Search results for: DNA and RNA models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6749

Search results for: DNA and RNA models

1349 Computational Aided Approach for Strut and Tie Model for Non-Flexural Elements

Authors: Mihaja Razafimbelo, Guillaume Herve-Secourgeon, Fabrice Gatuingt, Marina Bottoni, Tulio Honorio-De-Faria

Abstract:

The challenge of the research is to provide engineering with a robust, semi-automatic method for calculating optimal reinforcement for massive structural elements. In the absence of such a digital post-processing tool, design office engineers make intensive use of plate modelling, for which automatic post-processing is available. Plate models in massive areas, on the other hand, produce conservative results. In addition, the theoretical foundations of automatic post-processing tools for reinforcement are those of reinforced concrete beam sections. As long as there is no suitable alternative for automatic post-processing of plates, optimal modelling and a significant improvement of the constructability of massive areas cannot be expected. A method called strut-and-tie is commonly used in civil engineering, but the result itself remains very subjective to the calculation engineer. The tool developed will facilitate the work of supporting the engineers in their choice of structure. The method implemented consists of defining a ground-structure built on the basis of the main constraints resulting from an elastic analysis of the structure and then to start an optimization of this structure according to the fully stressed design method. The first results allow to obtain a coherent return in the first network of connecting struts and ties, compared to the cases encountered in the literature. The evolution of the tool will then make it possible to adapt the obtained latticework in relation to the cracking states resulting from the loads applied during the life of the structure, cyclic or dynamic loads. In addition, with the constructability constraint, a final result of reinforcement with an orthogonal arrangement with a regulated spacing will be implemented in the tool.

Keywords: strut and tie, optimization, reinforcement, massive structure

Procedia PDF Downloads 141
1348 The Adequacy of Antenatal Care Services among Slum Residents in Addis Ababa, Ethiopia

Authors: Yibeltal T. Bayou, Yohana S. Mashalla, Gloria Thupayagale-Tshweneagae

Abstract:

Background: Maternal mortality has been shown to be lower in urban areas than in rural areas. However, disparities for the fast-growing population of urban poor who struggle as much their rural counterparts to access quality healthcare are masked by the urban averages. The aim of this paper is to report on the findings of antenatal adequacy among slum residents in Addis Ababa, Ethiopia. Methods and Materials: A quantitative and cross-sectional community-based study design was employed. A stratified two-stage cluster sampling technique was used to determine the sample and data was collected using structured questionnaire administered to 837 women aged 15-49 years. Binary logistic regression models were employed to identify predictors of adequacy of antenatal care. Results: The majority of slum residents did not have adequate antenatal care services i.e., only 50.7%, 19.3% and 10.2% of the slum resident women initiated early antenatal care, received adequate antenatal care service contents and had overall adequate antenatal care services. Pregnancy intention, educational status and place of ANC visits were important determinant factors for adequacy of ANC in the study area. Women with secondary and above educational status were 2.9 times more likely to have overall adequate care compared to those with no formal education. Similarly, women whose last pregnancy was intended and clients of private healthcare facilities were 1.8 and 2.8 times more likely to have overall adequate antenatal care compared to those whose last pregnancy was unintended and clients of public healthcare facilities respectively. Conclusion: In order to improve ANC adequacy in the study area, the policymaking, planning, and implementation processes should focus on the poor adequacy of ANC among the disadvantaged groups in particular and the slum residents in general.

Keywords: Addis Ababa, adequacy of antenatal care, slum residents, maternal mortality

Procedia PDF Downloads 423
1347 "Empowering Minds and Unleashing Curiosity: DIY Biotechnology for High School Students in the Age of Distance Learning"

Authors: Victor Hugo Sanchez Rodriguez

Abstract:

Amidst the challenges posed by pandemic-induced lockdowns, traditional educational models have been disrupted. To bridge the distance learning gap, our project introduces an innovative initiative focused on teaching high school students basic biotechnology techniques. We aim to empower young minds and foster curiosity by encouraging students to create their own DIY biotechnology laboratories using easily accessible materials found at home. This abstract outlines the key aspects of our project, highlighting its importance, methodology, and evaluation approach.In response to the pandemic's limitations, our project targets the delivery of biotechnology education at a distance. By engaging students in hands-on experiments, we seek to provide an enriching learning experience despite the constraints of remote learning. The DIY approach allows students to explore scientific concepts in a practical and enjoyable manner, nurturing their interest in biotechnology and molecular biology. Originally designed to assess professional-level research programs, we have adapted the URSSA to suit the context of biotechnology and molecular biology synthesis for high school students. By applying this tool before and after the experimental sessions, we aim to gauge the program's impact on students' learning experiences and skill development. Our project's significance lies not only in its novel approach to teaching biotechnology but also in its adaptability to the current global crisis. By providing students with a stimulating and interactive learning environment, we hope to inspire educators and institutions to embrace creative solutions during challenging times. Moreover, the insights gained from our evaluation will inform future efforts to enhance distance learning programs and promote accessible science education.

Keywords: DIY biotechnology, high school students, distance learning, pandemic education, undergraduate research student self-assessment (URSSA)

Procedia PDF Downloads 68
1346 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks

Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar

Abstract:

DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.

Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)

Procedia PDF Downloads 318
1345 Spinochromes: Kairomones Involved in the Symbiosis between the Shrimp Tuleariocaris holthuisi and Echinometra mathaei

Authors: Lola Brasseur, Guillaume Caulier, Marie Demeyer, Pascal Gerbaux, Igor Eeckhaut

Abstract:

Seawater being an ideal dispersing agent, chemical communication stays predominant in marine ecosystems. However, if many molecules acting in chemical heterospecific communication have already been well described in terrestrial ecosystems, only three of these molecules were identified in marine ecosystems. Echinoderms and their symbiotic organisms constitute very good models to study heterospecific chemical communication because each class synthesizes a specific type of molecules and symbioses with echinoderms as hosts are very usual. In this study, the chemical communication that allows the commensal shrimps Tuleariocaris holthuisi Hipeau-Jacquotte, 1965 to live with their host Echinometra mathaei (Blainville, 1825) was investigated. The chemoreception of the shrimp was characterized using olfactometers and it was demonstrated that hosts and synthetic hydroxynaphthoquinones are attractive to the symbiotic shrimps. Hydroxynaphthoquinonic pigments also known as spinochromes are by the way synthesized by sea urchin and involved in all probability in a lot of mechanisms. To our knowledge, this study is the first highlighting the ecological function of naphthoquinones as kairomones. Chemical extractions were also performed on sea urchins in order to analyze and identify their specific hydroxynaphthoquinones using HPLC-ESI-MS. Accurate mass identification and elemental composition have been performed on various organs (gonads, coelomic liquid, digestive system and test) in different morphotypes of Echinometra mathaei for a better understanding of the molecular diversity of these semiochemicals. Moreover, some experiments were performed to investigate the dependence of T. holthuisi for their host. First, the analyses showed that the molecules involved in shrimp pigmentation are the same that the ones involved in E. mathaei, suggesting a potential feeding on the host. Secondly, a substantial shrimp depigmentation and an increase of the mortality rate were demonstrated after the symbionts-host separation which could mean a potential implication of spinochromes in the shrimp metabolism.

Keywords: crustacean, sea urchin, spinochrome, symbiosis

Procedia PDF Downloads 191
1344 Applying Participatory Design for the Reuse of Deserted Community Spaces

Authors: Wei-Chieh Yeh, Yung-Tang Shen

Abstract:

The concept of community building started in 1994 in Taiwan. After years of development, it fostered the notion of active local resident participation in community issues as co-operators, instead of minions. Participatory design gives participants more control in the decision-making process, helps to reduce the friction caused by arguments and assists in bringing different parties to consensus. This results in an increase in the efficiency of projects run in the community. Therefore, the participation of local residents is key to the success of community building. This study applied participatory design to develop plans for the reuse of deserted spaces in the community from the first stage of brainstorming for design ideas, making creative models to be employed later, through to the final stage of construction. After conducting a series of participatory designed activities, it aimed to integrate the different opinions of residents, develop a sense of belonging and reach a consensus. Besides this, it also aimed at building the residents’ awareness of their responsibilities for the environment and related issues of sustainable development. By reviewing relevant literature and understanding the history of related studies, the study formulated a theory. It took the “2012-2014 Changhua County Community Planner Counseling Program” as a case study to investigate the implementation process of participatory design. Research data are collected by document analysis, participants’ observation and in-depth interviews. After examining the three elements of “Design Participation”, “Construction Participation”, and” Follow–up Maintenance Participation” in the case, the study emerged with a promising conclusion: Maintenance works were carried out better compared to common public works. Besides this, maintenance costs were lower. Moreover, the works that residents were involved in were more creative. Most importantly, the community characteristics could be easy be recognized.

Keywords: participatory design, deserted space, community building, reuse

Procedia PDF Downloads 371
1343 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 64
1342 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals

Authors: Linghui Meng, James Atlas, Deborah Munro

Abstract:

There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.

Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers

Procedia PDF Downloads 31
1341 Sudanese Dietitian’s Role in the Provision of Parenteral Nutrition: The Past, Present, and Future

Authors: Reem Osama Yousif Ali, Osama Yousif Ali Al Gibali

Abstract:

Introduction: Balanced nutrition is undeniably essential for maintaining health, body functions, and integrity of cell metabolism; however, some sick patients cannot tolerate oral or enteral feeding to meet their nutritional needs, so partial or total parenteral nutrition (PN) may be the most suitable alternative route in such situations. Dietitians are fundamental personnel among the medical team to ensure the proper provision of PN service, which was introduced in Sudan in the 1980s. Objective: The study aimed to recognize the dietitians' awareness of parenteral nutrition and their role in providing this service in Sudan – Khartoum State. Methodology: Formulated questionnaire forms composed of twelve questions were distributed to the dietitians working in four tertiary level hospitals. Results: The majority (75%) of the responded dietitians had reasonable knowledge about the importance of PN, its advantages, and its indications. Sixty percent of them were mindful of the PN side effects. Most of the dietitians were aware of the different assessment measurements and PN calculations and were exposed in their clinical practice to patients who were in need of PN, but only a few of them (about 30%) had the actual chance to participate in the formulation and application of PN therapy. The unavailability of the multidisciplinary team, lack of the required equipment and financial support, and associated complications were basic obstacles to the provision of long-term PN service in Khartoum state hospitals. Conclusion: Although dietitians in Khartoum state hospitals have good information about PN definition, indications, accesses, and assessment measures, they do not have enough knowledge and clinical exposure that make them confident to provide the PN service. Establishing a few models of parenteral nutrition units in tertiary hospitals will be of great help, as well as providing the dietitian's training in the area of parenteral nutrition. Further study can explore more requirements to run this service.

Keywords: nutrition support, dietitian, Sudan, parenteral nutrition, nutrition support team

Procedia PDF Downloads 105
1340 Relative Importance of Contact Constructs to Acute Respiratory Illness in General Population in Hong Kong

Authors: Kin On Kwok, Vivian Wei, Benjamin Cowling, Steven Riley, Jonathan Read

Abstract:

Background: The role of social contact behavior measured in different contact constructs in the transmission of respiratory pathogens with acute respiratory illness (ARI) remains unclear. We, therefore, aim to depict the individual pattern of ARI in the community and investigate the association between different contact dimensions and ARI in Hong Kong. Methods: Between June 2013 and September 2013, 620 subjects participated in the last two waves of recruitment of the population based longitudinal phone social contact survey. Some of the subjects in this study are from the same household. They are also provided with the symptom diaries to self-report any acute respiratory illness related symptoms between the two days of phone recruitment. Data from 491 individuals who were not infected on the day of phone recruitment and returned the symptom diaries after the last phone recruitment were used for analysis. Results: After adjusting different follow-up periods among individuals, the overall incidence rate of ARI was 1.77 per 100 person-weeks. Over 75% ARI episodes involve running nose, cough, sore throat, which are followed by headache (55%), malagia (35%) and fever (18%). Using a generalized estimating equation framework accounting for the cluster effect of subjects living in the same household, we showed that both daily number of locations visited with contacts and the number of contacts, explained the ARI incidence rate better than only one single contact construct. Conclusion: Our result suggests that it is the intertwining property of contact quantity (number of contacts) and contact intensity (ratio of subject-to-contact) that governs the infection risk by a collective set of respiratory pathogens. Our results provide empirical evidence that multiple contact constructs should be incorporated in the mathematical transmission models to feature a more realistic dynamics of respiratory disease.

Keywords: acute respiratory illness, longitudinal study, social contact, symptom diaries

Procedia PDF Downloads 261
1339 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 9
1338 Determinants of Green Strategy: Analysis Using Probit and Logit Models

Authors: Ayushi Modi, Eliot Bochet-Merand

Abstract:

This study investigates the structural determinants of green strategies among Small and Medium Enterprises (SMEs) in the European Union and select countries, utilizing data from the Flash Eurobarometer 498 - SMEs, Resource Efficiency, and Green Markets. By applying sequential logit analysis, we explore the drivers behind the adoption and scaling of green actions, such as resource efficiency, waste management, and product innovation, while also examining the provision of green products and services. A key contribution of this research is the novel distinction between the process stage (green actions) and the product stage (green outputs), allowing for a deeper analysis of how green initiatives translate into sustainable business outcomes. Our findings reveal that structural characteristics, such as firm size, sector, and turnover growth, significantly influence the likelihood of both providing green products and implementing comprehensive green actions. Smaller, younger firms in high-impact sectors like construction and industry are more likely to engage in sustainability efforts, particularly when they have a green strategy and a dedicated green workforce. Furthermore, companies serving B2B and B2C clients and experiencing turnover growth are more inclined to offer green products. The study underscores the economic implications of these insights, suggesting that financial flexibility, strategic commitment, and human capital investments are critical for scaling green initiatives. By refining variables and excluding heterogeneous countries, our data management ensures robust results. This research provides novel insights into the distinct roles of process and product stages in sustainability, offering valuable policy recommendations for promoting environmental performance in SMEs.

Keywords: green strategy, resource efficiency, SMES, sustainability, product innovation, environmental performance

Procedia PDF Downloads 19
1337 Challenges in Achieving Profitability for MRO Companies in the Aviation Industry: An Analytical Approach

Authors: Nur Sahver Uslu, Ali̇ Hakan Büyüklü

Abstract:

Maintenance, Repair, and Overhaul (MRO) costs are significant in the aviation industry. On the other hand, companies that provide MRO services to the aviation industry but are not dominant in the sector, need to determine the right strategies for sustainable profitability in a competitive environment. This study examined the operational real data of a small medium enterprise (SME) MRO company where analytical methods are not widely applied. The company's customers were divided into two categories: airline companies and non-airline companies, and the variables that best explained profitability were analyzed with Logistic Regression for each category and the results were compared. First, data reduction was applied to the transformed variables that went through the data cleaning and preparation stages, and the variables to be included in the model were decided. The misclassification rates for the logistic regression results concerning both customer categories are similar, indicating consistent model performance across different segments. Less profit margin is obtained from airline customers, which can be explained by the variables part description, time to quotation (TTQ), turnaround time (TAT), manager, part cost, and labour cost. The higher profit margin obtained from non-airline customers is explained only by the variables part description, part cost, and labour cost. Based on the two models, it can be stated that it is significantly more challenging for the MRO company, which is the subject of our study, to achieve profitability from Airline customers. While operational processes and organizational structure also affect the profit from airline customers, only the type of parts and costs determine the profit for non-airlines.

Keywords: aircraft, aircraft components, aviation, data analytics, data science, gini index, maintenance, repair, and overhaul, MRO, logistic regression, profit, variable clustering, variable reduction

Procedia PDF Downloads 33
1336 Changes in Textural Properties of Zucchini Slices Under Effects of Partial Predrying and Deep-Fat-Frying

Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner

Abstract:

Changes in textural properties of any food material during processing is significant for further consumer’s evaluation and directly affects their decisions. Thus any food material should be considered in terms of textural properties after any process. In the present study zucchini slices were partially predried to control and reduce the product’s final oil content. A conventional oven was used for partially dehydration of zucchini slices. Following frying was carried in an industrial fryer having temperature controller. This study was based on the effect of this predrying process on textural properties of fried zucchini slices. Texture profile analysis was performed. Hardness, elasticity, chewiness, cohesiveness were studied texture parameters of fried zucchini slices. Temperature and weight loss were monitored parameters of predrying process, whereas, in frying, oil temperature and process time were controlled. Optimization of two successive processes was done by response surface methodology being one of the common used statistical process optimization tools. Models developed for each texture parameters displayed high success to predict their values as a function of studied processes’ conditions. Process optimization was performed according to target values for each property determined for directly fried zucchini slices taking the highest score from sensory evaluation. Results indicated that textural properties of predried and then fried zucchini slices could be controlled by well-established equations. This is thought to be significant for fried stuff related food industry, where controlling of sensorial properties are crucial to lead consumer’s perception and texture related ones are leaders. This project (113R015) has been supported by TUBITAK.

Keywords: optimization, response surface methodology, texture profile analysis, conventional oven, modelling

Procedia PDF Downloads 433
1335 Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading

Authors: Wei Zhao, Yuxuan Yao, Hao Chen

Abstract:

In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load.

Keywords: battery module, finite element simulation, power battery, packing angle

Procedia PDF Downloads 70
1334 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 139
1333 Linking Temporal Changes of Climate Factors with Staple Cereal Yields in Southern Burkina Faso

Authors: Pius Borona, Cheikh Mbow, Issa Ouedraogo

Abstract:

In the Sahel, climate variability has been associated with a complex web of direct and indirect impacts. This natural phenomenon has been an impediment to agro-pastoral communities who experience uncertainty while involving in farming activities which is also their key source of livelihood. In this scenario, the role of climate variability in influencing the performance, quantity and quality of staple cereals yields, vital for food and nutrition security has been a topic of importance. This response of crops and subsequent yield variability is also a subject of immense debate due to the complexity of crop development at different stages. This complexity is further compounded by influence of slowly changing non-climatic factors. With these challenges in mind, the present paper initially explores the occurrence of climate variability at an inter annual and inter decadal level in South Burkina Faso. This is evidenced by variation of the total annual rainfall and the number of rainy days among other climatic descriptors. Further, it is shown how district-scale cereal yields in the study area including maize, sorghum and millet casually associate variably to the inter-annual variation of selected climate variables. Statistical models show that the three cereals widely depict sensitivity to the length of the growing period and total dry days in the growing season. Maize yields on the other hand relate strongly to the rainfall amount variation (R2=51.8%) showing high moisture dependence during critical growth stages. Our conclusions emphasize on adoption of efficient water utilization platforms especially those that have evidently increased yields and strengthening of forecasts dissemination.

Keywords: climate variability, cereal yields, seasonality, rain fed farming, Burkina Faso, rainfall

Procedia PDF Downloads 202
1332 Methodologies for Stability Assessment of Existing and Newly Designed Reinforced Concrete Bridges

Authors: Marija Vitanovа, Igor Gjorgjiev, Viktor Hristovski, Vlado Micov

Abstract:

Evaluation of stability is very important in the process of definition of optimal structural measures for maintenance of bridge structures and their strengthening. To define optimal measures for their repair and strengthening, it is necessary to evaluate their static and seismic stability. Presented in this paper are methodologies for evaluation of the seismic stability of existing reinforced concrete bridges designed without consideration of seismic effects and checking of structural justification of newly designed bridge structures. All bridges are located in the territory of the Republic of North Macedonia. A total of 26 existing bridges of different structural systems have been analyzed. Visual inspection has been carried out for all bridges, along with the definition of three main damage categories according to which structures have been categorized in respect to the need for their repair and strengthening. Investigations involving testing the quality of the built-in materials have been carried out, and dynamic tests pointing to the dynamic characteristics of the structures have been conducted by use of non-destructive methods of ambient vibration measurements. The conclusions drawn from the performed measurements and tests have been used for the development of accurate mathematical models that have been analyzed for static and dynamic loads. Based on the geometrical characteristics of the cross-sections and the physical characteristics of the built-in materials, interaction diagrams have been constructed. These diagrams along with the obtained section quantities under seismic effects, have been used to obtain the bearing capacity of the cross-sections. The results obtained from the conducted analyses point to the need for the repair of certain structural parts of the bridge structures. They indicate that the stability of the superstructure elements is not critical during a seismic effect, unlike the elements of the sub-structure, whose strengthening is necessary.

Keywords: existing bridges, newly designed bridges, reinforced concrete bridges, stability assessment

Procedia PDF Downloads 101
1331 Dietary Intake and the Risk of Hypertriglyceridemia in Adults: Tehran Lipid and Glucose Study

Authors: Parvin Mirmiran, Zahra Bahadoran, Sahar Mirzae, Fereidoun Azizi

Abstract:

Background and aim: Lifestyle factors, especially dietary intakes play an important role in metabolism of lipids and lipoproteins. In this study, we assessed the association between dietary factors and 3-year changes of serum triglycerides (TG), HDL-C and the atherogenic index of plasma among Iranian adults. This longitudinal study was conducted on 1938 subjects, aged 19-70 years, who participated in the Tehran Lipid and Glucose Study. Demographics, anthropometrics and biochemical measurements including serum TG were assessed at baseline (2006-2008) and after a 3-year follow-up (2009-2011). Dietary data were collected by using a 168-food item, validated semi-quantitative food frequency questionnaire at baseline. The risk of hypertriglyceridemia in the quartiles of dietary factors was evaluated using logistic regression models with adjustment for age, gender, body mass index, smoking, physical activity and energy intakes. Results: Mean age of the participants at baseline was 41.0±13.0 y. Mean TG and HDL-C at baseline was 143±86 and 42.2±10.0 mg/dl, respectively. Three-year change of serum TG were inversely related energy intake from phytochemical rich foods, whole grains, and legumes (P<0.05). Higher intakes compared to lower ones of dietary fiber and phytochemical-rich foods had similar impact on decreased risk of hyper-triglyceridemia (OR=0.58, 95% CI=0.34-1.00). Higher- compared to lower-dietary sodium to potassium ratios (Na/K ratio) increased the risk of hypertriglyceridemia by 63% (OR=0.1.63, 95% CI= 0.34-1.00). Conclusion: Findings showed that higher intakes of fiber and phytochemical rich foods especially whole grain and legumes could have protective effects against lipid disorders; in contrast higher sodium to potassium ratio had undesirable effect on triglycerides.

Keywords: lipid disorders, hypertriglyceridemia, diet, food science

Procedia PDF Downloads 468
1330 The Psychology of Virtual Relationships Provides Solutions to the Challenges of Online Learning: A Pragmatic Review and Case Study from the University of Birmingham, UK

Authors: Catherine Mangan, Beth Anderson

Abstract:

There has been a significant drive to use online or hybrid learning in Higher Education (HE) over recent years. HEs with a virtual presence offer their communities a range of benefits, including the potential for greater inclusivity, diversity, and collaboration; more flexible learning packages; and more engaging, dynamic content. Institutions can also experience significant challenges when seeking to extend learning spaces in this way, as can learners themselves. For example, staff members’ and learners’ digital literacy varies (as do their perceptions of technologies in use), and there can be confusion about optimal approaches to implementation. Furthermore, the speed with which HE institutions have needed to shift to fully online or hybrid models, owing to the COVID19 pandemic, has highlighted the significant barriers to successful implementation. HE environments have been shown to predict a range of organisational, academic, and experiential outcomes, both positive and negative. Much research has focused on the social aspect of virtual platforms, as well as the nature and effectiveness of the technologies themselves. There remains, however, a relative paucity of synthesised knowledge on the psychology of learners’ relationships with their institutions; specifically, how individual difference and interpersonal factors predict students’ ability and willingness to engage with novel virtual learning spaces. Accordingly, extending learning spaces remains challenging for institutions, and wholly remote courses, in particular, can experience high attrition rates. Focusing on the last five years, this pragmatic review summarises evidence from the psychological and pedagogical literature. In particular, the review highlights the importance of addressing the psychological and relational complexities of students’ shift from offline to online engagement. In doing so, it identifies considerations for HE institutions looking to deliver in this way.

Keywords: higher education, individual differences, interpersonal relationships, online learning, virtual environment

Procedia PDF Downloads 175
1329 Effects of Changes in LULC on Hydrological Response in Upper Indus Basin

Authors: Ahmad Ammar, Umar Khan Khattak, Muhammad Majid

Abstract:

Empirically based lumped hydrologic models have an extensive track record of use for various watershed managements and flood related studies. This study focuses on the impacts of LULC change for 10 year period on the discharge in watershed using lumped model HEC-HMS. The Indus above Tarbela region acts as a source of the main flood events in the middle and lower portions of Indus because of the amount of rainfall and topographic setting of the region. The discharge pattern of the region is influenced by the LULC associated with it. In this study the Landsat TM images were used to do LULC analysis of the watershed. Satellite daily precipitation TRMM data was used as input rainfall. The input variables for model building in HEC-HMS were then calculated based on the GIS data collected and pre-processed in HEC-GeoHMS. SCS-CN was used as transform model, SCS unit hydrograph method was used as loss model and Muskingum was used as routing model. For discharge simulation years 2000 and 2010 were taken. HEC-HMS was calibrated for the year 2000 and then validated for 2010.The performance of the model was assessed through calibration and validation process and resulted R2=0.92 during calibration and validation. Relative Bias for the years 2000 was -9% and for2010 was -14%. The result shows that in 10 years the impact of LULC change on discharge has been negligible in the study area overall. One reason is that, the proportion of built-up area in the watershed, which is the main causative factor of change in discharge, is less than 1% of the total area. However, locally, the impact of development was found significant in built up area of Mansehra city. The analysis was done on Mansehra city sub-watershed with an area of about 16 km2 and has more than 13% built up area in 2010. The results showed that with an increase of 40% built-up area in the city from 2000 to 2010 the discharge values increased about 33 percent, indicating the impact of LULC change on discharge value.

Keywords: LULC change, HEC-HMS, Indus Above Tarbela, SCS-CN

Procedia PDF Downloads 513
1328 Systematic Analysis of Immune Response to Biomaterial Surface Characteristics

Authors: Florian Billing, Soren Segan, Meike Jakobi, Elsa Arefaine, Aliki Jerch, Xin Xiong, Matthias Becker, Thomas Joos, Burkhard Schlosshauer, Ulrich Rothbauer, Nicole Schneiderhan-Marra, Hanna Hartmann, Christopher Shipp

Abstract:

The immune response plays a major role in implant biocompatibility, but an understanding of how to design biomaterials for specific immune responses is yet to be achieved. We aimed to better understand how changing certain material properties can drive immune responses. To this end, we tested immune response to experimental implant coatings that vary in specific characteristics. A layer-by-layer approach was employed to vary surface charge and wettability. Human-based in vitro models (THP-1 macrophages and primary peripheral blood mononuclear cells (PBMCS)) were used to assess immune responses using multiplex cytokine analysis, flow cytometry (CD molecule expression) and microscopy (cell morphology). We observed dramatic differences in immune response due to specific alterations in coating properties. For example altering the surface charge of coating A from anionic to cationic resulted in the substantial elevation of the pro-inflammatory molecules IL-1beta, IL-6, TNF-alpha and MIP-1beta, while the pro-wound healing factor VEGF was significantly down-regulated. We also observed changes in cell surface marker expression in relation to altered coating properties, such as CD16 on NK Cells and HLA-DR on monocytes. We furthermore observed changes in the morphology of THP-1 macrophages following cultivation on different coatings. A correlation between these morphological changes and the cytokine expression profile is ongoing. Targeted changes in biomaterial properties can produce vast differences in immune response. The properties of the coatings examined here may, therefore, be a method to direct specific biological responses in order to improve implant biocompatibility.

Keywords: biomaterials, coatings, immune system, implants

Procedia PDF Downloads 189
1327 Day-To-Day Variations in Health Behaviors and Daily Functioning: Two Intensive Longitudinal Studies

Authors: Lavinia Flueckiger, Roselind Lieb, Andrea H. Meyer, Cornelia Witthauer, Jutta Mata

Abstract:

Objective: Health behaviors tend to show a high variability over time within the same person. However, most existing research can only assess a snapshot of a person’s behavior and not capture this natural daily variability. Two intensive longitudinal studies examine the variability in health behavior over one academic year and their implications for other aspects of daily life such as affect and academic performance. Can already a single day of increased physical activity, snacking, or improved sleep have beneficial effects? Methods: In two intensive longitudinal studies with up to 65 assessment days over an entire academic year, university students (Study 1: N = 292; Study 2: N = 304) reported sleep quality, physical activity, snacking, positive and negative affect, and learning goal achievement. Results: Multilevel structural equation models showed that on days on which participants reported better sleep quality or more physical activity than usual, they also reported increased positive affect, decreased negative affect, and better learning goal achievement. Higher day-to-day snacking was only associated with increased positive affect. Both, increased day-to-day sleep quality and physical activity were indirectly associated with better learning goal achievement through changes in positive and negative affect; results for snacking were mixed. Importantly, day-to-day sleep quality was a stronger predictor for affect and learning goal achievement than physical activity or snacking. Conclusion: One day of better sleep or more physical activity than usual is associated with improved affect and academic performance. These findings have important implications for low-threshold interventions targeting the improvement of daily functioning.

Keywords: sleep quality, physical activity, snacking, affect, academic performance, multilevel structural equation model

Procedia PDF Downloads 576
1326 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 512
1325 Design and Analysis of Deep Excavations

Authors: Barham J. Nareeman, Ilham I. Mohammed

Abstract:

Excavations in urban developed area are generally supported by deep excavation walls such as; diaphragm wall, bored piles, soldier piles and sheet piles. In some cases, these walls may be braced by internal braces or tie back anchors. Tie back anchors are by far the predominant method for wall support, the large working space inside the excavation provided by a tieback anchor system has a significant construction advantage. This paper aims to analyze a deep excavation bracing system of contiguous pile wall braced by pre-stressed tie back anchors, which is a part of a huge residential building project, located in Turkey/Gaziantep province. The contiguous pile wall will be constructed with a length of 270 m that consists of 285 piles, each having a diameter of 80 cm, and a center to center spacing of 95 cm. The deformation analysis was carried out by a finite element analysis tool using PLAXIS. In the analysis, beam element method together with an elastic perfect plastic soil model and Soil Hardening Model was used to design the contiguous pile wall, the tieback anchor system, and the soil. The two soil clusters which are limestone and a filled soil were modelled with both Hardening soil and Mohr Coulomb models. According to the basic design, both soil clusters are modelled as drained condition. The simulation results show that the maximum horizontal movement of the walls and the maximum settlement of the ground are convenient with 300 individual case histories which are ranging between 1.2mm and 2.3mm for walls, and 15mm and 6.5mm for the settlements. It was concluded that tied-back contiguous pile wall can be satisfactorily modelled using Hardening soil model.

Keywords: deep excavation, finite element, pre-stressed tie back anchors, contiguous pile wall, PLAXIS, horizontal deflection, ground settlement

Procedia PDF Downloads 255
1324 Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures

Authors: A. Aboubakr, E. Fehling, S. A. Mourad, M. Omar

Abstract:

Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results.

Keywords: grouted connection, 3D modeling, finite element analysis, offshore wind energy turbines, stresses

Procedia PDF Downloads 528
1323 The Mechanisms of Peer-Effects in Education: A Frame-Factor Analysis of Instruction

Authors: Pontus Backstrom

Abstract:

In the educational literature on peer effects, attention has been brought to the fact that the mechanisms creating peer effects are still to a large extent hidden in obscurity. The hypothesis in this study is that the Frame Factor Theory can be used to explain these mechanisms. At heart of the theory is the concept of “time needed” for students to learn a certain curricula unit. The relations between class-aggregated time needed and the actual time available, steers and hinders the actions possible for the teacher. Further, the theory predicts that the timing and pacing of the teachers’ instruction is governed by a “criterion steering group” (CSG), namely the pupils in the 10th-25th percentile of the aptitude distribution in class. The class composition hereby set the possibilities and limitations for instruction, creating peer effects on individual outcomes. To test if the theory can be applied to the issue of peer effects, the study employs multilevel structural equation modelling (M-SEM) on Swedish TIMSS 2015-data (Trends in International Mathematics and Science Study; students N=4090, teachers N=200). Using confirmatory factor analysis (CFA) in the SEM-framework in MPLUS, latent variables are specified according to the theory, such as “limitations of instruction” from TIMSS survey items. The results indicate a good model fit to data of the measurement model. Research is still in progress, but preliminary results from initial M-SEM-models verify a strong relation between the mean level of the CSG and the latent variable of limitations on instruction, a variable which in turn have a great impact on individual students’ test results. Further analysis is required, but so far the analysis indicates a confirmation of the predictions derived from the frame factor theory and reveals that one of the important mechanisms creating peer effects in student outcomes is the effect the class composition has upon the teachers’ instruction in class.

Keywords: compositional effects, frame factor theory, peer effects, structural equation modelling

Procedia PDF Downloads 134
1322 The Effect of Second Victim-Related Distress on Work-Related Outcomes in Tertiary Care, Kelantan, Malaysia

Authors: Ahmad Zulfahmi Mohd Kamaruzaman, Mohd Ismail Ibrahim, Ariffin Marzuki Mokhtar, Maizun Mohd Zain, Saiful Nazri Satiman, Mohd Najib Majdi Yaacob

Abstract:

Background: Aftermath any patient safety incidents, the involved healthcare providers possibly sustained second victim-related distress (second victim distress and reduced their professional efficacy), with subsequent negative work-related outcomes or vice versa cultivating resilience. This study aimed to investigate the factors affecting negative work-related outcomes and resilience, with the triad of support; colleague, supervisor, and institutional support as the hypothetical mediators. Methods: This was a cross sectional study recruiting a total of 733 healthcare providers from three tertiary care in Kelantan, Malaysia. Three steps of hierarchical linear regression were developed for each outcome; negative work-related outcomes and resilience. Then, four multiple mediator models of support triad were analyzed. Results: Second victim distress, professional efficacy, and the support triad contributed significantly for each regression model. In the pathway of professional efficacy on each negative work-related outcomes and resilience, colleague support partially mediated the relationship. As for second victim distress on negative work related outcomes, colleague and supervisor support were the partial mediator, and on resilience; all support triad also produced a similar effect. Conclusion: Second victim distress, professional efficacy, and the support triad influenced the relationship with the negative work-related outcomes and resilience. Support triad as the mediators ameliorated the effect in between and explained the urgency of having good support for recovery post encountering patient safety incidents.

Keywords: second victims, patient safety incidents, hierarchical linear regression, mediation, support

Procedia PDF Downloads 109
1321 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 166
1320 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing

Authors: Paramvir Singh

Abstract:

The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.

Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles

Procedia PDF Downloads 90