Search results for: vehicle color recognition
3542 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation
Authors: Tokihiko Akita, Seiichi Mita
Abstract:
A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation
Procedia PDF Downloads 933541 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 4753540 Effects of Mild Heat Treatment on the Physical and Microbial Quality of Salak Apricot Cultivar
Authors: Bengi Hakguder Taze, Sevcan Unluturk
Abstract:
Şalak apricot (Prunus armeniaca L., cv. Şalak) is a specific variety grown in Igdir, Turkey. The fruit has distinctive properties distinguish it from other cultivars, such as its unique size, color, taste and higher water content. Drying is the widely used method for preservation of apricots. However, fresh consumption is preferred for Şalak apricot instead of drying due to its low dry matter content. Higher amounts of water in the structure and climacteric nature make the fruit sensitive against rapid quality loss during storage. Hence, alternative processing methods need to be introduced to extend the shelf life of the fresh produce. Mild heat (MH) treatment is of great interest as it can reduce the microbial load and inhibit enzymatic activities. Therefore, the aim of this study was to evaluate the impact of mild heat treatment on the natural microflora found on Şalak apricot surfaces and some physical quality parameters of the fruit, such as color and firmness. For this purpose, apricot samples were treated at different temperatures between 40 and 60 ℃ for different periods ranging between 10 to 60 min using a temperature controlled water bath. Natural flora on the fruit surfaces was examined using standard plating technique both before and after the treatment. Moreover, any changes in color and firmness of the fruit samples were also monitored. It was found that control samples were initially containing 7.5 ± 0.32 log CFU/g of total aerobic plate count (TAPC), 5.8±0.31 log CFU/g of yeast and mold count (YMC), and 5.17 ± 0.22 log CFU/g of coliforms. The highest log reductions in TAPC and YMC were observed as 3.87-log and 5.8-log after the treatments at 60 ℃ and 50 ℃, respectively. Nevertheless, the fruit lost its characteristic aroma at temperatures above 50 ℃. Furthermore, great color changes (ΔE ˃ 6) were observed and firmness of the apricot samples was reduced at these conditions. On the other hand, MH treatment at 41 ℃ for 10 min resulted in 1.6-log and 0.91-log reductions in TAPC and YMC, respectively, with slightly noticeable changes in color (ΔE ˂ 3). In conclusion, application of temperatures higher than 50 ℃ caused undesirable changes in physical quality of Şalak apricots. Although higher microbial reductions were achieved at those temperatures, temperatures between 40 and 50°C should be further investigated considering the fruit quality parameters. Another strategy may be the use of high temperatures for short time periods not exceeding 1-5 min. Besides all, MH treatment with UV-C light irradiation can be also considered as a hurdle strategy for better inactivation results.Keywords: color, firmness, mild heat, natural flora, physical quality, şalak apricot
Procedia PDF Downloads 1373539 Impacts of Applying Automated Vehicle Location Systems to Public Bus Transport Management
Authors: Vani Chintapally
Abstract:
The expansion of modest and minimized Global Positioning System (GPS) beneficiaries has prompted most Automatic Vehicle Location (AVL) frameworks today depending solely on satellite-based finding frameworks, as GPS is the most stable usage of these. This paper shows the attributes of a proposed framework for following and dissecting open transport in a run of the mill medium-sized city and complexities the qualities of such a framework to those of broadly useful AVL frameworks. Particular properties of the courses broke down by the AVL framework utilized for the examination of open transport in our study incorporate cyclic vehicle courses, the requirement for particular execution reports, and so forth. This paper particularly manages vehicle movement forecasts and the estimation of station landing time, combined with consequently produced reports on timetable conformance and other execution measures. Another side of the watched issue is proficient exchange of information from the vehicles to the control focus. The pervasiveness of GSM bundle information exchange advancements combined with decreased information exchange expenses have brought on today's AVL frameworks to depend predominantly on parcel information exchange administrations from portable administrators as the correspondences channel in the middle of vehicles and the control focus. This methodology brings numerous security issues up in this conceivably touchy application field.Keywords: automatic vehicle location (AVL), expectation of landing times, AVL security, data administrations, wise transport frameworks (ITS), guide coordinating
Procedia PDF Downloads 3833538 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network
Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba
Abstract:
Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network
Procedia PDF Downloads 2333537 Fatigue Life Estimation Using N-Code for Drive Shaft of Passenger Vehicle
Authors: Tae An Kim, Hyo Lim Kang, Hye Won Han, Seung Ho Han
Abstract:
The drive shaft of passenger vehicle has its own function such as transmitting the engine torque from the gearbox and differential gears to the wheels. It must also compensate for all variations in angle or length resulting from manoeuvring and deflection for perfect synchronization between joints. Torsional fatigue failures occur frequently at the connection parts of the spline joints in the end of the drive shaft. In this study, the fatigue life of a drive shaft of passenger vehicle was estimated by using the finite element analysis. A commercial software of n-Code was applied under twisting load conditions, i.e. 0~134kgf•m and 0~188kgf•m, in which the shear strain range-fatigue life relationship considering Signed Shear method, Smith-Watson-Topper equation, Neuber-Hoffman Seeger method, size sensitivity factor and surface roughness effect was taken into account. The estimated fatigue life was verified by a twisting load test of the real drive shaft in a test rig. (Human Resource Training Project for Industry Matched R & D, KIAT, N036200004).Keywords: drive shaft, fatigue life estimation, passenger vehicle, shear strain range-fatigue life relationship, torsional fatigue failure
Procedia PDF Downloads 2753536 An Online 3D Modeling Method Based on a Lossless Compression Algorithm
Authors: Jiankang Wang, Hongyang Yu
Abstract:
This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image
Procedia PDF Downloads 823535 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.Keywords: ANPR, CS, CNN, deep learning, NPL
Procedia PDF Downloads 3063534 A Parametric Study on Aerodynamic Performance of Tyre Using CFD
Authors: Sowntharya L.
Abstract:
Aerodynamics is the most important factor when it comes to resistive forces such as lift, drag and side forces acting on the vehicle. In passenger vehicles, reducing the drag will not only unlock the door for higher achievable speed but will also reduce the fuel consumption of the vehicle. Generally, tyre contributes significantly to the overall aerodynamics of the vehicle. Hence, understanding the air-flow behaviour around the tyre is vital to optimize the aerodynamic performance in the early stage of design process. Nowadays, aerodynamic simulation employing Computational Fluid Dynamics (CFD) is gaining more importance as it reduces the number of physical wind-tunnel experiments during vehicle development process. This research develops a methodology to predict aerodynamic drag of a standalone tyre using Numerical CFD Solver and to validate the same using a wind tunnel experiment. A parametric study was carried out on different tread pattern tyres such as slick, circumferential groove & patterned tyre in stationary and rotating boundary conditions. In order to represent wheel rotation contact with the ground, moving reference frame (MRF) approach was used in this study. Aerodynamic parameters such as drag lift & air flow behaviour around the tire were simulated and compared with experimental results.Keywords: aerodynamics, CFD, drag, MRF, wind-tunnel
Procedia PDF Downloads 1943533 New Formula for Revenue Recognition Likely to Change the Prescription for Pharma Industry
Authors: Shruti Hajirnis
Abstract:
In May 2014, FASB issued Accounting Standards Update (ASU) 2014-09, Revenue from Contracts with Customers (Topic 606), and the International Accounting Standards Board (IASB) issued International Financial Reporting Standards (IFRS) 15, Revenue from Contracts with Customers that will supersede virtually all revenue recognition requirements in IFRS and US GAAP. FASB and the IASB have basically achieved convergence with these standards, with only some minor differences such as collectability threshold, interim disclosure requirements, early application and effective date, impairment loss reversal and nonpublic entity requirements. This paper discusses the impact of five-step model prescribed in new revenue standard on the entities operating in Pharma industry. It also outlines the considerations for these entities while implementing the new standard.Keywords: revenue recognition, pharma industry, standard, requirements
Procedia PDF Downloads 4443532 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal
Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova
Abstract:
This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring
Procedia PDF Downloads 1253531 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset
Authors: Assel Jaxylykova, Alexnder Pak
Abstract:
This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics
Procedia PDF Downloads 453530 2.5D Face Recognition Using Gabor Discrete Cosine Transform
Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao
Abstract:
In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose
Procedia PDF Downloads 3283529 An Ant Colony Optimization Approach for the Pollution Routing Problem
Authors: P. Parthiban, Sonu Rajak, N. Kannan, R. Dhanalakshmi
Abstract:
This paper deals with the Vehicle Routing Problem (VRP) with environmental considerations which is called Pollution Routing Problem (PRP). The objective is to minimize the operational and environmental costs. It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. In this context, we presented an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the PRP. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage a SOA is run on the resulting VRPTW solutions. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route in order to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm is able to provide good solutions.Keywords: ant colony optimization, CO2 emissions, combinatorial optimization, speed optimization, vehicle routing
Procedia PDF Downloads 3223528 Development of a Drive Cycle Based Control Strategy for the KIIRA-EV SMACK Hybrid
Authors: Richard Madanda, Paul Isaac Musasizi, Sandy Stevens Tickodri-Togboa, Doreen Orishaba, Victor Tumwine
Abstract:
New vehicle concepts targeting specific geographical markets are designed to satisfy a unique set of road and load requirements. The KIIRA-EV SMACK (KES) hybrid vehicle is designed in Uganda for the East African market. The engine and generator added to the KES electric power train serve both as the range extender and the power assist. In this paper, the design consideration taken to achieve the proper management of the on-board power from the batteries and engine-generator based on the specific drive cycle are presented. To harness the fuel- efficiency benefits of the power train, a specific control philosophy operating the engine and generator at the most efficient speed- torque and speed-power regions is presented. By using a suitable model developed in MATLAB using Simulink and Stateflow, preliminary results show that the steady-state response of the vehicle for a particular hypothetical drive cycle mimicking the expected drive conditions in the city and highway traffic is sufficient.Keywords: control strategy, drive cycle, hybrid vehicle, simulation
Procedia PDF Downloads 3803527 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach
Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh
Abstract:
Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system. This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition
Procedia PDF Downloads 3813526 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW
Procedia PDF Downloads 4953525 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System
Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich
Abstract:
The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.Keywords: automated vehicle, driver behavior, human factors, human-machine system
Procedia PDF Downloads 1453524 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 1343523 Changes in Air Quality inside Vehicles and in Working Conditions of Professional Drivers during COVID-19 Pandemic in Paris Area
Authors: Melissa Hachem, Lynda Bensefa-Colas, Isabelle Momas
Abstract:
We evaluated the impact of the first lockdown restriction measures (March-May 2020) in the Paris area on (1) the variation of in-vehicle ultrafine particle (UFP) and black carbon (BC) concentrations between pre-and post-lockdown period and (2) the professional drivers working conditions and practices. The study was conducted on 33 Parisian taxi drivers. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively, on two typical working days before and after the first lockdown. The job-related characteristics were self-reported. Our results showed that after the first lockdown, the number of clients significantly decreased as well as the taxi driver's journey duration. Taxi drivers significantly opened their windows more and reduced the use of air recirculation. UFP decreased significantly by 32% and BC by 31% after the first lockdown, with a weaker positive correlation compared to before the lockdown. The reduction of in-vehicle UFP was explained mainly by the reduction of traffic flow and ventilation settings, though the latter probably varied according to the traffic condition. No predictor explained the variation of in-vehicle BC concentration between pre-and post-lockdown periods, suggesting different sources of UFP and BC. The road traffic was not anymore the dominant source of BC post-lockdown. We emphasize the role of traffic emissions on in-vehicle air pollution and that preventive measures such as ventilation settings will help to better manage air quality inside a vehicle in order to minimize exposure of professional drivers, as well as passengers, to air pollutants.Keywords: black carbon, COVID-19, France, lockdown, taxis, ultrafine particles
Procedia PDF Downloads 1923522 Functional Properties of Sunflower Protein Concentrates Extracted Using Different Anti-greening Agents - Low-Fat Whipping Cream Preparation
Authors: Tamer M. El-Messery
Abstract:
By-products from sunflower oil extraction, such as sunflower cakes, are rich sources of proteins with desirable functional properties for the food industry. However, challenges such as sensory drawbacks and the presence of phenolic compounds have hindered their widespread use. In this study, sunflower protein concentrates were obtained from sunflower cakes using different ant-greening solvents (ascorbic acid (ASC) and N-acetylcysteine (NAC)), and their functional properties were evaluated. The color of extracted proteins ranged from dark green to yellow, where the using of ASC and NAC agents enhanced the color. The protein concentrates exhibited high solubility (>70%) and antioxidant activity, with hydrophobicity influencing emulsifying activity. Emulsions prepared with these proteins showed stability and microencapsulation efficiency. Incorporation of protein concentrates into low-fat whipping cream formulations increased overrun and affected color characteristics. Rheological studies demonstrated pseudoplastic behavior in whipped cream, influenced by shear rates and protein content. Overall, sunflower protein isolates showed promising functional properties, indicating their potential as valuable ingredients in food formulations.Keywords: functional properties, sunflower protein concentrates, antioxidant capacity, ant-greening agents, low-fat whipping cream
Procedia PDF Downloads 483521 Brake Force Distribution in Passenger Cars
Authors: Boukhris Lahouari, Bouchetara Mostefa
Abstract:
The active safety of a vehicle is mainly influenced by the properties of the installed braking system. With the increase in road traffic density and travel speeds, increasingly stringent requirements are placed on the vehicle's behaviour during braking. The achievable decelerations are limited by the physical aspect characterized by the coefficient of friction between the tires and the ground. As a result, it follows that an optimized distribution of braking forces becomes necessary for a better use of friction coefficients. This objective could only be achieved if sufficient knowledge is available on the theory of vehicle dynamics during braking and on current standards for the approval of braking systems. These will facilitate the development of a braking force calculation algorithm that will enable an optimized distribution of braking forces to be achieved. Operating safety is conditioned by the requirements of efficiency, progressiveness, regularity or fidelity of a braking system without obviously neglecting the recommendations imposed by the legislator.Keywords: brake force distribution, distribution diagram, friction coefficient, brake by wire
Procedia PDF Downloads 793520 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function
Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana
Abstract:
Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.Keywords: HSV space, histology, enhancement, image
Procedia PDF Downloads 3293519 Neuromarketing in the Context of Food Marketing
Authors: Francesco Pinci
Abstract:
This research investigates the significance of product packaging as an effective marketing tool. By using commercially available pasta as an example, the study specifically examines the visual components of packaging, including color, shape, packaging material, and logo. The insights gained from studies like this are particularly valuable to food and beverage companies as they provide marketers with a deeper understanding of the factors influencing consumer purchasing decisions. The research analyzes data collected through surveys conducted via Google Forms and visual data obtained using iMotions eye-tracker software. The results affirm the importance of packaging design elements, such as color and product information, in shaping consumer buying behavior.Keywords: consumer behaviour, eyetracker, food marketing, neuromarketing
Procedia PDF Downloads 1163518 Sports Fans and Non-Interested Public Recognition of the Problems of Sports in Egypt through Caricature
Authors: Alaaeldin Hamdy Ahmed Mohammed
Abstract:
Introduction: This study examines sports’ fans and non-interested public perception and recognition of the problems that have negative impacts upon the Egyptian sports, particularly football, through caricatures. Eight caricature paintings were designed to express eight problems affecting the Egyptian sports and its development. These paintings were distributed on two groups of the fans and the non-interested public. Methods: The study was limited to eight caricatures representing the eight issues which are: the impact of stopping the sports activity on athletes, the effect of clubs’ disagreement, fanaticism between the members of the ultras of different clubs, the negative impact of the mingling of politics into sports, the negative role of the clubs affects the professionalism of the promising players, the conflict between the national organization responsible for sports, the breaking in of the fans to the playgrounds, the impact of the lack of planning on the national team. The Results: The results showed that both sports fans and those who are not interested in sports recognized the problems that the caricatures refer to and criticizes exaggeration although the rate was higher for the fans. These caricatures contributed also in their recognition of the danger of the negative impact of these problems on the Egyptian sports, particularly football which is the most common at the Egyptian sports fans. Discussion: This finding echoes the conclusion that caricatures are distinctive in the adults’ facial stimuli that are either systematically exaggerated recognition of them.Keywords: caricature, fans, football, sports
Procedia PDF Downloads 3173517 Fiction and Reality in Animation: Taking Final Flight of the Osiris as an Example
Authors: Syong-Yang Chung, Xin-An Chen
Abstract:
This study aims to explore the less well-known animation “Final Flight of the Osiris”, consisting of an initial exploration of the film color, storyline, and the simulacrum meanings of the roles, which leads to a further exploration of the light-shadow contrast and the psychological images presented by the screen colors and the characters. The research is based on literature review, and all data was compiled for the analysis of the visual vocabulary evolution of the characters. In terms of the structure, the relational study of the animation and the historical background of that time came first, including The Wachowskis’ and Andy Jones’ impact towards the cinematographic version and the animation version of “The Matrix”. Through literature review, the film color, the meaning and the relevant points were clarified. It was found in this research that “Final Flight of the Osiris” separates the realistic and virtual spaces by the changing the color tones; the "self" of the audience gradually dissolves into the "virtual" in the simulacra world, and the "Animatrix" has become a virtual field for the audience to understand itself about "existence" and "self".Keywords: the matrix, the final flight of Osiris, Wachowski brothers, simulacres
Procedia PDF Downloads 2293516 Investigation of the Brake Force Distribution in Passenger Cars
Authors: Boukhris Lahouari, Bouchetara Mostefa
Abstract:
The active safety of a vehicle is mainly influenced by the properties of the installed braking system. With the increase in road traffic density and travel speeds, increasingly stringent requirements are placed on the vehicle's behaviour during braking. The achievable decelerations are limited by the physical aspect characterized by the coefficient of friction between the tires and the ground. As a result, it follows that an optimized distribution of braking forces becomes necessary for a better use of friction coefficients. This objective could only be achieved if sufficient knowledge is available on the theory of vehicle dynamics during braking and on current standards for the approval of braking systems. This will facilitate the development of a braking force calculation algorithm that will enable an optimized distribution of braking forces to be achieved. Operating safety is conditioned by the requirements of efficiency, progressiveness, regularity or fidelity of a braking system without obviously neglecting the recommendations imposed by the legislator.Keywords: brake force distribution, distribution diagram, friction coefficient, brake by wire
Procedia PDF Downloads 793515 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique
Authors: Sandhya Baskaran, Hari Kumar Nagabushanam
Abstract:
Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer
Procedia PDF Downloads 2933514 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier
Authors: Saurabh Farkya, Govinda Surampudi
Abstract:
Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)
Procedia PDF Downloads 4993513 Enhanced Traffic Light Detection Method Using Geometry Information
Authors: Changhwan Choi, Yongwan Park
Abstract:
In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.Keywords: traffic light, intelligent vehicle, night, detection, DGPS
Procedia PDF Downloads 325