procedia PDF Downloads 77
1437 Context Aware Anomaly Behavior Analysis for Smart Home Systems

Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu

Abstract:

The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.

Keywords: Internet of Things, network security, context awareness, intrusion detection

Procedia PDF Downloads 194
1436 Logistics Optimization: A Literature Review of Techniques for Streamlining Land Transportation in Supply Chain Operations

Authors: Danica Terese Valda, Segundo Villa III, Michiko Yasuda, Jomel Tagaro

Abstract:

This study conducts a thorough literature review of logistics optimization techniques that aimed at improving the efficiency of supply chain operations. Logistics optimization encompasses key areas such as transportation management, inventory control, and distribution network design, each of which plays a critical role in streamlining supply chain performance. The review identifies mixed-integer linear programming (MILP) as a dominant method, widely used for its flexibility in handling complex logistics problems. Other methods like heuristic algorithms and combinatorial optimization also prove effective in solving large-scale logistics challenges. Furthermore, real-time data integration and advancements in simulation techniques are transforming the decision-making processes within supply chains, leading to more dynamic and responsive operations. The inclusion of sustainability goals, particularly in minimizing carbon emissions, has emerged as a growing trend in logistics optimization. This research highlights the need for integrated, holistic approaches that consider the interconnectedness of logistical components. The findings provide valuable insights to guide future research and practical applications, fostering more resilient and efficient supply chains.

Keywords: logistics, techniques, supply chain, land transportation

Procedia PDF Downloads 12
1435 Deep Learning to Improve the 5G NR Uplink Control Channel

Authors: Ahmed Krobba, Meriem Touzene, Mohamed Debeyche

Abstract:

The wireless communications system (5G) will provide more diverse applications and higher quality services for users compared to the long-term evolution 4G (LTE). 5G uses a higher carrier frequency, which suffers from information loss in 5G coverage. Most 5G users often cannot obtain high-quality communications due to transmission channel noise and channel complexity. Physical Uplink Control Channel (PUCCH-NR: Physical Uplink Control Channel New Radio) plays a crucial role in 5G NR telecommunication technology, which is mainly used to transmit link control information uplink (UCI: Uplink Control Information. This study based of evaluating the performance of channel physical uplink control PUCCH-NR under low Signal-to-Noise Ratios with various antenna numbers reception. We propose the artificial intelligence approach based on deep neural networks (Deep Learning) to estimate the PUCCH-NR channel in comparison with this approach with different conventional methods such as least-square (LS) and minimum-mean-square-error (MMSE). To evaluate the channel performance we use the block error rate (BLER) as an evaluation criterion of the communication system. The results show that the deep neural networks method gives best performance compared with MMSE and LS

Keywords: 5G network, uplink (Uplink), PUCCH channel, NR-PUCCH channel, deep learning

Procedia PDF Downloads 88
1434 Geodynamics Behaviour of Greater Cairo as Deduced from 4D Gravity and Seismic Activities

Authors: Elsayed A. Issawy, Anwar H. Radwan

Abstract:

Recent crustal deformations studies in Egypt are applied on the most active areas with relation to seismic activity. Temporal gravity variations in parallel with the geodetic technique (GPS) were used to monitor recent crustal movements in Egypt since 1997. The non-tidal gravity changes were constrained by the vertical component of surface movements derived from the GPS observations. The gravity changes were used to understand the surface tectonics and geodynamic modelling of the Greater Cairo region after the occurrence of an earthquake of 1992. It was found that there is a certain relation showed by increasing of gravity values before the main seismic activity. As example, relative considerable increase of gravity values was noticed for the network between the epochs of 2000 and 2004. Otherwise, the temporal gravity variations were reported a considerable decrease in gravity values between the two campaigns of 2004 and 2007 for the same stations. This behaviour could explain by compressive deformation and strain build-up stage before the South western Cairo earthquake (July 31, 2005 with magnitude of 4.3) and the stress release stage occurred after the main event. The geodetic measurements showed that, the estimated horizontal velocities for almost of points are 5.5 mm/year in approximately NW direction.

Keywords: temporal gravity variations, geodynamics, greater Cairo, recent crustal movements, earthquakes

Procedia PDF Downloads 368
1433 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing

Authors: Thomas Yeboah

Abstract:

Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.

Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing

Procedia PDF Downloads 631
1432 Behaviour of Polypropylene Fiber Reinforced Concrete under Dynamic Impact Loads

Authors: Masoud Abedini, Azrul A. Mutalib

Abstract:

A study of the used of additives which mixed with concrete in order to increase the strength and durability of concrete was examined to improve the quality of many aspects in the concrete. This paper presents a polypropylene (PP) fibre was added into concrete to study the dynamic response under impact load. References related to dynamic impact test for sample polypropylene fibre reinforced concrete (PPFRC) is very limited and there is no specific research and information related to this research. Therefore, the study on the dynamic impact of PPFRC using a Split Hopkinson Pressure Bar (SHPB) was done in this study. Provided samples for this study was composed of 1.0 kg/m³ PP fibres, 2.0 kg/m³ PP fibres and plain concrete as a control samples. This PP fibre contains twisted bundle non-fibrillating monofilament and fibrillating network fibres. Samples were prepared by cylindrical mould with three samples of each mix proportion, 28 days curing period and concrete grade 35 Mpa. These samples are then tested for dynamic impact by SHPB at 2 Mpa pressure under the strain rate of 10 s-1. Dynamic compressive strength results showed an increase of SC1 and SC2 samples than the control sample which is 13.22 % and 76.9 % respectively with the dynamic compressive strength of 74.5 MPa and 116.4 MPa compared to 65.8 MPa. Dynamic increased factor (DIF) shows that, sample SC2 gives higher value with 4.15 than others samples SC1 and SC3 that gives the value of 2.14 and 1.97 respectively.

Keywords: polypropylene fiber, Split Hopkinson Pressure Bar, impact load, dynamic compressive strength

Procedia PDF Downloads 550
1431 Social Interaction of Gifted Students in a Heterogeneous Educational Environment

Authors: Ekaterina Donii

Abstract:

Understanding interpersonal competence, social interaction and peer relationships of gifted children is a concern for specialists in the field of gifted education. To gain more in-depth knowledge concerning the social functioning of gifted children among peers, we decided to study the social abilities of gifted children in a heterogeneous academic environment. Eight gifted children (5 of age 7, 1 of age 8.5, 1 of age 9.5 and 1 of age 10), their classmates (10 of age 7-8, 12 of age 8.5-9, 16 of age 9.5-10) and teachers participated in the study. The sociometric questionnaire analysis was based on the method of Rodríguez and Morera to check the social status of the gifted children among classmates. The Instrument Observational Protocol for Interactions within the Classroom (OPINTEC-v.5) was used to assess the social interactions between the gifted students, their classmates, and the teacher within the educational context. While doing a task together, the gifted children interacted more with popular and neither popular nor gifted classmates than with rejected classmates. While spending time together, the gifted children interacted more with neither popular nor rejected classmates than with popular or rejected classmates. All gifted children chose other gifted and non-gifted classmates for interaction, established close relations and demonstrated good social abilities interacting with their classmates. The aim of this study was to examine the social interactions, social status, and social network of the gifted students in a regular classroom. The majority of the gifted children were popular among their classmates and had good social skills. We should be alert, though, for those gifted children who do have social problems, in order to help them functioning in a regular classroom.

Keywords: gifted, heterogeneous environment, sociometric status, social interactions

Procedia PDF Downloads 356
1430 An MrPPG Method for Face Anti-Spoofing

Authors: Lan Zhang, Cailing Zhang

Abstract:

In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.

Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG

Procedia PDF Downloads 179
1429 LncRNA NEAT1 Promotes NSCLC Progression through Acting as a ceRNA of miR-377-3p

Authors: Chengcao Sun, Shujun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, Dejia Li

Abstract:

Recently, the long non-coding RNA (lncRNA) NEAT1 has been identified as an oncogenic gene in multiple cancer types and elevated expression of NEAT1 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in progression of non-small cell lung cancer (NSCLC). In our studies, we identified NEAT1 was highly expressed in NSCLC patients and was a novel regulator of NSCLC progression. Patients whose tumors had high NEAT1 expression had a shorter overall survival than patients whose tumors had low NEAT1 expression. Further, NEAT1 significantly accelerates NSCLC cell growth and metastasis in vitro and tumor growth in vivo. Additionally, by using bioinformatics study and RNA pull down combined with luciferase reporter assays, we demonstrated that NEAT1 functioned as a competing endogenous RNA (ceRNA) for has-miR-377-3p, antagonized its functions and led to the de-repression of its endogenous targets E2F3, which was a core oncogene in promoting NSCLC progression. Taken together, these observations imply that the NEAT1 modulated the expression of E2F3 gene by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and NSCLC progression.

Keywords: long non-coding RNA NEAT1, hsa-miRNA-377-3p, E2F3, non-small cell lung cancer, tumorigenesis

Procedia PDF Downloads 370
1428 Multi Agent Based Pre-Hospital Emergency Management Architecture

Authors: Jaleh Shoshtarian Malak, Niloofar Mohamadzadeh

Abstract:

Managing pre-hospital emergency patients requires real-time practices and efficient resource utilization. Since we are facing a distributed Network of healthcare providers, services and applications choosing the right resources and treatment protocol considering patient situation is a critical task. Delivering care to emergency patients at right time and with the suitable treatment settings can save ones live and prevent further complication. In recent years Multi Agent Systems (MAS) introduced great solutions to deal with real-time, distributed and complicated problems. In this paper we propose a multi agent based pre-hospital emergency management architecture in order to manage coordination, collaboration, treatment protocol and healthcare provider selection between different parties in pre-hospital emergency in a self-organizing manner. We used AnyLogic Agent Based Modeling (ABM) tool in order to simulate our proposed architecture. We have analyzed and described the functionality of EMS center, Ambulance, Consultation Center, EHR Repository and Quality of Care Monitoring as main collaborating agents. Future work includes implementation of the proposed architecture and evaluation of its impact on patient quality of care improvement.

Keywords: multi agent systems, pre-hospital emergency, simulation, software architecture

Procedia PDF Downloads 428
1427 CO2 Utilization by Reverse Water-Shift and Fischer-Tropsch Synthesis for Production of Heavier Fraction Hydrocarbons in a Container-Sized Mobile Unit

Authors: Francisco Vidal Vázquez, Pekka Simell, Christian Frilund, Matti Reinikainen, Ilkka Hiltunen, Tim Böltken, Benjamin Andris, Paolo Piermartini

Abstract:

Carbon capture and utilization (CCU) are one of the key topics in mitigation of CO2 emissions. There are many different technologies that are applied for the production of diverse chemicals from CO2 such as synthetic natural gas, Fischer-Tropsch products, methanol and polymers. Power-to-Gas and Power-to-Liquids concepts arise as a synergetic solution for storing energy and producing value added products from the intermittent renewable energy sources and CCU. VTT is a research and technology development company having energy in transition as one of the key focus areas. VTT has extensive experience in piloting and upscaling of new energy and chemical processes. Recently, VTT has developed and commissioned a Mobile Synthesis Unit (MOBSU) in close collaboration with INERATEC, a spin-off company of Karlsruhe Institute of Technology (KIT, Germany). The MOBSU is a multipurpose synthesis unit for CO2 upgrading to energy carriers and chemicals, which can be transported on-site where CO2 emission and renewable energy are available. The MOBSU is initially used for production of fuel compounds and chemical intermediates by combination of two consecutive processes: reverse Water-Gas Shift (rWGS) and Fischer-Tropsch synthesis (FT). First, CO2 is converted to CO by high-pressure rWGS and then, the CO and H2 rich effluent is used as feed for FT using an intensified reactor technology developed and designed by INERATEC. Chemical equilibrium of rWGS reaction is not affected by pressure. Nevertheless, compression would be required in between rWGS and FT in the case when rWGS is operated at atmospheric pressure. This would also require cooling of rWGS effluent, water removal and reheating. For that reason, rWGS is operated using precious metal catalyst in the MOBSU at similar pressure as FT to simplify the process. However, operating rWGS at high pressures has also some disadvantages such as methane and carbon formation, and more demanding specifications for materials. The main parts of FT module are an intensified reactor, a hot trap to condense the FT wax products, and a cold trap to condense the FT liquid products. The FT synthesis is performed using cobalt catalyst in a novel compact reactor technology with integrated highly-efficient water evaporation cooling cycle. The MOBSU started operation in November 2016. First, the FT module is tested using as feedstock H2 and CO. Subsequently, rWGS and FT modules are operated together using CO2 and H2 as feedstock of ca. 5 Nm3/hr total flowrate. On spring 2017, The MOBSU unit will be integrated together with a direct air capture (DAC) of CO2 unit, and a PEM electrolyser unit at Lappeenranta University of Technology (LUT) premises for demonstration of the SoletAir concept. This would be the first time when synthetic fuels are produced by combination of DAC unit and electrolyser unit which uses solar power for H2 production.

Keywords: CO2 utilization, demonstration, Fischer-Tropsch synthesis, intensified reactors, reverse water-gas shift

Procedia PDF Downloads 291
1426 PLC Based Automatic Railway Crossing System for India

Authors: Tapan Upadhyay, Aqib Siddiqui, Sameer Khan

Abstract:

Railway crossing system in India is a manually operated level crossing system, either manned or unmanned. The main aim is to protect pedestrians and vehicles from colliding with trains, which pass at regular intervals, as India has the largest and busiest railway network. But because of human error and negligence, every year thousands of lives are lost due to accidents at railway crossings. To avoid this, we suggest a solution, by using Programmable Logical Controller (PLC) based automatic system, which will automatically control the barrier as well as roadblocks to stop people from crossing while security warning is given. Often people avoid security warning, and pass two-wheelers from beneath the barrier, while the train is at a distance away. This paper aims at reducing the fatality and accident rate by controlling barrier and roadblocks using sensors which sense the incoming train and vehicles and sends a signal to PLC. The PLC in return sends a signal to barrier and roadblocks. Once the train passes, the barrier and roadblocks retrieve back, and the passage is clear for vehicles and pedestrians to cross. PLC’s are used because they are very flexible, cost effective, space efficient, reduces complexity and minimises errors. Supervisory Control And Data Acquisition (SCADA) is used to monitor the functioning.

Keywords: level crossing, PLC, sensors, SCADA

Procedia PDF Downloads 428
1425 Internet of Things Edge Device Power Modelling and Optimization Simulator

Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh

Abstract:

Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.

Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting

Procedia PDF Downloads 133
1424 Spatiotemporal Changes in Drought Sensitivity Captured by Multiple Tree-Ring Parameters of Central European Conifers

Authors: Krešimir Begović, Miloš Rydval, Jan Tumajer, Kristyna Svobodová, Thomas Langbehn, Yumei Jiang, Vojtech Čada, Vaclav Treml, Ryszard Kaczka, Miroslav Svoboda

Abstract:

Environmental changes have increased the frequency and intensity of climatic extremes, particularly hotter droughts, leading to altered tree growth patterns and multi-year lags in tree recovery. The effects of shifting climatic conditions on tree growth are inhomogeneous across species’ natural distribution ranges, with large spatial heterogeneity and inter-population variability, but generally have significant consequences for contemporary forest dynamics and future ecosystem functioning. Despite numerous studies on the impacts of regional drought effects, large uncertainties remain regarding the mechanistic basis of drought legacy effects on wood formation and the ability of individual species to cope with increasingly drier growing conditions and rising year-to-year climatic variability. To unravel the complexity of climate-growth interactions and assess species-specific responses to severe droughts, we combined forward modeling of tree growth (VS-lite model) with correlation analyses against climate (temperature, precipitation, and the SPEI-3 moisture index) and growth responses to extreme drought events from multiple tree-ring parameters (tree-width and blue intensity parameters). We used an extensive dataset with over 1000 tree-ring samples from 23 nature forest reserves across an altitudinal range in Czechia and Slovakia. Our results revealed substantial spatiotemporal variability in growth responses to summer season temperature and moisture availability across species and tree-ring parameters. However, a general trend of increasing spring moisture-growth sensitivity in recent decades was observed in the Scots pine mountain forests and lowland forests of both species. The VS-lite model effectively captured nonstationary climate-growth relationships and accurately estimated high-frequency growth variability, indicating a significant incidence of regional drought events and growth reductions. Notably, growth reductions during extreme drought years and discrete legacy effects identified in individual wood components were most pronounced in the lowland forests. Together with the observed growth declines in recent decades, these findings suggest an increasing vulnerability of Norway spruce and Scots pine in dry lowlands under intensifying climatic constraints.

Keywords: dendroclimatology, Vaganova–Shashkin lite, conifers, central Europe, drought, blue intensity

Procedia PDF Downloads 59
1423 Considering Effect of Wind Turbines in the Distribution System

Authors: Majed Ahmadi

Abstract:

In recent years, the high penetration of different types of renewable energy sources (RESs) has affected most of the available strategies. The main motivations behind the high penetration of RESs are clean energy, modular system and easy installation. Among different types of RESs, wind turbine (WT) is an interesting choice referring to the availability of wind in almost any area. The new technologies of WT can provide energy from residential applications to wide grid connected applications. Regarding the WT, advantages such as reducing the dependence on fossil fuels and enhancing the independence and flexibility of large power grid are the most prominent. Nevertheless, the high volatile nature of wind speed injects much uncertainty in the grid that if not managed optimally can put the analyses far from the reality.the aim of this project is scrutiny and to offer proper ways for renewing distribution networks with envisage the effects of wind power plants and uncertainties related to distribution systems including wind power generating plants output rate and consumers consuming rate and also decrease the incidents of the whole network losses, amount of pollution, voltage refraction and cost extent.to solve this problem we use dual point estimate method.And algorithm used in this paper is reformed bat algorithm, which will be under exact research furthermore the results.

Keywords: order renewal, wind turbines, bat algorithm, outspread production, uncertainty

Procedia PDF Downloads 286
1422 Theology of Science and Technology as a Tool for Peace Education

Authors: Jonas Chikelue Ogbuefi

Abstract:

Science and Technology have a major impact on societal peace, it offers support to teaching and learning, cuts costs, and offers solutions to the current agitations and militancy in Nigeria today. Christianity, for instance, did not only change and form the western world in the past 2022 but still has a substantial role to play in society through liquid ecclesiology. This paper interrogated the impact of the theology of Science and Technology as a tool for peace sustainability through peace education in Nigeria. The method adopted is a historical and descriptive method of analysis. It was discovered that a larger number of Nigerian citizens lack almost all the basic things needed for the standard of living, such as Shelter, meaningful employment, and clothing, which is the root course of all agitations in Nigeria. Based on the above findings, the paper contends that the government alone cannot restore Peace in Nigeria. Hence the inability of the government to restore peace calls for all religious actors to be involved. The main thrust and recommendation of this paper are to challenge the religious actors to implement the Theology of Science and Technology as a tool for peace restoration and should network with both the government and the private sectors to make funds available to budding and existing entrepreneurs using Science and Technology as a tool for Peace and economic sustainability. This paper viewed the theology of Science and Technology as a tool for Peace and economic sustainability in Nigeria.

Keywords: theology, science, technology, peace education

Procedia PDF Downloads 84
1421 A Pathway to Financial Inclusion: Mobile Money and Individual Savings in Uganda

Authors: Musa Mayanja Lwanga, Annet Adong

Abstract:

This study provides a micro perspective on the impact of mobile money services on individual’s saving behavior using the 2013 Uganda FinScope data. Results show that although saving through the mobile phone is not a common practice in Uganda, being a registered mobile money user increases the likelihood to save with mobile money. Saving using mobile is more prevalent in urban areas and in Kampala and Central region compared to other regions. This can be explained by: first, rural dwellers tend on average to have lower incomes and thus have lower to saving compared to the urban counterpart. Similarly, residents of Kampala tend to have higher incomes and thus high savings compared to residents of other regions. Secondly, poor infrastructure in rural areas in terms of lack of electricity and poor telecommunication network coverage may limit the use of mobile phones and consequently the use of mobile money as a saving mechanism. Overall, the use of mobile money as a saving mechanism is still very low and this could be partly explained by limitations in the legislation that does not incorporate mobile finance services into mobile money. The absence of interest payments on mobile money savings may act as a disincentive to save through this mechanism. Given the emerging mobile banking services, there is a need to create more awareness and the need for enhanced synergies between telecom companies and commercial banks.

Keywords: financial inclusion, mobile money, savings, Uganda

Procedia PDF Downloads 299
1420 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features

Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou

Abstract:

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features

Procedia PDF Downloads 124
1419 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 92
1418 A Cross-Sectional Study on Smartphone Addiction, Sleep Hygiene, and Perceived Stress

Authors: Kriti Singh, Saurabh Tripathi, Pankaj Chaudhary, Abid Ali Ansari, Seema Nigam

Abstract:

Introduction: The introduction of android and iOS has changed our lives dramatically over the past few years. The new generation is more dependent on their mobile phones for carrying out their daily pursuits. Smartphones have revolutionized our lives. The cutdown in rates of mobile network services has been affecting us drastically. A new type of dependence is seen among the people for Smartphones. A cross-sectional study was conducted to determine the state of addiction among the group of medical students, along with its association with sleep hygiene and anxiety. Material and Method: Study included 50 individuals in the age group of 18-35 years. Smartphone Addiction Scale Short Version, Sleep Hygiene Index, and Perceived Stress Scales were used conducting the study. Results: Mean age of 22 years (12%). The majority of subjects were 20-year olds (15 out of 50), the majority were males with few females. Mean Smartphone addiction score 39 (very severe), Mean Sleep Hygiene Index score 26.76 (moderate maladaptive hygiene and Mean Perceived Stress score of 19.92 (moderate stress). Conclusion: In majority students were found to have a very severe Smartphone Addiction with moderate sleep hygiene and a moderate level of perceived stress. The Smartphone was being used was for surfing social media applications.

Keywords: addiction perceived stress, sleep hygiene index, smartphone

Procedia PDF Downloads 140
1417 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach

Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya

Abstract:

A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.

Keywords: deep learning, hidden Markov model, pothole, speed breaker

Procedia PDF Downloads 145
1416 Climate Change Law and Transnational Corporations

Authors: Manuel Jose Oyson

Abstract:

The Intergovernmental Panel on Climate Change (IPCC) warned in its most recent report for the entire world “to both mitigate and adapt to climate change if it is to effectively avoid harmful climate impacts.” The IPCC observed “with high confidence” a more rapid rise in total anthropogenic greenhouse gas emissions (GHG) emissions from 2000 to 2010 than in the past three decades that “were the highest in human history”, which if left unchecked will entail a continuing process of global warming and can alter the climate system. Current efforts, however, to respond to the threat of global warming, such as the United Nations Framework Convention on Climate Change and the Kyoto Protocol, have focused on states, and fail to involve Transnational Corporations (TNCs) which are responsible for a vast amount of GHG emissions. Involving TNCs in the search for solutions to climate change is consistent with an acknowledgment by contemporary international law that there is an international role for other international persons, including TNCs, and departs from the traditional “state-centric” response to climate change. Putting the focus of GHG emissions away from states recognises that the activities of TNCs “are not bound by national borders” and that the international movement of goods meets the needs of consumers worldwide. Although there is no legally-binding instrument that covers TNC activities or legal responsibilities generally, TNCs have increasingly been made legally responsible under international law for violations of human rights, exploitation of workers and environmental damage, but not for climate change damage. Imposing on TNCs a legally-binding obligation to reduce their GHG emissions or a legal liability for climate change damage is arguably formidable and unlikely in the absence a recognisable source of obligation in international law or municipal law. Instead a recourse to “soft law” and non-legally binding instruments may be a way forward for TNCs to reduce their GHG emissions and help in addressing climate change. Positive effects have been noted by various studies to voluntary approaches. TNCs have also in recent decades voluntarily committed to “soft law” international agreements. This development reflects a growing recognition among corporations in general and TNCs in particular of their corporate social responsibility (CSR). While CSR used to be the domain of “small, offbeat companies”, it has now become part of mainstream organization. The paper argues that TNCs must voluntarily commit to reducing their GHG emissions and helping address climate change as part of their CSR. One, as a serious “global commons problem”, climate change requires international cooperation from multiple actors, including TNCs. Two, TNCs are not innocent bystanders but are responsible for a large part of GHG emissions across their vast global operations. Three, TNCs have the capability to help solve the problem of climate change. Assuming arguendo that TNCs did not strongly contribute to the problem of climate change, society would have valid expectations for them to use their capabilities, knowledge-base and advanced technologies to help address the problem. It would seem unthinkable for TNCs to do nothing while the global environment fractures.

Keywords: climate change law, corporate social responsibility, greenhouse gas emissions, transnational corporations

Procedia PDF Downloads 351
1415 Groundwater Monitoring Using a Community: Science Approach

Authors: Shobha Kumari Yadav, Yubaraj Satyal, Ajaya Dixit

Abstract:

In addressing groundwater depletion, it is important to develop evidence base so to be used in assessing the state of its degradation. Groundwater data is limited compared to meteorological data, which impedes the groundwater use and management plan. Monitoring of groundwater levels provides information base to assess the condition of aquifers, their responses to water extraction, land-use change, and climatic variability. It is important to maintain a network of spatially distributed, long-term monitoring wells to support groundwater management plan. Monitoring involving local community is a cost effective approach that generates real time data to effectively manage groundwater use. This paper presents the relationship between rainfall and spring flow, which are the main source of freshwater for drinking, household consumptions and agriculture in hills of Nepal. The supply and withdrawal of water from springs depends upon local hydrology and the meteorological characteristics- such as rainfall, evapotranspiration and interflow. The study offers evidence of the use of scientific method and community based initiative for managing groundwater and springshed. The approach presents a method to replicate similar initiative in other parts of the country for maintaining integrity of springs.

Keywords: citizen science, groundwater, water resource management, Nepal

Procedia PDF Downloads 203
1414 Species Profiling of Scarab Beetles with the Help of Light Trap in Western Himalayan Region of Uttarakhand

Authors: Ajay Kumar Pandey

Abstract:

White grub (Coleoptera: Scarabaeidae), locally known as Kurmula, Pagra, Chinchu, is a major destructive pest in western Himalayan region of Uttarakhand state of India. Various crops like cereals (up land paddy, wheat, and barley), vegetables (capsicum, cabbage, tomato, cauliflower, carrot etc) and some pulse (like pigeon pea, green gram, black gram) are grown with limited availability of primary resources. Among the various limitations in successful cultivation of these crops, white grub has been proved a major constraint in for all crops grown in hilly area. The losses incurred due to white grubs are huge in case of commercial crops like sugarcane, groundnut, potato, maize and upland rice. Moreover, it has been proved major constraint in potato production in mid and higher hills of India. Adults emerge in May-June following the onset of monsoon and thereafter defoliate the apple, apricot, plum, and walnut during night while 2nd and 3rd instar grubs feed on live roots of cultivated as well as non cultivated crops from August to January. Survey was conducted in hilly (Pauri and Tehri) as well as plain area (Haridwar district) of Uttarakhand state. Collection of beetle was done from various locations from August to September of five consecutive years with the help of light trap and directly from host plant. The grub was also collected by excavating one square meter area from different locations and reared in laboratory to find out adult. During the collection, the diseased or dead cadaver were also collected and brought in the laboratory and identified the causal organisms. Total 25 species of white grub was identified out of which Holotrichia longipennis, Anomala dimidiata, Holotrichia lineatopennis, Maladera insanabilis, Brahmina sp. make complex problem in different area of Uttarakhand where they cause severe damage to various crops. During the survey, it was observed that white grubs beetles have variation in preference of host plant, even in choice of fruit and leaves of host plant. It was observed that, a white grub species, which identified as Lepidiota mansueta Burmeister., was causing severe havoc to sugarcane crop grown in major sugarcane growing belt of Haridwar district. The study also revealed that Bacillus cereus, Beauveria bassiana, Metarhizium anisopliae, Steinernema, Heterorhabditis are major disease causing agents in immature stage of white grub under rain-fed condition of Uttarakhand which caused 15.55 to 21.63 percent natural mortality of grubs with an average of 18.91 percent. However, among the microorganisms, B. cereus found to be significantly more efficient (7.03 percent mortality) then the entomopathogenic fungi (3.80 percent mortality) and nematodes (3.20 percent mortality).

Keywords: Lepidiota, profiling, Uttarakhand, whitegrub

Procedia PDF Downloads 222
1413 Better Together: Diverging Trajectories of Local Social Work Practice and Nationally-Regulated Social Work Education in the UK

Authors: Noel Smith

Abstract:

To achieve professional registration, UK social workers need to complete a programme of education and training which meets standards set down by central government. When it comes to practice, social work in local authorities must fulfil requirements of national legislation but there is considerable local variation in the organisation and delivery of services. This presentation discusses the on-going reform of social work education by central government in the context of research of social work services in a local authority. In doing so it highlights that the ‘direction of travel’ of the national reform of social work education seems at odds with the trajectory of development of local social work services. In terms of education reform, the presentation cites key government initiatives including the knowledge and skills requirements which have been published separately for, respectively, child and family social work and adult social work. Also relevant is the Government’s new ‘teaching partnership’ pilot which focuses exclusively on social work in local government, in isolation from social work in NGOs. In terms of research, the presentation discusses two studies undertaken by Professor Smith in Suffolk County Council, a local authority in the east of England. The first is an equality impact analysis of the introduction of a new model for the delivery of adult and community services in Suffolk. This is based on qualitative research with local government representatives and NGOs involved in social work with older people and people with disabilities. The second study is an on-going, mixed method evaluation of the introduction of a new model of social care for children and young people in Suffolk. This new model is based on the international ‘Signs of Safety’ approach, which is applied in this model to a wide range of services from early intervention to child protection. While both studies are localised, the service models they examine are good illustrations of the way services are developing nationally. Analysis of these studies suggest that, if services continue to develop as they currently are, then social workers will require particular skills which are not be adequately addressed in the Government’s plans for social work education. Two issues arise. First, education reform concentrates on social work within local government while increasingly local authorities are outsourcing service provision to NGOs, expecting greater community involvement in providing care, and integrating social care with health care services. Second, education reform focuses on the different skills required for working with older and disabled adults and working with children and families, to the point where potentially the profession would be fragmented into two different classes of social worker. In contrast, the development of adult and children’s services in local authorities re-asserts the importance of common social work skills relating to personalisation, prevention and community development. The presentation highlights the importance for social work education in the UK to be forward looking, in terms of the changing design of service delivery, and outward looking, in terms of lessons to be drawn from international social work.

Keywords: adult social work, children and families social work, European social work, social work education

Procedia PDF Downloads 300
1412 Determination of Measurement Uncertainty of the Diagnostic Meteorological Model CALMET

Authors: Nina Miklavčič, Urška Kugovnik, Natalia Galkina, Primož Ribarič, Rudi Vončina

Abstract:

Today, the need for weather predictions is deeply rooted in the everyday life of people as well as it is in industry. The forecasts influence final decision-making processes in multiple areas, from agriculture and prevention of natural disasters to air traffic regulations and solutions on a national level for health, security, and economic problems. Namely, in Slovenia, alongside other existing forms of application, weather forecasts are adopted for the prognosis of electrical current transmission through powerlines. Meteorological parameters are one of the key factors which need to be considered in estimations of the reliable supply of electrical energy to consumers. And like for any other measured value, the knowledge about measurement uncertainty is also critical for the secure and reliable supply of energy. The estimation of measurement uncertainty grants us a more accurate interpretation of data, a better quality of the end results, and even a possibility of improvement of weather forecast models. In the article, we focused on the estimation of measurement uncertainty of the diagnostic microscale meteorological model CALMET. For the purposes of our research, we used a network of meteorological stations spread in the area of our interest, which enables a side-by-side comparison of measured meteorological values with the values calculated with the help of CALMET and the measurement uncertainty estimation as a final result.

Keywords: uncertancy, meteorological model, meteorological measurment, CALMET

Procedia PDF Downloads 81