Search results for: chronic mild stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5678

Search results for: chronic mild stress

278 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria

Authors: Amina Naidja, Zedira Khammar, Ines Soltani

Abstract:

This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.

Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception

Procedia PDF Downloads 41
277 Heat Vulnerability Index (HVI) Mapping in Extreme Heat Days Coupled with Air Pollution Using Principal Component Analysis (PCA) Technique: A Case Study of Amiens, France

Authors: Aiman Mazhar Qureshi, Ahmed Rachid

Abstract:

Extreme heat events are emerging human environmental health concerns in dense urban areas due to anthropogenic activities. High spatial and temporal resolution heat maps are important for urban heat adaptation and mitigation, helping to indicate hotspots that are required for the attention of city planners. The Heat Vulnerability Index (HVI) is the important approach used by decision-makers and urban planners to identify heat-vulnerable communities and areas that require heat stress mitigation strategies. Amiens is a medium-sized French city, where the average temperature has been increasing since the year 2000 by +1°C. Extreme heat events are recorded in the month of July for the last three consecutive years, 2018, 2019 and 2020. Poor air quality, especially ground-level ozone, has been observed mainly during the same hot period. In this study, we evaluated the HVI in Amiens during extreme heat days recorded last three years (2018,2019,2020). The Principal Component Analysis (PCA) technique is used for fine-scale vulnerability mapping. The main data we considered for this study to develop the HVI model are (a) socio-economic and demographic data; (b) Air pollution; (c) Land use and cover; (d) Elderly heat-illness; (e) socially vulnerable; (f) Remote sensing data (Land surface temperature (LST), mean elevation, NDVI and NDWI). The output maps identified the hot zones through comprehensive GIS analysis. The resultant map shows that high HVI exists in three typical areas: (1) where the population density is quite high and the vegetation cover is small (2) the artificial surfaces (built-in areas) (3) industrial zones that release thermal energy and ground-level ozone while those with low HVI are located in natural landscapes such as rivers and grasslands. The study also illustrates the system theory with a causal diagram after data analysis where anthropogenic activities and air pollution appear in correspondence with extreme heat events in the city. Our suggested index can be a useful tool to guide urban planners and municipalities, decision-makers and public health professionals in targeting areas at high risk of extreme heat and air pollution for future interventions adaptation and mitigation measures.

Keywords: heat vulnerability index, heat mapping, heat health-illness, remote sensing, urban heat mitigation

Procedia PDF Downloads 148
276 Precursor Muscle Cell’s Phenotype under Compression in a Biomimetic Mechanical Niche

Authors: Fatemeh Abbasi, Arne Hofemeier, Timo Betz

Abstract:

Muscle growth and regeneration critically depend on satellite cells (SCs) which are muscle stem cells located between the basal lamina and myofibres. Upon damage, SCs become activated, enter the cell cycle, and give rise to myoblasts that form new myofibres, while a sub-population self-renew and re-populate the muscle stem cell niche. In aged muscle as well as in certain muscle diseases such as muscular dystrophy, some of the SCs lose their regenerative ability. Although it is demonstrated that the chemical composition of SCs quiescent niche is different from the activated niche, the mechanism initially activated in the SCs remains unknown. While extensive research efforts focused on potential chemical activation, no such factor has been identified to the author’s best knowledge. However, it is substantiated that niche mechanics affects SCs behaviors, such as stemness and engraftment. We hypothesize that mechanical stress in the healthy niche (homeostasis) is different from the regenerative niche and that this difference could serve as an early signal activating SCs upon fiber damage. To investigate this hypothesis, we develop a biomimetic system to reconstitute both, the mechanical and the chemical environment of the SC niche. Cells will be confined between two elastic polyacrylamide (PAA) hydrogels with controlled elastic moduli and functionalized surface chemistry. By controlling the distance between the PAA hydrogel surfaces, we vary the compression forces exerted by the substrates on the cells, while the lateral displacement of the upper hydrogel will create controlled shear forces. To establish such a system, a simplified system is presented. We engineered a sandwich-like configuration of two elastic PAA layer with stiffnesses between 1 and 10 kPa and confined a precursor myoblast cell line (C2C12) in between these layers. Our initial observations in this sandwich model indicate that C2C12 cells show different behaviors under mechanical compression if compared to a control one-layer gel without compression. Interestingly, this behavior is stiffness-dependent. While the shape of C2C12 cells in the sandwich consisting of two stiff (10 kPa) layers was much more elongated, showing almost a neuronal phenotype, the cell shape in a sandwich situation consisting of one stiff and one soft (1 kPa) layer was more spherical. Surprisingly, even in proliferation medium and at very low cell density, the sandwich situation stimulated cell differentiation with increased striation and myofibre formation. Such behavior is commonly found for confluent cells in differentiation medium. These results suggest that mechanical changes in stiffness and applied pressure might be a relevant stimulation for changes in muscle cell behavior.

Keywords: C2C12 cells, compression, force, satellite cells, skeletal muscle

Procedia PDF Downloads 124
275 Advantages of Computer Navigation in Knee Arthroplasty

Authors: Mohammad Ali Al Qatawneh, Bespalchuk Pavel Ivanovich

Abstract:

Computer navigation has been introduced in total knee arthroplasty to improve the accuracy of the procedure. Computer navigation improves the accuracy of bone resection in the coronal and sagittal planes. It was also noted that it normalizes the rotational alignment of the femoral component and fully assesses and balances the deformation of soft tissues in the coronal plane. The work is devoted to the advantages of using computer navigation technology in total knee arthroplasty in 62 patients (11 men and 51 women) suffering from gonarthrosis, aged 51 to 83 years, operated using a computer navigation system, followed up to 3 years from the moment of surgery. During the examination, the deformity variant was determined, and radiometric parameters of the knee joints were measured using the Knee Society Score (KSS), Functional Knee Society Score (FKSS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scales. Also, functional stress tests were performed to assess the stability of the knee joint in the frontal plane and functional indicators of the range of motion. After surgery, improvement was observed in all scales; firstly, the WOMAC values decreased by 5.90 times, and the median value to 11 points (p < 0.001), secondly KSS increased by 3.91 times and reached 86 points (p < 0.001), and the third one is that FKSS data increased by 2.08 times and reached 94 points (p < 0.001). After TKA, the axis deviation of the lower limbs of more than 3 degrees was observed in 4 patients at 6.5% and frontal instability of the knee joint just in 2 cases at 3.2%., The lower incidence of sagittal instability of the knee joint after the operation was 9.6%. The range of motion increased by 1.25 times; the volume of movement averaged 125 degrees (p < 0.001). Computer navigation increases the accuracy of the spatial orientation of the endoprosthesis components in all planes, reduces the variability of the axis of the lower limbs within ± 3 °, allows you to achieve the best results of surgical interventions, and can be used to solve most basic tasks, allowing you to achieve excellent and good outcomes of operations in 100% of cases according to the WOMAC scale. With diaphyseal deformities of the femur and/or tibia, as well as with obstruction of their medullary canal, the use of computer navigation is the method of choice. The use of computer navigation prevents the occurrence of flexion contracture and hyperextension of the knee joint during the distal sawing of the femur. Using the navigation system achieves high-precision implantation for the endoprosthesis; in addition, it achieves an adequate balance of the ligaments, which contributes to the stability of the joint, reduces pain, and allows for the achievement of a good functional result of the treatment.

Keywords: knee joint, arthroplasty, computer navigation, advantages

Procedia PDF Downloads 90
274 Reading as Moral Afternoon Tea: An Empirical Study on the Compensation Effect between Literary Novel Reading and Readers’ Moral Motivation

Authors: Chong Jiang, Liang Zhao, Hua Jian, Xiaoguang Wang

Abstract:

The belief that there is a strong relationship between reading narrative and morality has generally become the basic assumption of scholars, philosophers, critics, and cultural critics. The virtuality constructed by literary novels inspires readers to regard the narrative as a thinking experiment, creating the distance between readers and events so that they can freely and morally experience the positions of different roles. Therefore, the virtual narrative combined with literary characteristics is always considered as a "moral laboratory." Well-established findings revealed that people show less lying and deceptive behaviors in the morning than in the afternoon, called the morning morality effect. As a limited self-regulation resource, morality will be constantly depleted with the change of time rhythm under the influence of the morning morality effect. It can also be compensated and restored in various ways, such as eating, sleeping, etc. As a common form of entertainment in modern society, literary novel reading gives people more virtual experience and emotional catharsis, just as a relaxing afternoon tea that helps people break away from fast-paced work, restore physical strength, and relieve stress in a short period of leisure. In this paper, inspired by the compensation control theory, we wonder whether reading literary novels in the digital environment could replenish a kind of spiritual energy for self-regulation to compensate for people's moral loss in the afternoon. Based on this assumption, we leverage the social annotation text content generated by readers in digital reading to represent the readers' reading attention. We then recognized the semantics and calculated the readers' moral motivation expressed in the annotations and investigated the fine-grained dynamics of the moral motivation changing in each time slot within 24 hours of a day. Comprehensively comparing the division of different time intervals, sufficient experiments showed that the moral motivation reflected in the annotations in the afternoon is significantly higher than that in the morning. The results robustly verified the hypothesis that reading compensates for moral motivation, which we called the moral afternoon tea effect. Moreover, we quantitatively identified that such moral compensation can last until 14:00 in the afternoon and 21:00 in the evening. In addition, it is interesting to find that the division of time intervals of different units impacts the identification of moral rhythms. Dividing the time intervals by four-hour time slot brings more insights of moral rhythms compared with that of three-hour and six-hour time slot.

Keywords: digital reading, social annotation, moral motivation, morning morality effect, control compensation

Procedia PDF Downloads 149
273 Degradation Kinetics of Cardiovascular Implants Employing Full Blood and Extra-Corporeal Circulation Principles: Mimicking the Human Circulation In vitro

Authors: Sara R. Knigge, Sugat R. Tuladhar, Hans-Klaus HöFfler, Tobias Schilling, Tim Kaufeld, Axel Haverich

Abstract:

Tissue engineered (TE) heart valves based on degradable electrospun fiber scaffold represent a promising approach to overcome the known limitations of mechanical or biological prostheses. But the mechanical stress in the high-pressure system of the human circulation is a severe challenge for the delicate materials. Hence, the prediction of the scaffolds` in vivo degradation kinetics must be as accurate as possible to prevent fatal events in future animal or even clinical trials. Therefore, this study investigates whether long-term testing in full blood provides more meaningful results regarding the degradation behavior than conventional tests in simulated body fluids (SBF) or Phosphate Buffered Saline (PBS). Fiber mats were produced from a polycaprolactone (PCL)/tetrafluoroethylene solution by electrospinning. The morphology of the fiber mats was characterized via scanning electron microscopy (SEM). A maximum physiological degradation environment utilizing a test set-up with porcine full blood was established. The set-up consists of a reaction vessel, an oxygenator unit, and a roller pump. The blood parameters (pO2, pCO2, temperature, and pH) were monitored with an online test system. All tests were also carried out in the test circuit with SBF and PBS to compare conventional degradation media with the novel full blood setting. The polymer's degradation is quantified by SEM picture analysis, differential scanning calorimetry (DSC), and Raman spectroscopy. Tensile and cyclic loading tests were performed to evaluate the mechanical integrity of the scaffold. Preliminary results indicate that PCL degraded slower in full blood than in SBF and PBS. The uptake of water is more pronounced in the full blood group. Also, PCL preserved its mechanical integrity longer when degraded in full blood. Protein absorption increased during the degradation process. Red blood cells, platelets, and their aggregates adhered on the PCL. Presumably, the degradation led to a more hydrophilic polymeric surface which promoted the protein adsorption and the blood cell adhesion. Testing degradable implants in full blood allows for developing more reliable scaffold materials in the future. Material tests in small and large animal trials thereby can be focused on testing candidates that have proven to function well in an in-vivo-like setting.

Keywords: Electrospun scaffold, full blood degradation test, long-term polymer degradation, tissue engineered aortic heart valve

Procedia PDF Downloads 150
272 Raman Tweezers Spectroscopy Study of Size Dependent Silver Nanoparticles Toxicity on Erythrocytes

Authors: Surekha Barkur, Aseefhali Bankapur, Santhosh Chidangil

Abstract:

Raman Tweezers technique has become prevalent in single cell studies. This technique combines Raman spectroscopy which gives information about molecular vibrations, with optical tweezers which use a tightly focused laser beam for trapping the single cells. Thus Raman Tweezers enabled researchers analyze single cells and explore different applications. The applications of Raman Tweezers include studying blood cells, monitoring blood-related disorders, silver nanoparticle-induced stress, etc. There is increased interest in the toxic effect of nanoparticles with an increase in the various applications of nanoparticles. The interaction of these nanoparticles with the cells may vary with their size. We have studied the effect of silver nanoparticles of sizes 10nm, 40nm, and 100nm on erythrocytes using Raman Tweezers technique. Our aim was to investigate the size dependence of the nanoparticle effect on RBCs. We used 785nm laser (Starbright Diode Laser, Torsana Laser Tech, Denmark) for both trapping and Raman spectroscopic studies. 100 x oil immersion objectives with high numerical aperture (NA 1.3) is used to focus the laser beam into a sample cell. The back-scattered light is collected using the same microscope objective and focused into the spectrometer (Horiba Jobin Vyon iHR320 with 1200grooves/mm grating blazed at 750nm). Liquid nitrogen cooled CCD (Symphony CCD-1024x256-OPEN-1LS) was used for signal detection. Blood was drawn from healthy volunteers in vacutainer tubes and centrifuged to separate the blood components. 1.5 ml of silver nanoparticles was washed twice with distilled water leaving 0.1 ml silver nanoparticles in the bottom of the vial. The concentration of silver nanoparticles is 0.02mg/ml so the 0.03mg of nanoparticles will be present in the 0.1 ml nanoparticles obtained. The 25 ul of RBCs were diluted in 2 ml of PBS solution and then treated with 50 ul (0.015mg) of nanoparticles and incubated in CO2 incubator. Raman spectroscopic measurements were done after 24 hours and 48 hours of incubation. All the spectra were recorded with 10mW laser power (785nm diode laser), 60s of accumulation time and 2 accumulations. Major changes were observed in the peaks 565 cm-1, 1211 cm-1, 1224 cm-1, 1371 cm-1, 1638 cm-1. A decrease in intensity of 565 cm-1, increase in 1211 cm-1 with a reduction in 1224 cm-1, increase in intensity of 1371 cm-1 also peak disappearing at 1635 cm-1 indicates deoxygenation of hemoglobin. Nanoparticles with higher size were showing maximum spectral changes. Lesser changes observed in case of 10nm nanoparticle-treated erythrocyte spectra.

Keywords: erythrocytes, nanoparticle-induced toxicity, Raman tweezers, silver nanoparticles

Procedia PDF Downloads 293
271 Autophagy in the Midgut Epithelium of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) Larvae Exposed to Various Cadmium Concentration - 6-Generational Exposure

Authors: Magdalena Maria Rost-Roszkowska, Alina Chachulska-Żymełka, Monika Tarnawska, Maria Augustyniak, Alina Kafel, Agnieszka Babczyńska

Abstract:

Autophagy is a form of cell remodeling in which an internalization of organelles into vacuoles that are called autophagosomes occur. Autophagosomes are the targets of lysosomes, thus causing digestion of cytoplasmic components. Eventually, it can lead to the death of the entire cell. However, in response to several stress factors, e.g., starvation, heavy metals (e.g., cadmium) autophagy can also act as a pro-survival factor, protecting the cell against its death. The main aim of our studies was to check if the process of autophagy, which could appear in the midgut epithelium after Cd treatment, can be fixed during the following generations of insects. As a model animal, we chose the beet armyworm Spodoptera exigua Hübner (Lepidoptera: Noctuidae), a well-known polyphagous pest of many vegetable crops. We analyzed specimens at final larval stage (5th larval stage), due to its hyperfagy, resulting in great amount of cadmium assimilate. The culture consisted of two strains: a control strain (K) fed a standard diet, and a cadmium strain (Cd), fed on standard diet supplemented with cadmium (44 mg Cd per kg of dry weight of food) for 146 generations, both strains. In addition, the control insects were transferred to the Cd supplemented diet (5 mg Cd per kg of dry weight of food, 10 mg Cd per kg of dry weight of food, 20 mg Cd per kg of dry weight of food, 44 mg Cd per kg of dry weight of food). Therefore, we obtained Cd1, Cd2, Cd3 and KCd experimental groups. Autophagy has been examined using transmission electron microscope. During this process, degenerated organelles were surrounded by a membranous phagophore and enclosed in an autophagosome. Eventually, after the autophagosome fused with a lysosome, an autolysosome was formed and the process of the digestion of organelles began. During the 1st year of the experiment, we analyzed specimens of 6 generations in all the lines. The intensity of autophagy depends significantly on the generation, tissue and cadmium concentration in the insect rearing medium. In the Ist, IInd, IIIrd, IVth, Vth and VIth generation the intensity of autophagy in the midguts from cadmium-exposed strains decreased gradually according to the following order of strains: Cd1, Cd2, Cd3 and KCd. The higher amount of cells with autophagy was observed in Cd1 and Cd2. However, it was still higher than the percentage of cells with autophagy in the same tissues of the insects from the control and multigenerational cadmium strain. This may indicate that during 6-generational exposure to various Cd concentration, a preserved tolerance to cadmium was not maintained. The study has been financed by the National Science Centre Poland, grant no 2016/21/B/NZ8/00831.

Keywords: autophagy, cell death, digestive system, ultrastructure

Procedia PDF Downloads 233
270 Effects of Sexual Activities in Male Athletes Performance

Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Massimo Briamo, Giovanni Abalsamo

Abstract:

Most of the benefits of sport come from related physical activity, however, there are secondary psychological positive effects. There are also obvious disadvantages, high tensions related to failure, injuries, eating disorders and burnout. Depressive symptoms and illnesses related to anxiety or stress can be preventable or even simply alleviated through regular activity and exercise. It has been shown that the practice of a sport brings physical benefits, but can also have psychological and spiritual benefits. Reduced performance in male individuals has been linked to sexual activity before competitions in the past. The long-standing debate about the impact of sexual activity on sports performance has been controversial in the mainstream media in recent decades. This salacious topic has generated extensive discussion, although its high-quality data has been limited. Literature has, so far, mainly included subjective assessments from surveys. However, such surveys can be skewed as these assessments are based on individual beliefs, perceptions, and memory. There has been a long discussion over the years but even there objective data has been lacking. One reason behind coaches' bans on sexual activity before sporting events may be the belief that abstinence increases frustration, which in turn is shifted into aggressive behavior toward competitors. However, this assumption is not always valid. In fact, depriving an athlete of a normal activity can cause feelings of guilt and loss of concentration. Sexual activity during training can promote relaxation and positively influence performance. The author concludes that, although there is a need for scientific research in this area, it seems that sexual intercourse does not decrease performance unless it is accompanied by late night socialization, loss of sleep or drinking. Although the effects of sexual engagement on aerobic and strength athletic performance have not been definitively established, most research seems to rule out a direct impact. In order to analyze, as much as possible without bias, whether sexual activity significantly affects an athletic performance or not, we sampled 5 amateur athletes, between 22 and 25 years old and all male. The study was based on the timing of 4 running races of 5 champions. We asked participants to respect guidelines to avoid sexual activity (sex or masturbation) 12 hours before 2 of the 4 competitions, and to practice before the remaining 2 races.In doing so, we were able to compare and analyze the impact of activity and abstinence on performance results. We have come to the conclusion that sexual behavior on athletic performance needs to be better understood, more randomized trials and high-quality controls are strongly needed but available information suggests that sexual activity the day before a race has no negative effects on performance.

Keywords: sex, masturbation, male performance, soccer

Procedia PDF Downloads 71
269 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater

Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu

Abstract:

The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.

Keywords: algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, Nutrients removal, saline wastewater, sequencing batch reactor

Procedia PDF Downloads 148
268 Challenges beyond the Singapore Future-Ready School ‘LEADER’ Qualities

Authors: Zoe Boon Suan Loy

Abstract:

An exploratory research undertaken in 2000 at the beginning of the COVID-19 pandemic examined the changing roles of Singapore school leaders as they lead teachers in developing future-ready learners. While it is evident that ‘LEADER’ qualities epitomize the knowledge, competencies, and skills required, recent events in an increasing VUCA and BANI world characterized by massively disruptive Ukraine -Russian war, unabating tense US-Sino relations, issues related to sustainability, and rapid ageing will have an impact on school leadership. As an increasingly complex endeavour, this requires a relook as they lead teachers in nurturing holistically-developed future-ready students. Digitalisation, new technology, and the push for a green economy will be the key driving forces that will have an impact on job availability. Similarly, the rapid growth of artificial intelligence (AI) capabilities, including ChatGPT, will aggravate and add tremendous stress to the work of school leaders. This paper seeks to explore the key school leadership shifts required beyond the ‘LEADER’ qualities as school leaders respond to the changes, challenges, and opportunities in the 21st C new normal. The research findings for this paper are based on an exploratory qualitative study on the perceptions of 26 school leaders (vice-principals) who were attending a milestone educational leadership course at the National Institute of Education, Nanyang Technological University, Singapore. A structured questionnaire is designed to collect the data, which is then analysed using coding methodology. Broad themes on key competencies and skills of future-ready leaders in the Singapore education system are then identified. Key Findings: In undertaking their leadership roles as leaders of future-ready learners, school leaders need to demonstrate the ‘LEADER’ qualities. They need to have a long-term view, understand the educational imperatives, have a good awareness of self and the dispositions of a leader, be effective in optimizing external leverages and are clear about their role expectations. These ‘LEADER’ qualities are necessary and relevant in the post-Covid era. Beyond this, school leaders with ‘LEADER’ qualities are well supported by the Ministry of Education, which takes cognizance of emerging trends and continually review education policies to address related issues. Concluding Statement: Discussions within the education ecosystem and among other stakeholders on the implications of the use of artificial intelligence and ChatGPT on the school curriculum, including content knowledge, pedagogy, and assessment, are ongoing. This augurs well for school leaders as they undertake their responsibilities as leaders of future-ready learners.

Keywords: Singapore education system, ‘LEADER’ qualities, school leadership, future-ready leaders, future-ready learners

Procedia PDF Downloads 72
267 Intersection of Racial and Gender Microaggressions: Social Support as a Coping Strategy among Indigenous LGBTQ People in Taiwan

Authors: Ciwang Teyra, A. H. Y. Lai

Abstract:

Introduction: Indigenous LGBTQ individuals face with significant life stress such as racial and gender discrimination and microaggressions, which may lead to negative impacts of their mental health. Although studies relevant to Taiwanese indigenous LGBTQpeople gradually increase, most of them are primarily conceptual or qualitative in nature. This research aims to fulfill the gap by offering empirical quantitative evidence, especially investigating the impact of racial and gender microaggressions on mental health among Taiwanese indigenous LGBTQindividuals with an intersectional perspective, as well as examine whether social support can help them to cope with microaggressions. Methods: Participants were (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Standardised measurements was used, including Racial Microaggression Scale (10 items), Gender Microaggression Scale (9 items), Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender, and perceived economic hardships. Structural equation modelling (SEM) was employed using Mplus 8.0 with the latent variables of depression and anxiety as outcomes. A main effect SEM model was first established (Model1).To test the moderation effects of perceived social support, an interaction effect model (Model 2) was created with interaction terms entered into Model1. Numerical integration was used with maximum likelihood estimation to estimate the interaction model. Results: Model fit statistics of the Model 1:X2(df)=1308.1 (795), p<.05; CFI/TLI=0.92/0.91; RMSEA=0.06; SRMR=0.06. For Model, the AIC and BIC values of Model 2 improved slightly compared to Model 1(AIC =15631 (Model1) vs. 15629 (Model2); BIC=16098 (Model1) vs. 16103 (Model2)). Model 2 was adopted as the final model. In main effect model 1, racialmicroaggressionand perceived social support were associated with depression and anxiety, but not sexual orientation microaggression(Indigenous microaggression: b = 0.27 for depression; b=0.38 for anxiety; Social support: b=-0.37 for depression; b=-0.34 for anxiety). Thus, an interaction term between social support and indigenous microaggression was added in Model 2. In the final Model 2, indigenous microaggression and perceived social support continues to be statistically significant predictors of both depression and anxiety. Social support moderated the effect of indigenous microaggression of depression (b=-0.22), but not anxiety. All covariates were not statistically significant. Implications: Results indicated that racial microaggressions have a significant impact on indigenous LGBTQ people’s mental health. Social support plays as a crucial role to buffer the negative impact of racial microaggression. To promote indigenous LGBTQ people’s wellbeing, it is important to consider how to support them to develop social support network systems.

Keywords: microaggressions, intersectionality, indigenous population, mental health, social support

Procedia PDF Downloads 146
266 Sceletium Tortuosum: A review on its Phytochemistry, Pharmacokinetics, Biological and Clinical Activities

Authors: Tomi Lois Olatunji, Frances Siebert, Ademola Emmanuel Adetunji, Brian Harvey, Johane Gericke, Josias Hamman, Frank Van Der Kooy

Abstract:

Ethnopharmacological relevance: Sceletium tortuosum (L.) N.E.Br, the most sought after and widely researched species in the genus Sceletium is a succulent forb endemic to South Africa. Traditionally, this medicinal plant is mainly masticated or smoked and used for the relief of toothache, abdominal pain, and as a mood-elevator, analgesic, hypnotic, anxiolytic, thirst and hunger suppressant, and for its intoxicating/euphoric effects. Sceletium tortuosum is currently of widespread scientific interest due to its clinical potential in treating anxiety and depression, relieving stress in healthy individuals, and enhancing cognitive functions. These pharmacological actions are attributed to its phytochemical constituents referred to as mesembrine-type alkaloids. Aim of the review: The aim of this review was to comprehensively summarize and critically evaluate recent research advances on the phytochemistry, pharmacokinetics, biological and clinical activities of the medicinal plant S. tortuosum. Additionally, current ongoing research and future perspectives are also discussed. Methods: All relevant scientific articles, books, MSc and Ph.D. dissertations on botany, behavioral pharmacology, traditional uses, and phytochemistry of S. tortuosum were retrieved from different databases (including Science Direct, PubMed, Google Scholar, Scopus and Web of Science). For pharmacokinetics and pharmacological effects of S. tortuosum, the focus fell on relevant publications published between 2009 and 2021. Results: Twenty-five alkaloids belonging to four structural classes viz: mesembrine, Sceletium A4, joubertiamine, and tortuosamine, have been identified from S. tortuosum, of which the mesembrine class is predominant. The crude extracts and commercially available standardized extracts of S. tortuosum have displayed a wide spectrum of biological activities (e.g. antimalarial, anti-oxidant, immunomodulatory, anti-HIV, neuroprotection, enhancement of cognitive function) in in vitro or in vivo studies. This plant has not yet been studied in a clinical population, but has potential for enhancing cognitive function, and managing anxiety and depression. Conclusion: As an important South African medicinal plant, S. tortuosum has garnered many research advances on its phytochemistry and biological activities over the last decade. These scientific studies have shown that S. tortuosum has various bioactivities. The findings have further established the link between the phytochemistry and pharmacological application, and support the traditional use of S. tortuosum in the indigenous medicine of South Africa.

Keywords: Aizoaceae, Mesembrine, Serotonin, Sceletium tortuosum, Zembrin®, psychoactive, antidepressant

Procedia PDF Downloads 216
265 Denial among Women Living with Cancer: An Exploratory Study to Understand the Consequences of Cancer and the Denial Mechanism

Authors: Judith Partouche-Sebban, Saeedeh Rezaee Vessal

Abstract:

Because of the rising number of new cases of cancer, especially among women, it is more than essential to better understand how women experience cancer in order to bring them adapted to support and care and enhance their well-being and patient experience. Cancer stands for a traumatic experience in which the diagnosis, its medical treatments, and the related side effects lead to deep physical and psychological changes that may arouse considerable stress and anxiety. In order to reduce these negative emotions, women tend to use various defense mechanisms, among which denial has been defined as the most frequent mechanism used by breast cancer patients. This study aims to better understand the consequences of the experience of cancer and their link with the adoption of a denial strategy. The empirical research was done among female cancer survivors in France. Since the topic of this study is relatively unexplored, a qualitative methodology and open-ended interviews were employed. In total, 25 semi-directive interviews were conducted with a female with different cancers, different stages of treatment, and different ages. A systematic inductive method was performed to analyze data. The content analysis enabled to highlight three different denial-related behaviors among women with cancer, which serve a self-protective function. First, women who expressed high levels of anxiety confessed they tended to completely deny the existence of their cancer immediately after the diagnosis of their illness. These women mainly exhibit many fears and a deep distrust toward the medical context and professionals. This coping mechanism is defined by the patient as being unconscious. Second, other women deliberately decided to deny partial information about their cancer, whether this information is related to the stages of the illness, the emotional consequences, or the behavioral consequences of the illness. These women use this strategy as a way to avoid the reality of the illness and its impact on the different aspects of their life as if cancer does not exist. Third, some women tend to reinterpret and give meaning to their cancer as a way to reduce its impact on their life. To this end, they may use magical thinking or positive reframing, or reinterpretation. Because denial may lead to delays in medical treatments, this topic deserves a deep investigation, especially in the context of oncology. As denial is defined as a specific defense mechanism, this study contributes to the existing literature in service marketing which focuses on emotions and emotional regulation in healthcare services which is a crucial issue. Moreover, this study has several managerial implications for healthcare professionals who interact with patients in order to implement better care and support for the patients.

Keywords: cancer, coping mechanisms, denial, healthcare services

Procedia PDF Downloads 85
264 Simulation of the Flow in a Circular Vertical Spillway Using a Numerical Model

Authors: Mohammad Zamani, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. A circular vertical spillway with various inlet forms is very effective when there is not enough space for the other spillway. Hydraulic flow in a vertical circular spillway is divided into three groups: free, orifice, and under pressure (submerged). In this research, the hydraulic flow characteristics of a Circular Vertical Spillway are investigated with the CFD model. Two-dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k-ε and k-ω, were chosen to model Reynolds shear stress term. The power law scheme was used for the discretization of momentum, k, ε, and ω equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. In this study, three types of computational grids (coarse, intermediate, and fine) were used to discriminate the simulation environment. In order to simulate the flow, the k-ε (Standard, RNG, Realizable) and k-ω (standard and SST) models were used. Also, in order to find the best wall function, two types, standard wall, and non-equilibrium wall function, were investigated. The laminar model did not produce satisfactory flow depth and velocity along the Morning-Glory spillway. The results of the most commonly used two-equation turbulence models (k-ε and k-ω) were identical. Furthermore, the standard wall function produced better results compared to the non-equilibrium wall function. Thus, for other simulations, the standard k-ε with the standard wall function was preferred. The comparison criterion in this study is also the trajectory profile of jet water. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k-ε (Standard) has the most consistent results with experimental results. When the jet gets closer to the end of the basin, the computational results increase with the numerical results of their differences. The mesh with 10602 nodes, turbulent model k-ε standard and the standard wall function, provide the best results for modeling the flow in a vertical circular Spillway. There was a good agreement between numerical and experimental results in the upper and lower nappe profiles. In the study of water level over crest and discharge, in low water levels, the results of numerical modeling are good agreement with the experimental, but with the increasing water level, the difference between the numerical and experimental discharge is more. In the study of the flow coefficient, by decreasing in P/R ratio, the difference between the numerical and experimental result increases.

Keywords: circular vertical, spillway, numerical model, boundary conditions

Procedia PDF Downloads 86
263 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach

Authors: Jared Beard, Ali Baheri

Abstract:

As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.

Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification

Procedia PDF Downloads 157
262 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation

Authors: Bharatkumar Doshi

Abstract:

Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.

Keywords: COMSOL, EMPW, FEM, Lorentz force

Procedia PDF Downloads 184
261 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 225
260 Interdisciplinary Evaluations of Children with Autism Spectrum Disorder in a Telehealth Arena

Authors: Janice Keener, Christine Houlihan

Abstract:

Over the last several years, there has been an increase in children identified as having Autism Spectrum Disorder (ASD). Specialists across several disciplines: mental health and medical professionals have been tasked with ensuring accurate and timely evaluations for children with suspected ASD. Due to the nature of the ASD symptom presentation, an interdisciplinary assessment and treatment approach best addresses the needs of the whole child. During the unprecedented COVID-19 Pandemic, clinicians were faced with how to continue with interdisciplinary assessments in a telehealth arena. Instruments that were previously used to assess ASD in-person were no longer appropriate measures to use due to the safety restrictions. For example, The Autism Diagnostic Observation Schedule requires examiners and children to be in very close proximity of each other and if masks or face shields are worn, they render the evaluation invalid. Similar issues arose with the various cognitive measures that are used to assess children such as the Weschler Tests of Intelligence and the Differential Ability Scale. Thus the need arose to identify measures that are able to be safely and accurately administered using safety guidelines. The incidence of ASD continues to rise over time. Currently, the Center for Disease Control estimates that 1 in 59 children meet the criteria for a diagnosis of ASD. The reasons for this increase are likely multifold, including changes in diagnostic criteria, public awareness of the condition, and other environmental and genetic factors. The rise in the incidence of ASD has led to a greater need for diagnostic and treatment services across the United States. The uncertainty of the diagnostic process can lead to an increased level of stress for families of children with suspected ASD. Along with this increase, there is a need for diagnostic clarity to avoid both under and over-identification of this condition. Interdisciplinary assessment is ideal for children with suspected ASD, as it allows for an assessment of the whole child over the course of time and across multiple settings. Clinicians such as Psychologists and Developmental Pediatricians play important roles in the initial evaluation of autism spectrum disorder. An ASD assessment may consist of several types of measures such as standardized checklists, structured interviews, and direct assessments such as the ADOS-2 are just a few examples. With the advent of telehealth clinicians were asked to continue to provide meaningful interdisciplinary assessments via an electronic platform and, in a sense, going to the family home and evaluating the clinical symptom presentation remotely and confidently making an accurate diagnosis. This poster presentation will review the benefits, limitations, and interpretation of these various instruments. The role of other medical professionals will also be addressed, including medical providers, speech pathology, and occupational therapy.

Keywords: Autism Spectrum Disorder Assessments, Interdisciplinary Evaluations , Tele-Assessment with Autism Spectrum Disorder, Diagnosis of Autism Spectrum Disorder

Procedia PDF Downloads 209
259 An Exploration of Possible Impact of Drumming on Mental Health in a Hospital Setting

Authors: Zhao Luqian, Wang Yafei

Abstract:

Participation in music activities is beneficial for enhancing wellbeing, especially for aged people (Creech, 2013). Looking at percussion group in particular, it can facilitate a sense of belonging, relaxation, energy, and productivity, learning, enhanced mood, humanising, seems of accomplishment, escape from trauma, and emotional expression (Newman, 2015). In health literatures, group drumming is effective in reducing stress and improving multiple domains of social-motional behaviors (Ho et al., 2011; Maschi et al., 2010) because it offers a creative and mutual learning space that allows patients to establish a positive peer interaction (Mungas et al., 2014; Perkins, 2016). However, very few studies have investigated the effect of group drumming from the aspect of patients’ needs. Therefore, this study focuses on the discussion of patients' specific needs within mental health and explores how group percussion may meet their needs. Seligman’s (2011) five core elements of mental health were applied as patients’ needs in this study: (1) Positive emotions; (2) Engagement; (3) Relationships; (4) Meaning and (5) Accomplishment. 12 participants aged 57- 80 years were interviewed individually. The researcher also had observation in four drumming groups simultaneously. The results reveal that group drumming could improve participants’ mental wellbeing. First, it created a therapeutic health care environment extending beyond the elimination of boredom, and patients could focus on positive emotions during the session of group drumming. Secondly, it was effective in satisfying patients’ level of engagement. Thirdly, this study found that joining a percussion group would require patients to work on skills such as turn-taking and sharing. This equal relationship is helpful for releasing patients’ negative mood and thus forming tighter relationships between and among them. Fourthly, group drumming was found to meet patients’ meaning needs through offering them a place of belonging and a place for sharing. Its leaner-oriented approach engaged patients by a sense of belonging, accepting, connecting, and ownership. Finally, group drumming could meet patients’ needs for accomplishment through the learning process. The inclusive learning process, which indicates there is no right or wrong throughout the process, allowed patients to make their own decisions. In conclusion, it is difficult for patients to achieve positive emotions, engagement, relationships, meanings, and accomplishments in a hospital setting. Drumming can be practiced for enhancement in terms of reducing patients’ negative emotions and improving their experiences in a hospital through enriched social interaction and sense of accomplishment. Also, it can help patients to enhance social skills in a controlled environment.

Keywords: group drumming, hospital, mental health, music psychology

Procedia PDF Downloads 90
258 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes

Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi

Abstract:

Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.

Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation

Procedia PDF Downloads 150
257 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 72
256 Correlation between Sleeping Disturbance and Academic Achievement in University Female Students

Authors: Amel Fayed, Shaden AlSubaih, Nouf Al-Qahtani, Asmaa Gosty, Asma Aljuhaimi

Abstract:

Introduction: Sleep difficulties are vastly predominant among adults and affect different aspects of their life. Many literatures found out that females are more liable to suffer from sleeping problems. College students are typical example of people dealing with daily pressure and stress to fulfill the daily tasks and responsibilities. In addition to their ultimate goal of achieving excellent academic records which require their full concentration and effort. Consequently, many of them start complaining of sleep deprivations which can undesirably affect their academic achievements. This study was aiming to investigate how prevalent is sleeping disorders among different colleges in the university and its relation their academic achievements. Methods: A cross-sectional study of female university students at Princess Norah Bint Abdulrahman University using self-administered questionnaire was conducted. Insomnia Severity Index (ISI) was used to assess different grades of insomnia. Students were requested to answer the questions evaluating their sleeping habits over the last two weeks. Participants reported their latest Grade Point Average (GPA). According to ISI, insomnia severity is reported as ‘No clinically significant’, ‘Subthreshold ‘,’ Clinical moderate insomnia’ and ‘Clinical severe’. Results: In the current study, 228 students participated; 172(75.4%) from medical colleges and 56 (24.6%) from non-medical colleges. About 80% of them claimed to have never taken any medications to help them sleep while only three students confirmed their regular use of sleep-inducing medications. About 16% of the students drink milk or other hot drinks to help them fall asleep. None of the students was suspected of having obstructive sleep apnea or apparent psychiatric disorder. According to ISI, 182 (79.8%) students suffered from subthreshold insomnia, 37 (16.2%) had clinical insomnia (moderate severity) and 9 (3.9%) of students had sleeping problems of non-clinically significance level. However, none of students was found to have severe clinical insomnia. Clinical moderate insomnia was reported in 15.1% of medical students and 19.6% of non-medical students. Moreover, about 82% of medical students suffered from subthreshold insomnia compared to 73.2% of non-medical students. This difference was not statistically significant (P=0.24). About 63% of medical students and 48% of non-medical students believed that high percentage of their colleagues are suffering from insomnias (p-value 0.08) The association between GPA and insomnia revealed that; 19.5% of low GPA group compared to 9.3% of high GPA group had clinical moderate insomnia. This association was not statistically significant (p=0.15). The correlation between the GPA and the ISI score was negative but not conclusive (r=-0.08, p-value = 0.29). More than 92% of all students agreed that sleeping problems affect their academic achievement to varying degrees. Conclusion: our results suggest that insomnia is commonly prevalent among female university students and might affect the students’ achievement. This study provides preliminary data about the quality of sleep among medical and non-medical university students which may be used to promote the healthy sleeping habits among female students.

Keywords: academic achievement, females, insomnia, university student

Procedia PDF Downloads 331
255 Numerical Analysis and Parametric Study of Granular Anchor Pile on Expansive Soil Using Finite Element Method: Case of Addis Ababa, Bole Sub-City

Authors: Abdurahman Anwar Shfa

Abstract:

Addis Ababa is among the fastest-growing urban areas in the country. There are many new constructions of public and private condominiums and large new low rising residential buildings for residents. But the wide range of heaving problems of expansive soil in the city become a major difficulty for the construction sector, especially in low rising buildings, by causing different problems such as distortion and cracking of floor slabs, cracks in grade beams, and walls, jammed or misaligned Doors and Windows; failure of blocks supporting grade beams. Hence an attractive and economical design solution may be required for such type of problem. Therefore, this research works to publicize a recent innovation called the Granular Anchor Pile system for the reduction of the heave effect of expansive soil. This research is written for the objective of numerical investigation of the behavior of Granular Anchor Pile under the heave using Finite element analysis PLAXIS 3D program by means of studying the effect of different parameters like length of the pile, diameter of pile, and pile group by applying prescribed displacement of 10% of pile diameter at the center of granular pile anchor. An additional objective is examining the suitability of Granular Anchor Pile as an alternative solution for heave problems in expansive soils mostly for low rising buildings found in Addis Ababa City, especially in Bole Sub-City, by considering different factors such as the local availability of construction materials, economy for the construction, installation process condition, environmental benefit, time consumption and performance of the pile. Accordingly, the performance of the pile improves when the length of the pile increases. This is due to an increase in the self-weight of the pile and friction mobilized between the pile and soil interface. Additionally, the uplift capacity of the pile decreases when increasing the pile diameter and spacing between the piles in the group due to a reduction in the number of piles in the group. But, few cases show that the uplift capacity of the pile increases with increasing the pile diameter for a constant number of piles in the group and increasing the spacing between the pile and in the case of single pile capacity. This is due to the increment of piles' self-weight and surface area of the pile group and also the decrement of stress overlap in the soil caused by piles respectively. According to the suitability analysis, it is observed that Granular Anchor Pile is sensible or practical to apply for the actual problem of Expansive soil in a low rising building constructed in the country because of its convenience for all considerations.

Keywords: expansive soil, granular anchor pile, PLAXIS, suitability analysis

Procedia PDF Downloads 36
254 Bituminous Geomembranes: Sustainable Products for Road Construction and Maintenance

Authors: Ines Antunes, Andrea Massari, Concetta Bartucca

Abstract:

Greenhouse gasses (GHG) role in the atmosphere has been well known since the 19th century; however, researchers have begun to relate them to climate changes only in the second half of the following century. From this moment, scientists started to correlate the presence of GHG such as CO₂ with the global warming phenomena. This has raised the awareness not only of those who were experts in this field but also of public opinion, which is becoming more and more sensitive to environmental pollution and sustainability issues. Nowadays the reduction of GHG emissions is one of the principal objectives of EU nations. The target is an 80% reduction of emissions in 2050 and to reach the important goal of carbon neutrality. Road sector is responsible for an important amount of those emissions (about 20%). The most part is due to traffic, but a good contribution is also given directly or indirectly from road construction and maintenance. Raw material choice and reuse of post-consumer plastic rather than a cleverer design of roads have an important contribution to reducing carbon footprint. Bituminous membranes can be successfully used as reinforcement systems in asphalt layers to improve road pavement performance against cracking. Composite materials coupling membranes with grids and/or fabrics should be able to combine improved tensile properties of the reinforcement with stress absorbing and waterproofing effects of membranes. Polyglass, with its brand dedicated to road construction and maintenance called Polystrada, has done more than this. The company's target was not only to focus sustainability on the final application but also to implement a greener mentality from the cradle to the grave. Starting from production, Polyglass has made important improvements finalized to increase efficiency and minimize waste. The installation of a trigeneration plant and the usage of selected production scraps inside the products as well as the reduction of emissions into the environment, are one of the main efforts of the company to reduce impact during final product build-up. Moreover, the benefit given by installing Polystrada products brings a significant improvement in road lifetime. This has an impact not only on the number of maintenance or renewal that needs to be done (build less) but also on traffic density due to works and road deviation in case of operations. During the end of the life of a road, Polystrada products can be 100% recycled and milled with classical systems used without changing the normal maintenance procedures. In this work, all these contributions were quantified in terms of CO₂ emission thanks to an LCA analysis. The data obtained were compared with a classical system or a standard production of a membrane. What it is possible to see is that the usage of Polyglass products for street maintenance and building gives a significant reduction of emissions in case of membrane installation under the road wearing course.

Keywords: CO₂ emission, LCA, maintenance, sustainability

Procedia PDF Downloads 65
253 Family Cohesion, Social Networks, and Cultural Differences in Latino and Asian American Help Seeking Behaviors

Authors: Eileen Y. Wong, Katherine Jin, Anat Talmon

Abstract:

Background: Help seeking behaviors are highly contingent on socio-cultural factors such as ethnicity. Both Latino and Asian Americans underutilize mental health services compared to their White American counterparts. This difference may be related to the composite of one’s social support system, which includes family cohesion and social networks. Previous studies have found that Latino families are characterized by higher levels of family cohesion and social support, and Asian American families with greater family cohesion exhibit lower levels of help seeking behaviors. While both are broadly considered collectivist communities, within-culture variability is also significant. Therefore, this study aims to investigate the relationship between help seeking behaviors in the two cultures with levels of family cohesion and strength of social network. We also consider such relationships in light of previous traumatic events and diagnoses, particularly post-traumatic stress disorder (PTSD), to understand whether clinically diagnosed individuals differ in their strength of network and help seeking behaviors. Method: An adult sample (N = 2,990) from the National Latino and Asian American Study (NLAAS) provided data on participants’ social network, family cohesion, likelihood of seeking professional help, and DSM-IV diagnoses. T-tests compared Latino American (n = 1,576) and Asian American respondents (n = 1,414) in strength of social network, level of family cohesion, and likelihood of seeking professional help. Linear regression models were used to identify the probability of help-seeking behavior based on ethnicity, PTSD diagnosis, and strength of social network. Results: Help-seeking behavior was significantly associated with family cohesion and strength of social network. It was found that higher frequency of expressing one’s feelings with family significantly predicted lower levels of help-seeking behaviors (β = [-.072], p = .017), while higher frequency of spending free time with family significantly predicted higher levels of help-seeking behaviors (β = [.129], p = .002) in the Asian American sample. Subjective importance of family relations compared to that of one’s peers also significantly predict higher levels of help-seeking behaviors (β = [.095], p = .011) in the Asian American sample. Frequency of sharing one’s problems with relatives significantly predicted higher levels of help-seeking behaviors (β = [.113], p < .01) in the Latino American sample. A PTSD diagnosis did not have any significant moderating effect. Conclusion: Considering the underutilization of mental health services in Latino and Asian American minority groups, it is crucial to understand ways in which help seeking behavior can be encouraged. Our findings suggest that different dimensions within family cohesion and social networks have differential impacts on help-seeking behavior. Given the multifaceted nature of family cohesion and cultural relevance, the implications of our findings for theory and practice will be discussed.

Keywords: family cohesion, social networks, Asian American, Latino American, help-seeking behavior

Procedia PDF Downloads 68
252 Determinants of Healthcare Team Effectiveness in Subterranean Settings: A Mixed-Methods Study

Authors: Nasra Idilbi, Jalal Tarabeia, Layalleh Masalha, Heiam Shoufani Kassis, Gizell Green

Abstract:

Background: Healthcare professionals working in underground facilities face unique challenges affecting their physical and mental health and team effectiveness. We aimed to examine how an underground work environment affects the physical and mental health and effectiveness of a multi-professional medical team in a medical center under continuous war threats and the contribution of various demographic and professional characteristics. Methods: A cross-sectional survey was disseminated electronically. The questionnaire assessed team effectiveness, the quality of the work, and the health symptoms reported by the team while working in the underground complex. Results: In total, 270 healthcare workers (mean age 40 years, 75.6% females, 88.4% nurses) completed the questionnaire. Women reported statistically significantly higher mean scores of physical strain, fatigue, and eye irritation associated with the work environment compared to men. Multiple regression analysis revealed that psychological distress, noise, and lighting in the underground compound significantly influenced team effectiveness. The qualitative analysis revealed two key themes: the mental health impact of working in an underground environment and the effects of noise and lighting on staff performance. Nurses reported feelings of suffocation, claustrophobia, and difficulty concentrating due to the enclosed space, with some expressing heightened stress levels that impaired their ability to work effectively and safely. Female staff reported more pronounced symptoms of physical strain, fatigue, and eye irritation. Additionally, the underground complex’s poor noise absorption created a highly disruptive work environment, while inadequate lighting hindered accurate patient assessments, leading to potential errors. These challenges were exacerbated by physical symptoms like headaches and nausea, which further impacted job performance. The findings underscore the significant role of environmental factors in influencing both mental health and operational effectiveness, aligning with quantitative data on the predictors of team performance. Conclusions: The underground work environment is crucial in influencing healthcare team effectiveness, with psychological distress, noise, and lighting as key factors. The study highlights the importance of creating a comfortable work environment to foster team efficiency. The findings provide valuable insights for managers in underground healthcare facilities to optimize team performance and well-being.

Keywords: team effectiveness, underground settings, healthcare, environmental factors, a mixed-methods study

Procedia PDF Downloads 6
251 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel

Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti

Abstract:

With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.

Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra

Procedia PDF Downloads 429
250 Evidence-Triggers for Care of Patients with Cleft Lip and Palate in Srinagarind Hospital: The Tawanchai Center and Out-Patients Surgical Room

Authors: Suteera Pradubwong, Pattama Surit, Sumalee Pongpagatip, Tharinee Pethchara, Bowornsilp Chowchuen

Abstract:

Background: Cleft lip and palate (CLP) is a congenital anomaly of the lip and palate that is caused by several factors. It was found in approximately one per 500 to 550 live births depending on nationality and socioeconomic status. The Tawanchai Center and out-patients surgical room of Srinagarind Hospital are responsible for providing care to patients with CLP (starting from birth to adolescent) and their caregivers. From the observations and interviews with nurses working in these units, they reported that both patients and their caregivers confronted many problems which affected their physical and mental health. Based on the Soukup’s model (2000), the researchers used evidence triggers from clinical practice (practice triggers) and related literature (knowledge triggers) to investigate the problems. Objective: The purpose of this study was to investigate the problems of care for patients with CLP in the Tawanchai Center and out-patient surgical room of Srinagarind Hospital. Material and Method: The descriptive method was used in this study. For practice triggers, the researchers obtained the data from medical records of ten patients with CLP and from interviewing two patients with CLP, eight caregivers, two nurses, and two assistant workers. Instruments for the interview consisted of a demographic data form and a semi-structured questionnaire. For knowledge triggers, the researchers used a literature search. The data from both practice and knowledge triggers were collected between February and May 2016. The quantitative data were analyzed through frequency and percentage distributions, and the qualitative data were analyzed through a content analysis. Results: The problems of care gained from practice and knowledge triggers were consistent and were identified as holistic issues, including 1) insufficient feeding, 2) risks of respiratory tract infections and physical disorders, 3) psychological problems, such as anxiety, stress, and distress, 4) socioeconomic problems, such as stigmatization, isolation, and loss of income, 5)spiritual problems, such as low self-esteem and low quality of life, 6) school absence and learning limitation, 7) lack of knowledge about CLP and its treatments, 8) misunderstanding towards roles among the multidisciplinary team, 9) no available services, and 10) shortage of healthcare professionals, especially speech-language pathologists (SLPs). Conclusion: From evidence-triggers, the problems of care affect the patients and their caregivers holistically. Integrated long-term care by the multidisciplinary team is needed for children with CLP starting from birth to adolescent. Nurses should provide effective care to these patients and their caregivers by using a holistic approach and working collaboratively with other healthcare providers in the multidisciplinary team.

Keywords: evidence-triggers, cleft lip, cleft palate, problems of care

Procedia PDF Downloads 218
249 Integrating Computational Modeling and Analysis with in Vivo Observations for Enhanced Hemodynamics Diagnostics and Prognosis

Authors: Shreyas S. Hegde, Anindya Deb, Suresh Nagesh

Abstract:

Computational bio-mechanics is developing rapidly as a non-invasive tool to assist the medical fraternity to help in both diagnosis and prognosis of human body related issues such as injuries, cardio-vascular dysfunction, atherosclerotic plaque etc. Any system that would help either properly diagnose such problems or assist prognosis would be a boon to the doctors and medical society in general. Recently a lot of work is being focused in this direction which includes but not limited to various finite element analysis related to dental implants, skull injuries, orthopedic problems involving bones and joints etc. Such numerical solutions are helping medical practitioners to come up with alternate solutions for such problems and in most cases have also reduced the trauma on the patients. Some work also has been done in the area related to the use of computational fluid mechanics to understand the flow of blood through the human body, an area of hemodynamics. Since cardio-vascular diseases are one of the main causes of loss of human life, understanding of the blood flow with and without constraints (such as blockages), providing alternate methods of prognosis and further solutions to take care of issues related to blood flow would help save valuable life of such patients. This project is an attempt to use computational fluid dynamics (CFD) to solve specific problems related to hemodynamics. The hemodynamics simulation is used to gain a better understanding of functional, diagnostic and theoretical aspects of the blood flow. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. In this project the mathematical modeling of the blood flow in the arteries in the presence of successive blockages has been analyzed using CFD technique. Different cases of blockages in terms of percentages have been modeled using commercial software CATIA V5R20 and simulated using commercial software ANSYS 15.0 to study the effect of varying wall shear stress (WSS) values and also other parameters like the effect of increase in Reynolds number. The concept of fluid structure interaction (FSI) has been used to solve such problems. The model simulation results were validated using in vivo measurement data from existing literature

Keywords: computational fluid dynamics, hemodynamics, blood flow, results validation, arteries

Procedia PDF Downloads 408