Search results for: stochastic delay differential equations
3636 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.Keywords: finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations
Procedia PDF Downloads 1473635 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model
Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq
Abstract:
The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity
Procedia PDF Downloads 1283634 Numerical Solutions of Fredholm Integral Equations by B-Spline Wavelet Method
Authors: Ritu Rani
Abstract:
In this paper, we apply minimalistically upheld linear semi-orthogonal B-spline wavelets, exceptionally developed for the limited interim to rough the obscure function present in the integral equations. Semi-orthogonal wavelets utilizing B-spline uniquely developed for the limited interim and these wavelets can be spoken to in a shut frame. This gives a minimized help. Semi-orthogonal wavelets frame the premise in the space L²(R). Utilizing this premise, an arbitrary function in L²(R) can be communicated as the wavelet arrangement. For the limited interim, the wavelet arrangement cannot be totally introduced by utilizing this premise. This is on the grounds that backings of some premise are truncated at the left or right end purposes of the interim. Subsequently, an uncommon premise must be brought into the wavelet development on the limited interim. These functions are alluded to as the limit scaling functions and limit wavelet functions. B-spline wavelet method has been connected to fathom linear and nonlinear integral equations and their systems. The above method diminishes the integral equations to systems of algebraic equations and afterward these systems can be illuminated by any standard numerical methods. Here, we have connected Newton's method with suitable starting speculation for solving these systems.Keywords: semi-orthogonal, wavelet arrangement, integral equations, wavelet development
Procedia PDF Downloads 1743633 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application
Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon
Abstract:
This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI
Procedia PDF Downloads 3483632 Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Muhammad Moaz
Abstract:
In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.Keywords: differential drive robot, hybrid fuzzy controller, optimization, path tracking, unicycle robot
Procedia PDF Downloads 4633631 VANETs Geographic Routing Protocols: A survey
Authors: Ramin Karimi
Abstract:
One of common highly mobile wireless ad hoc networks is Vehicular Ad Hoc Networks. Hence routing in vehicular ad hoc network (VANET) has attracted much attention during the last few years. VANET is characterized by its high mobility of nodes and specific topology patterns. Moreover these networks encounter a significant loss rate and a very short duration of communication. In vehicular ad hoc networks, one of challenging is routing of data due to high speed mobility and changing topology of vehicles. Geographic routing protocols are becoming popular due to advancement and availability of GPS devices. Delay Tolerant Networks (DTNs) are a class of networks that enable communication where connectivity issues like sparse connectivity, intermittent connectivity; high latency, long delay, high error rates, asymmetric data rate, and even no end-to-end connectivity exist. In this paper, we review the existing Geographic Routing Protocols for VANETs and also provide a qualitative comparison of them.Keywords: vehicular ad hoc networks, mobility, geographic routing, delay tolerant networks
Procedia PDF Downloads 5203630 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System
Authors: Mehmet Savsar, Majid Aldaihani
Abstract:
Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability
Procedia PDF Downloads 5163629 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics
Procedia PDF Downloads 1633628 A Fundamental Functional Equation for Lie Algebras
Authors: Ih-Ching Hsu
Abstract:
Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?Keywords: fundamental functional equation, generalized functional equations, Lie algebras, quaternions
Procedia PDF Downloads 2233627 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model
Procedia PDF Downloads 1513626 Cauda Equina Syndrome: An Audit on Referral Adequacy and its Impact on Delay to Surgery
Authors: David Mafullul, Jiang Lei, Edward Goacher, Jibin Francis
Abstract:
PURPOSE: Timely decompressive surgery for cauda equina syndrome (CES) is dependent on efficient referral pathways for patients presenting at local primary or secondary centres to tertiary spinal centres in the United Kingdom (UK). Identifying modifiable points of delay within this process is important as minimising time between presentation and surgery may improve patient outcomes. This study aims to analyse whether adequacy of referral impacts on time to surgery in CES. MATERIALS AND METHODS: Data from all cases of confirmed CES referred to a single tertiary UK hospital between August 2017 to December 2019, via a suspected CES e-referral pathway, were obtained retrospectively. Referral adequacy was defined by the inclusion of sufficient information to determine the presence or absence of several NICE ‘red flags’. Correlation between referral adequacy and delay from referral-to-surgery was then analysed. RESULTS: In total, 118 confirmed CES cases were included. Adequate documentation for saddle anaesthesia was associated with reduced delays of more than 48 hours from referral-to-surgery [X2(1, N=116)=7.12, p=.024], an effect partly attributable to these referrals being accepted sooner [U=16.5; n1=27, n2=4, p=.029, r=.39]. Other red flags had poor association with delay. Referral adequacy was better for somatic red flags [bilateral sciatica (97.5%); severe or progressive bilateral neurological deficit of the legs (95.8%); saddle anaesthesia (91.5%)] compared to autonomic red flags [loss of anal tone (80.5%); urinary retention (79.7%); faecal incontinence or lost sensation of rectal fullness (57.6%)]. Although referral adequacy for urinary retention was 79.7%, only 47.5% of referrals documented a post-void residual numerical value. CONCLUSIONS: Adequate documentation of saddle anaesthesia in e-referrals is associated with reduced delay-to-surgery for confirmed CES, partly attributable to these referrals being accepted sooner. Other red flags had poor association with delay to surgery. Referral adequacy for autonomic red flags, including documentation for post-void residuals, has significant room for improvement.Keywords: cauda equina, cauda equina syndrome, neurosurgery, spinal surgery, decompression, delay, referral, referral adequacy
Procedia PDF Downloads 383625 Multidimensional Integral and Discrete Opial–Type Inequalities
Authors: Maja Andrić, Josip Pečarić
Abstract:
Over the last five decades, an enormous amount of work has been done on Opial’s integral inequality, dealing with new proofs, various generalizations, extensions and discrete analogs. The Opial inequality is recognized as a fundamental result in the analysis of qualitative properties of solution of differential equations. We use submultiplicative convex functions, appropriate representations of functions and inequalities involving means to obtain generalizations and extensions of certain known multidimensional integral and discrete Opial-type inequalities.Keywords: Opial's inequality, Jensen's inequality, integral inequality, discrete inequality
Procedia PDF Downloads 4393624 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints
Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao
Abstract:
This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.Keywords: cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb
Procedia PDF Downloads 2213623 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks
Authors: Hyunsun Lee, Yi Zhu
Abstract:
Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles
Procedia PDF Downloads 1233622 Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)
Authors: N. Massoum, B. Bouazza
Abstract:
In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot.Keywords: Monte Carlo simulation, transient electron transport, MESFET device, simulation software
Procedia PDF Downloads 5133621 Optimal Control of Volterra Integro-Differential Systems Based on Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet accompany with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.Keywords: collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation
Procedia PDF Downloads 3883620 Image Segmentation Using Active Contours Based on Anisotropic Diffusion
Authors: Shafiullah Soomro
Abstract:
Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.Keywords: active contours, anisotropic diffusion, level-set, partial differential equations
Procedia PDF Downloads 1613619 The Optimal Public Debt Ceiling in Taiwan: A Simulation Approach
Authors: Ho Yuan-Hong, Huang Chiung-Ju
Abstract:
This study conducts simulation analyses to find the optimal debt ceiling of Taiwan, while factoring in welfare maximization under a dynamic stochastic general equilibrium framework. The simulation is based on Taiwan's 2001 to 2011 economic data and shows that welfare is maximized at a "debt"⁄"GDP" ratio of 0.2, increases in the "debt"⁄"GDP " ratio leads to increases in both tax and interest rates and decreases in the consumption ratio and working hours. The study results indicate that the optimal debt ceiling of Taiwan is 20% of GDP, where if the "debt"⁄"GDP" ratio is greater than 40%, the welfare will be negative and result in welfare loss.Keywords: debt sustainability, optimal debt ceiling, dynamic stochastic general equilibrium, welfare maximization
Procedia PDF Downloads 3573618 A Low Insertion Loss Variation 10-35 GHz Phase Shifter
Authors: Soroush Rasti Boroujeni, S. Hassan Mousavi, Javad Ebrahimizadeh, Ardeshir Palizban, Mohammad-Reza Nezhad-Ahmadi, Safieddin Safavi-Naeini
Abstract:
This paper presents a wideband True Time Delay (TTD) phase shifter with low insertion loss variation. The circuit benefits from a controllable resistive load shunt with transmission line segments to optimize return loss variations, addressing the unbalanced capacitive nature of the varactor. The phase shifter reduces the complexity of the calibration process because the dependency of insertion loss on voltage controls is improved up to 3 dB. The TTD phase shifter provides a continuous changing delay time of 6.4 ps with low insertion loss (IL) in the 10-35 GHz frequency range. The proposed circuit benefits from lowloss phase shifters with a small footprint. Fabricated using a 65 nm CMOC process, the TTD phase shifter occupies only 388 × 615 µm 2 of chip area, achieving a 20% improvements compared to conventional TTD phase shifters.Keywords: millimeter-wave phased-array, true time delay phase shifter, insertion loss variation, compact size
Procedia PDF Downloads 73617 Deterministic and Stochastic Modeling of a Micro-Grid Management for Optimal Power Self-Consumption
Authors: D. Calogine, O. Chau, S. Dotti, O. Ramiarinjanahary, P. Rasoavonjy, F. Tovondahiniriko
Abstract:
Mafate is a natural circus in the north-western part of Reunion Island, without an electrical grid and road network. A micro-grid concept is being experimented in this area, composed of a photovoltaic production combined with electrochemical batteries, in order to meet the local population for self-consumption of electricity demands. This work develops a discrete model as well as a stochastic model in order to reach an optimal equilibrium between production and consumptions for a cluster of houses. The management of the energy power leads to a large linearized programming system, where the time interval of interest is 24 hours The experimental data are solar production, storage energy, and the parameters of the different electrical devices and batteries. The unknown variables to evaluate are the consumptions of the various electrical services, the energy drawn from and stored in the batteries, and the inhabitants’ planning wishes. The objective is to fit the solar production to the electrical consumption of the inhabitants, with an optimal use of the energies in the batteries by satisfying as widely as possible the users' planning requirements. In the discrete model, the different parameters and solutions of the linear programming system are deterministic scalars. Whereas in the stochastic approach, the data parameters and the linear programming solutions become random variables, then the distributions of which could be imposed or established by estimation from samples of real observations or from samples of optimal discrete equilibrium solutions.Keywords: photovoltaic production, power consumption, battery storage resources, random variables, stochastic modeling, estimations of probability distributions, mixed integer linear programming, smart micro-grid, self-consumption of electricity.
Procedia PDF Downloads 1103616 A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions
Authors: Xijun Yu, Zhenzhen Li, Zupeng Jia
Abstract:
This paper presents a new cell-centered Lagrangian scheme for two-dimensional compressible flow. The new scheme uses a semi-Lagrangian form of the Euler equations. The system of equations is discretized by Discontinuous Galerkin (DG) method using the Taylor basis in Eulerian space. The vertex velocities and the numerical fluxes through the cell interfaces are computed consistently by a nodal solver. The mesh moves with the fluid flow. The time marching is implemented by a class of the Runge-Kutta (RK) methods. A WENO reconstruction is used as a limiter for the RKDG method. The scheme is conservative for the mass, momentum and total energy. The scheme maintains second-order accuracy and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the robustness of the scheme.Keywords: cell-centered Lagrangian scheme, compressible Euler equations, RKDG method
Procedia PDF Downloads 5463615 A Stochastic Analytic Hierarchy Process Based Weighting Model for Sustainability Measurement in an Organization
Authors: Faramarz Khosravi, Gokhan Izbirak
Abstract:
A weighted statistical stochastic based Analytical Hierarchy Process (AHP) model for modeling the potential barriers and enablers of sustainability for measuring and assessing the sustainability level is proposed. For context-dependent potential barriers and enablers, the proposed model takes the basis of the properties of the variables describing the sustainability functions and was developed into a realistic analytical model for the sustainable behavior of an organization. This thus serves as a means for measuring the sustainability of the organization. The main focus of this paper was the application of the AHP tool in a statistically-based model for measuring sustainability. Hence a strong weighted stochastic AHP based procedure was achieved. A case study scenario of a widely reported major Canadian electric utility was adopted to demonstrate the applicability of the developed model and comparatively examined its results with those of an equal-weighted model method. Variations in the sustainability of a company, as fluctuations, were figured out during the time. In the results obtained, sustainability index for successive years changed form 73.12%, 79.02%, 74.31%, 76.65%, 80.49%, 79.81%, 79.83% to more exact values 73.32%, 77.72%, 76.76%, 79.41%, 81.93%, 79.72%, and 80,45% according to priorities of factors that have found by expert views, respectively. By obtaining relatively necessary informative measurement indicators, the model can practically and effectively evaluate the sustainability extent of any organization and also to determine fluctuations in the organization over time.Keywords: AHP, sustainability fluctuation, environmental indicators, performance measurement
Procedia PDF Downloads 1213614 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation
Authors: A. Guezane-Lakoud, S. Bensebaa
Abstract:
In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem
Procedia PDF Downloads 4143613 Analysis of Maternal Death Surveillance and Response: Causes and Contributing Factors in Addis Ababa, Ethiopia, 2022
Authors: Sisay Tiroro Salato
Abstract:
Background: Ethiopia has been implementing the maternal death surveillance and response system to provide real-time actionable information, including causes of death and contributing factors. Analysis of maternal mortality surveillance data was conducted to identify the causes and underlying factors in Addis Ababa, Ethiopia. Methods: We carried out a retrospective surveillance data analysis of 324 maternal deaths reported in Addis Ababa, Ethiopia, from 2017 to 2021. The data were extracted from the national maternal death surveillance and response database, including information from case investigation, verbal autopsy, and facility extraction forms. The data were analyzed by computing frequency and presented in numbers, proportions, and ratios. Results: Of 324 maternal deaths, 92% died in the health facilities, 6.2% in transit, and 1.5% at home. The mean age at death was 28 years, ranging from 17 to 45. The maternal mortality ratio per 100,000 live births was 77for the five years, ranging from 126 in 2017 to 21 in 2021. The direct and indirect causes of death were responsible for 87% and 13%, respectively. The direct causes included obstetric haemorrhage, hypertensive disorders in pregnancy, puerperal sepsis, embolism, obstructed labour, and abortion. The third delay (delay in receiving care after reaching health facilities) accounted for 57% of deaths, while the first delay (delay in deciding to seek health care) and the second delay (delay in reaching health facilities) and accounted for 34% and 24%, respectively. Late arrival to the referral facility, delayed management after admission, andnon-recognition of danger signs were underlying factors. Conclusion: Over 86% of maternal deaths were attributed by avoidable direct causes. The majority of women do try to reach health services when an emergency occurs, but the third delays present a major problem. Improving the quality of care at the healthcare facility level will help to reduce maternal death.Keywords: maternal death, surveillance, delays, factors
Procedia PDF Downloads 1133612 Superconvergence of the Iterated Discrete Legendre Galerkin Method for Fredholm-Hammerstein Equations
Authors: Payel Das, Gnaneshwar Nelakanti
Abstract:
In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain superconvergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and $L^2$-norm. Numerical examples are given to illustrate the theoretical results.Keywords: hammerstein integral equations, spectral method, discrete galerkin, numerical quadrature, superconvergence
Procedia PDF Downloads 4703611 Extension-Torsion-Inflation Coupling in Compressible Magnetoelastomeric Tubes with Helical Magnetic Anisotropy
Authors: Darius Diogo Barreto, Ajeet Kumar, Sushma Santapuri
Abstract:
We present an axisymmetric variational formulation for coupled extension-torsion-inflation deformation in magnetoelastomeric thin tubes when both azimuthal and axial magnetic fields are applied. The tube's material is assumed to have a preferred magnetization direction which imparts helical magnetic anisotropy to the tube. We have also derived the expressions of the first derivative of free energy per unit tube's undeformed length with respect to various imposed strain parameters. On applying the thin tube limit, the two nonlinear ordinary differential equations to obtain the in-plane radial displacement and radial component of the Lagrangian magnetic field get converted into a set of three simple algebraic equations. This allows us to obtain simple analytical expressions in terms of the applied magnetic field, magnetization direction, and magnetoelastic constants, which tell us how these parameters can be tuned to generate positive/negative Poisson's effect in such tubes. We consider both torsionally constrained and torsionally relaxed stretching of the tube. The study can be useful in designing magnetoelastic tubular actuators.Keywords: nonlinear magnetoelasticity, extension-torsion coupling, negative Poisson's effect, helical anisotropy, thin tube
Procedia PDF Downloads 1203610 Creative Mathematically Modelling Videos Developed by Engineering Students
Authors: Esther Cabezas-Rivas
Abstract:
Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project.Keywords: active learning, contextual teaching, models in differential equations, student-produced videos
Procedia PDF Downloads 1453609 On the Derivation of Variable Step BBDF for Solving Second Order Stiff ODEs
Authors: S. A. M. Yatim, Z. B. Ibrahim, K. I. Othman, M. Suleiman
Abstract:
The method of solving second order stiff ordinary differential equation (ODEs) that is based on backward differentiation formula (BDF) is considered in this paper. We derived the method by increasing the order of the existing method using an improved strategy in choosing the step size. Numerical results are presented to compare the efficiency of the proposed method to the MATLAB’s suite of ODEs solvers namely ode15s and ode23s. The method was found to be efficient to solve second order ordinary differential equation.Keywords: backward differentiation formulae, block backward differentiation formulae, stiff ordinary differential equation, variable step size
Procedia PDF Downloads 4973608 Evaluation of the Electric Vehicle Impact in Distribution System
Authors: Sania Maghsodloo, Sirus Mohammadi
Abstract:
Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Transportation electrification has become an important issue in recent decades and the large scale deployment of EVs has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. The stochastic process of the driving pattern is done to make the outcome of the project more realistic. Based on the stochastic data, the optimization of charging plans is made.Keywords: electric vehicles (PEVs), smart grid, Monticello, distribution system
Procedia PDF Downloads 5523607 Quadrature Mirror Filter Bank Design Using Population Based Stochastic Optimization
Authors: Ju-Hong Lee, Ding-Chen Chung
Abstract:
The paper deals with the optimal design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using a metaheuristic based optimization technique. Based on the theory of two-channel QMF banks using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the group delay error of the designed QMF bank and the magnitude response error of the designed low-pass analysis filter. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a particle swarm optimization algorithm. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.Keywords: quadrature mirror filter bank, digital all-pass filter, weighted least squares algorithm, particle swarm optimization
Procedia PDF Downloads 521