Search results for: statistical data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26753

Search results for: statistical data

26243 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach

Authors: Vijay Kr. Yadav, Nilam Rathi

Abstract:

Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.

Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy

Procedia PDF Downloads 256
26242 A Fully Automated New-Fangled VESTAL to Label Vertebrae and Intervertebral Discs

Authors: R. Srinivas, K. V. Ramana

Abstract:

This paper presents a novel method called VESTAL to label vertebrae and inter vertebral discs. Each vertebra has certain statistical features properties. To label vertebrae and discs, a new equation to model the path of spinal cord is derived using statistical properties of the spinal canal. VESTAL uses this equation for labeling vertebrae and discs. For each vertebrae and inter vertebral discs both posterior, interior width, height are measured. The calculated values are compared with real values which are measured using venires calipers and the comparison produced 95% efficiency and accurate results. The VESTAL is applied on 50 patients 350 MR images and obtained 100% accuracy in labeling.

Keywords: spine, vertebrae, inter vertebral disc, labeling, statistics, texture, disc

Procedia PDF Downloads 361
26241 Risks in Forestry Operations, Analysis of Fatal Accidents

Authors: Rino Gubiani, Gianfranco Pergher

Abstract:

The work focused on the statistical analysis of accidents in the forestry sector (2000-2020) in Friuli-Venezia Giulia region, located in the North-East of Italy. The aim of the work was to analyse the evolution of the casualties throughout time and to evaluate possible improvements in the sector. It was shown that even nowadays the rate of accidents in forestry work is higher compared with all the other sectors, including agriculture; moreover, it was highlighted that some accidents remained present throughout the whole analysed range, such as slipping on the soil, being hit by trees and falling down from the plants. The results showed that an increase in forestry exploitation could even increase the total number of accidents, if advanced technological machines, such as cable cranes, would not implemented, given the fact that there is also a significant number of old people (above 50 years old) working in the sector.

Keywords: safety, forestry work, accidents, risk analysis, casualties, statistical analysis

Procedia PDF Downloads 130
26240 Non-Destructive Visual-Statistical Approach to Detect Leaks in Water Mains

Authors: Alaa Al Hawari, Mohammad Khader, Tarek Zayed, Osama Moselhi

Abstract:

In this paper, an effective non-destructive, non-invasive approach for leak detection was proposed. The process relies on analyzing thermal images collected by an IR viewer device that captures thermo-grams. In this study a statistical analysis of the collected thermal images of the ground surface along the expected leak location followed by a visual inspection of the thermo-grams was performed in order to locate the leak. In order to verify the applicability of the proposed approach the predicted leak location from the developed approach was compared with the real leak location. The results showed that the expected leak location was successfully identified with an accuracy of more than 95%.

Keywords: thermography, leakage, water pipelines, thermograms

Procedia PDF Downloads 353
26239 Systematic Identification of Noncoding Cancer Driver Somatic Mutations

Authors: Zohar Manber, Ran Elkon

Abstract:

Accumulation of somatic mutations (SMs) in the genome is a major driving force of cancer development. Most SMs in the tumor's genome are functionally neutral; however, some cause damage to critical processes and provide the tumor with a selective growth advantage (termed cancer driver mutations). Current research on functional significance of SMs is mainly focused on finding alterations in protein coding sequences. However, the exome comprises only 3% of the human genome, and thus, SMs in the noncoding genome significantly outnumber those that map to protein-coding regions. Although our understanding of noncoding driver SMs is very rudimentary, it is likely that disruption of regulatory elements in the genome is an important, yet largely underexplored mechanism by which somatic mutations contribute to cancer development. The expression of most human genes is controlled by multiple enhancers, and therefore, it is conceivable that regulatory SMs are distributed across different enhancers of the same target gene. Yet, to date, most statistical searches for regulatory SMs have considered each regulatory element individually, which may reduce statistical power. The first challenge in considering the cumulative activity of all the enhancers of a gene as a single unit is to map enhancers to their target promoters. Such mapping defines for each gene its set of regulating enhancers (termed "set of regulatory elements" (SRE)). Considering multiple enhancers of each gene as one unit holds great promise for enhancing the identification of driver regulatory SMs. However, the success of this approach is greatly dependent on the availability of comprehensive and accurate enhancer-promoter (E-P) maps. To date, the discovery of driver regulatory SMs has been hindered by insufficient sample sizes and statistical analyses that often considered each regulatory element separately. In this study, we analyzed more than 2,500 whole-genome sequence (WGS) samples provided by The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) in order to identify such driver regulatory SMs. Our analyses took into account the combinatorial aspect of gene regulation by considering all the enhancers that control the same target gene as one unit, based on E-P maps from three genomics resources. The identification of candidate driver noncoding SMs is based on their recurrence. We searched for SREs of genes that are "hotspots" for SMs (that is, they accumulate SMs at a significantly elevated rate). To test the statistical significance of recurrence of SMs within a gene's SRE, we used both global and local background mutation rates. Using this approach, we detected - in seven different cancer types - numerous "hotspots" for SMs. To support the functional significance of these recurrent noncoding SMs, we further examined their association with the expression level of their target gene (using gene expression data provided by the ICGC and TCGA for samples that were also analyzed by WGS).

Keywords: cancer genomics, enhancers, noncoding genome, regulatory elements

Procedia PDF Downloads 102
26238 Web-Based Alcohol Prevention among Iranian Medical University Students: A Randomized Control Trail

Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh

Abstract:

Background: E-interventions as a universal approach to prevent a high-risk behavior, such as alcohol drinking. This study was conducted to evaluate web-based alcohol drinking preventative intervention efficiency among medical university students in Iran. Methods: Overall, 150 freshman and sophomore male student’s college students participated in this study as intervention and control group. This was a longitudinal randomized pre- and post-test series control group design panel study to implement a behavior modification based intervention to alcohol drinking prevention among college students. Cross-tabulation, t-test, repeated measures, and GEE by using SPSS statistical package, version 21 was used for the statistical analysis. The participants were followed up for 6 months with data collection scheduled at baseline, 3 and 6 months. The primary outcomes are attitude, self-control, and sensation seeking. Furthermore, the secondary outcome is comparing alcohol drinking among the study groups. Results: It was found significant reduce in average response for an attitude towards alcohol drinking and sensation seeking among intervention group (P < 0.05). But after intervention not significant difference between intervention and control group of improve self-control and reduce alcohol drinking (P > 0.05). Conclusion: Our intervention has been accompanied with reducing alcohol use rate. These findings indicate that e-intervention may be effectiveness approach to address the alcohol prevention among college students.

Keywords: e-interventions, alcohol drinking, students, Iran

Procedia PDF Downloads 413
26237 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 80
26236 128-Multidetector CT for Assessment of Optimal Depth of Electrode Array Insertion in Cochlear Implant Operations

Authors: Amina Sultan, Mohamed Ghonim, Eman Oweida, Aya Abdelaziz

Abstract:

Objective: To assess the diagnostic reliability of multi-detector CT in pre and post-operative evaluation of cochlear implant candidates. Material and Methods: The study includes 40 patients (18 males and 22 females); mean age 5.6 years. They were classified into two groups: Group A (20 patients): cochlear implant device was Nucleus-22 and Group B (20 patients): the device was MED-EL. Cochlear length (CL) and cochlear height (CH) were measured pre-operatively by 128-multidetector CT. Electrode length (EL) and insertion depth angle (α) were measured post-operatively by MDCT. Results: For Group A mean CL was 9.1 mm ± 0.4 SD; mean CH was 4.1 ± 0.3 SD; mean EL was 18 ± 2.7 SD; mean α angle was 299.05 ± 37 SD. Significant statistical correlation (P < 0.05) was found between preoperative CL and post-operative EL (r²=0.6); as well as EL and α angle (r²=0.7). Group B's mean CL was 9.1 mm ± 0.3 SD; mean CH was 4.1 ± 0.4 SD; mean EL was 27 ± 2.1 SD; mean α angle was 287.6 ± 41.7 SD. Significant statistical correlation was found between CL and EL (r²= 0.6) and α angle (r²=0.5). Also, a strong correlation was found between EL and α angle (r²=0.8). Significant statistical difference was detected between the two devices as regards to the electrode length. Conclusion: Multidetector CT is a reliable tool for preoperative planning and post-operative evaluation of the outcomes of cochlear implant operations. Cochlear length is a valuable prognostic parameter for prediction of the depth of electrode array insertion which can influence criteria of device selection.

Keywords: angle of insertion (α angle), cochlear implant (CI), cochlear length (CL), Multidetector Computed Tomography (MDCT)

Procedia PDF Downloads 191
26235 The Role of Social Infrastructure on Entrepreneurship Performance

Authors: Obasan Kehinde

Abstract:

Social Infrastructure such as transport, telecommunications, energy, water, health, housing, and educational facilities have become part and parcel of human existence and have since been seen as prerequisite for the development of any economy. It is difficult to imagine a modern world without these facilities. Using a survey research design, data was gathered through a multi-stage sampling and a random sampling method from a total of 117 respondents, the study investigates the role of social infrastructure on the performance of entrepreneurs drawn from 10 Local Government Areas across two carefully selected states in the South-West, Nigeria. The data was analyzed using a descriptive statistical analysis and a t-test. The result shows that the impact of social infrastructure on entrepreneur performance is significant at 0.00 level of significant. Thus, this study recommends that entrepreneurs should take note of the social infrastructures available in the environment for the purpose of citing business in order to reduce the cost of production and other business costs.

Keywords: social infrastructure, entrepreneur performance, entrepreneurship, business

Procedia PDF Downloads 397
26234 Recent Advances in Data Warehouse

Authors: Fahad Hanash Alzahrani

Abstract:

This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation.

Keywords: data warehouse, data mining, knowledge discovery in databases, on-line analytical processing

Procedia PDF Downloads 402
26233 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: quasigeoid, gravity aomalies, covariance, GGM

Procedia PDF Downloads 136
26232 A Clustering-Based Approach for Weblog Data Cleaning

Authors: Amine Ganibardi, Cherif Arab Ali

Abstract:

This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.

Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data

Procedia PDF Downloads 168
26231 Understanding the Damage Evolution and the Risk of Failure of Pyrrhotite Containing Concrete Foundations

Authors: Marisa Chrysochoou, James Mahoney, Kay Wille

Abstract:

Pyrrhotite is an iron-sulfide mineral which releases sulfuric acid when exposed to water and oxygen. The presence of this mineral in concrete foundations across Connecticut and Massachusetts in the US is causing in some cases premature failure. This has resulted in a devastating crisis for all parties affected by this type of failure which can take up to 15-25 years before internal damage becomes visible on the surface. This study shares laboratory results aimed to investigate the fundamental mechanisms of pyrrhotite reaction and to further the understanding of its deterioration kinetics within concrete. This includes the following analyses: total sulfur, wavelength dispersive X-ray fluorescence, expansion, reaction rate combined with ion-chromatography, as well as damage evolution using electro-chemical acceleration. This information is coupled to a statistical analysis of over 150 analyzed concrete foundations. Those samples were obtained and process using a developed and validated sampling method that is minimally invasive to the foundation in use, provides representative samples of the concrete matrix across the entire foundation, and is time and cost-efficient. The processed samples were then analyzed using a developed modular testing method based on total sulfur and wavelength dispersive X-ray fluorescence analysis to quantify the amount of pyrrhotite. As part of the statistical analysis the results were grouped into the following three categories: no damage observed and no pyrrhotite detected, no damage observed and pyrrhotite detected and damaged observed and pyrrhotite detected. As expected, a strong correlation between amount of pyrrhotite, age of the concrete and damage is observed. Information from the laboratory investigation and from the statistical analysis of field samples will aid in forming a scientific basis to support the decision process towards sustainable financial and administrative solutions by state and local stakeholders.

Keywords: concrete, pyrrhotite, risk of failure, statistical analysis

Procedia PDF Downloads 66
26230 Using Multi-Level Analysis to Identify Future Trends in Small Device Digital Communication Examinations

Authors: Mark A. Spooner

Abstract:

The growth of technological advances in the digital communications industry has dictated the way forensic examination laboratories receive, analyze, and report on digital evidence. This study looks at the trends in a medium sized digital forensics lab that examines small communications devices (i.e., cellular telephones, tablets, thumb drives, etc.) over the past five years. As law enforcement and homeland security organizations budgets shrink, many agencies are being asked to perform more examinations with less resources available. Using multi-level statistical analysis using five years of examination data, this research shows the increasing technological demand trend. The research then extrapolates the current data into the model created and finds a continued exponential growth curve of said demands is well within the parameters defined earlier on in the research.

Keywords: digital forensics, forensic examination, small device, trends

Procedia PDF Downloads 198
26229 Patient Agitation and Violence in Medical-Surgical Settings at BronxCare Hospital, Before and During COVID-19 Pandemic; A Retrospective Chart Review

Authors: Soroush Pakniyat-Jahromi, Jessica Bucciarelli, Souparno Mitra, Neda Motamedi, Ralph Amazan, Samuel Rothman, Jose Tiburcio, Douglas Reich, Vicente Liz

Abstract:

Violence is defined as an act of physical force that is intended to cause harm and may lead to physical and/or psychological damage. Violence toward healthcare workers (HCWs) is more common in psychiatric settings, emergency departments, and nursing homes; however, healthcare workers in medical setting are not spared from such events. Workplace violence has a huge burden in the healthcare industry and has a major impact on the physical and mental wellbeing of staff. The purpose of this study is to compare the prevalence of patient agitation and violence in medical-surgical settings in BronxCare Hospital (BCH) Bronx, New York, one year before and during the COVID-19 pandemic. Data collection occurred between June 2021 and August 2021, while the sampling time was from 2019 to 2021. The data were separated into two separate time categories: pre-COVID-19 (03/2019-03/2020) and COVID-19 (03/2020-03/2021). We created frequency tables for 19 variables. We used a chi-square test to determine a variable's statistical significance. We tested all variables against “restraint type”, determining if a patient was violent or became violent enough to restrain. The restraint types were “chemical”, “physical”, or both. This analysis was also used to determine if there was a statistical difference between the pre-COVID-19 and COVID-19 timeframes. Our data shows that there was an increase in incidents of violence in COVID-19 era (03/2020-03/2021), with total of 194 (62.8%) reported events, compared to pre COVID-19 era (03/2019-03/2020) with 115 (37.2%) events (p: 0.01). Our final analysis, completed using a chi-square test, determined the difference in violence in patients between pre-COVID-19 and COVID-19 era. We then tested the violence marker against restraint type. The result was statistically significant (p: 0.01). This is the first paper to systematically review the prevalence of violence in medical-surgical units in a hospital in New York, pre COVID-19 and during the COVID-19 era. Our data is in line with the global trend of increased prevalence of patient agitation and violence in medical settings during the COVID-19 pandemic. Violence and its management is a challenge in healthcare settings, and the COVID-19 pandemic has brought to bear a complexity of circumstances, which may have increased its incidence. It is important to identify and teach healthcare workers the best preventive approaches in dealing with patient agitation, to decrease the number of restraints in medical settings, and to create a less restrictive environment to deliver care.

Keywords: COVID-19 pandemic, patient agitation, restraints, violence

Procedia PDF Downloads 143
26228 How to Use Big Data in Logistics Issues

Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy

Abstract:

Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.

Keywords: big data, logistics, operational efficiency, risk management

Procedia PDF Downloads 639
26227 Statistical Estimation of Ionospheric Energy Dissipation Using ØStgaard's Empirical Relation

Authors: M. A. Ahmadu, S. S. Rabia

Abstract:

During the past few decades, energy dissipation in the ionosphere resulting from the geomagnetic activity has caused an increasing number of major disruptions of important power and communication services, malfunctions and loss of expensive facilities. Here, the electron precipitation energy, w(ep) and joule heating energy, w(jh) was used in the computation of this dissipation using Østgaard’s empirical relation from hourly geomagnetic indices of 2012, under the assumption that the magnetosphere does not store any energy, so that at the beginning of the activity t1=0 and end at t2=t, the statistical results obtained show that ionospheric dissipation varies month to month, day to day and hour to hour and estimated with a value ~3.6 w(ep), which is in agreement with experimental result.

Keywords: Ostgaard's, ionospheric dissipation, joule heating, electron precipitation, geomagnetic indices, empirical relation

Procedia PDF Downloads 292
26226 Experimental Assessment of Alkaline Leaching of Lepidolite

Authors: António Fiúza, Aurora Futuro, Joana Monteiro, Joaquim Góis

Abstract:

Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, which is necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques minimize the laboratory effort required by conventional approaches and allow phenomenological comprehension.

Keywords: alkaline leaching, lithium, research design, statistical interpretation

Procedia PDF Downloads 95
26225 Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields

Authors: Bing-Bing E. Goh

Abstract:

Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management.

Keywords: winter wheat, remote sensing, crop monitoring, multivariate analysis

Procedia PDF Downloads 159
26224 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam

Authors: Sahand Golmohammadi, Sana Hosseini Shirazi

Abstract:

Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the rock quality designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and stress reduction factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the rock engineering system (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.

Keywords: Q-system, rock engineering system, statistical analysis, rock mass, tunnel

Procedia PDF Downloads 70
26223 Multivariate Analysis of Spectroscopic Data for Agriculture Applications

Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman

Abstract:

In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.

Keywords: Brown rot disease, NIR spectroscopy, potato, random forest

Procedia PDF Downloads 189
26222 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 19
26221 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 95
26220 Comparison of Safety Factor Evaluation Methods for Buckling of High Strength Steel Welded Box Section Columns

Authors: Balazs Somodi, Balazs Kovesdi

Abstract:

In the research praxis of civil engineering the statistical evaluation of experimental and numerical investigations is an essential task in order to compare the experimental and numerical resistances of a specific structural problem with the proposed resistances of the standards. However, in the standards and in the international literature there are several different safety factor evaluation methods that can be used to check the necessary safety level (e.g.: 5% quantile level, 2.3% quantile level, 1‰ quantile level, γM partial safety factor, γM* partial safety factor, β reliability index). Moreover, in the international literature different calculation methods could be found even for the same safety factor as well. In the present study the flexural buckling resistance of high strength steel (HSS) welded closed sections are analyzed. The authors investigated the flexural buckling resistances of the analyzed columns by laboratory experiments. In the present study the safety levels of the obtained experimental resistances are calculated based on several safety approaches and compared with the EN 1990. The results of the different safety approaches are compared and evaluated. Based on the evaluation tendencies are identified and the differences between the statistical evaluation methods are explained.

Keywords: flexural buckling, high strength steel, partial safety factor, statistical evaluation

Procedia PDF Downloads 159
26219 Measuring Flood Risk concerning with the Flood Protection Embankment in Big Flooding Events of Dhaka Metropolitan Zone

Authors: Marju Ben Sayed, Shigeko Haruyama

Abstract:

Among all kinds of natural disaster, the flood is a common feature in rapidly urbanizing Dhaka city. In this research, assessment of flood risk of Dhaka metropolitan area has been investigated by using an integrated approach of GIS, remote sensing and socio-economic data. The purpose of the study is to measure the flooding risk concerning with the flood protection embankment in big flooding events (1988, 1998 and 2004) and urbanization of Dhaka metropolitan zone. In this research, we considered the Dhaka city into two parts; East Dhaka (outside the flood protection embankment) and West Dhaka (inside the flood protection embankment). Using statistical data, we explored the socio-economic status of the study area population by comparing the density of population, land price and income level. We have drawn the cross section profile of the flood protection embankment into three different points for realizing the flooding risk in the study area, especially in the big flooding year (1988, 1998 and 2004). According to the physical condition of the study area, the land use/land cover map has been classified into five classes. Comparing with each land cover unit, historical weather station data and the socio-economic data, the flooding risk has been evaluated. Moreover, we compared between DEM data and each land cover units to find out the relationship with flood. It is expected that, this study could contribute to effective flood forecasting, relief and emergency management for a future flood event in Dhaka city.

Keywords: land use, land cover change, socio-economic, Dhaka city, GIS, flood

Procedia PDF Downloads 295
26218 Explore Urban Spatial Density with Boltzmann Statistical Distribution

Authors: Jianjia Wang, Tong Yu, Haoran Zhu, Kun Liu, Jinwei Hao

Abstract:

The underlying pattern in the modern city is agglomeration. To some degree, the distribution of urban spatial density can be used to describe the status of this assemblage. There are three intrinsic characteristics to measure urban spatial density, namely, Floor Area Ratio (FAR), Building Coverage Ratio (BCR), and Average Storeys (AS). But the underlying mechanism that contributes to these quantities is still vague in the statistical urban study. In this paper, we explore the corresponding extrinsic factors related to spatial density. These factors can further provide the potential influence on the intrinsic quantities. Here, we take Shanghai Inner Ring Area and Manhattan in New York as examples to analyse the potential impacts on urban spatial density with six selected extrinsic elements. Ebery single factor presents the correlation to the spatial distribution, but the overall global impact of all is still implicit. To handle this issue, we attempt to develop the Boltzmann statistical model to explicitly explain the mechanism behind that. We derive a corresponding novel quantity, called capacity, to measure the global effects of all other extrinsic factors to the three intrinsic characteristics. The distribution of capacity presents a similar pattern to real measurements. This reveals the nonlinear influence on the multi-factor relations to the urban spatial density in agglomeration.

Keywords: urban spatial density, Boltzmann statistics, multi-factor correlation, spatial distribution

Procedia PDF Downloads 148
26217 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable

Authors: Xinyuan Y. Song, Kai Kang

Abstract:

Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.

Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data

Procedia PDF Downloads 142
26216 Effect of Hydroxy Propyl Methyl Cellulose (HPMC) Coating in Combination with MGSO4 on Some Guava Cultivars

Authors: Muhammad Randhawa, Muhammad Nadeem

Abstract:

Guava (Psidium guajava L.) is a vital source of minerals, vitamins, dietary fiber and antioxidants. Owing to highly perishable nature and proning towards chilling injury, diseases, insect-pests and physical damage the main drawbacks of guava after harvesting, present study was designed. Due to its delicacy in physiology, economic importance, effects of pre and postharvest factors and maturity indices, guava fruits should be given prime importance for good quality attributes. In this study guava fruits were stored at 10°C with 80% relative humidity after treating with different levels of sulphate salt of magnesium followed by dipping in cellulose based edible coating hydroxy propyl methyl cellulose (HPMC). The main objective of this coating was to enhance the shelf life of guava by inhibiting the respiration and also by binding the dissolved solids with salt application. Characterization for quality attributes including physical, physiological and bio chemical analysis was performed after every 7 days interval till the fruit remains edible during the storage period of 4 weeks. Finally, data obtained was subjected to statistical analysis. It was concluded on statistical basis that Surahi variety (treated with 5% MgSO4) showed best storage stability and kept its original quality up to almost 23 days during storage.

Keywords: edible coating, guava cultivars, physicochemical attributes, storage

Procedia PDF Downloads 323
26215 Knowledge and Utilization of Mammography among Undergraduate Female Students in a Nigerian University

Authors: Ali Arazeem Abdullahi, Mariam Seedat-Khan, Bamidele S. Akanni

Abstract:

Background: Like the rest of the world, cancer of the breast is a life-threatening disease to Nigerian women. The utilization of mammography is however very poor among the general population. Whereas, there strong indications that women who engage in the regular screening of breast cancer using mammography are more likely to have a lower risk of developing and dying from advanced breast cancer compared to unscreened women. This study examined knowledge of breast cancer and utilization of mammography among undergraduate female students at the University of Ilorin, Nigeria. Health Belief Model (HBM) was deployed to guide the conduct of the study. Method: Self-administered questionnaire was used to collect data from 292 undergraduate female students from the faculties of Social and Management Sciences of the University. A simple random sampling technique was used to select the respondents. Data was analyzed using both descriptive and inferential statistics. Results: The study found that apart from high knowledge of breast cancer and mammography, perceived threat, perceived susceptibility and perceived seriousness of breast cancer were equally high. However, the uptake of mammography was very poor largely due to perceived barriers including being single and young and poor history of breast cancer in families (cues to action). The test of hypotheses showed that there is a weak relationship of about 6.8% between knowledge of breast cancer and utilization of mammography (p-value= 0.244) at 0.05 level of significance. However, 64.4% of the respondents were willing to utilize mammography in the future if the opportunity arises. While the study found a significant statistical relationship between the perceived benefits of mammography and its utilization among the respondents, no significant statistical association was found between the socio-demographic characteristics of the respondents and the uptake of mammography. Recommendations: Findings highlight the need for health education interventions to promote breast cancer screening and the utilization mammography, while addressing barriers to the uptake of mammography among female undergraduate students of the University of Ilorin and Nigeria in general.

Keywords: cancer of the breast, mammography, female undergraduate students, health belief model, University of Ilorin

Procedia PDF Downloads 241
26214 Impact of Anthropogenic Climate Change on Hail in Eastern Georgia

Authors: MIkheil Pipia, Nazibrola Beglarashvili

Abstract:

Modern anthropogenic changes in climate can affect the microphysical and electrical properties of clouds, such as the conditions that cause intense hail and lightning. At the same time, the effect of the impact largely depends on the physical-geographical conditions and the ecological situation. It should be noted that the growth of anthropogenic pollution in the atmosphere has a significant impact on the dynamics of hail processes. For the statistical analysis of the number of hail days against the background of modern climate change, the average number of hail days at the stations according to decades was used, which allows to weaken short-term fluctuations and reveal long-term changes. In order to determine the dynamics of hail days in Eastern Georgia, the observation data of some meteorological stations from 1951-2000 were analyzed. In total, the data of 41 meteorological stations of Eastern Georgia about hail for the period of 1961-2018 have been processed.

Keywords: climate, meteorology phenomena, anthropocenic influence, hail

Procedia PDF Downloads 73