Search results for: statistical computing
4434 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce
Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron
Abstract:
This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.Keywords: e-commerce, statistical modeling, regression, empirical research
Procedia PDF Downloads 2264433 A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing
Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah
Abstract:
The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.Keywords: distributed type-2 fuzzy algorithm, image processing, mobile agents, parallel and distributed computing
Procedia PDF Downloads 4294432 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode
Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan
Abstract:
Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.Keywords: cathode spot, vacuum arc discharge, transverse magnetic field, random walk
Procedia PDF Downloads 4344431 Integrated Teaching of Hardware Courses for the Undergraduates of Computer Science and Engineering to Attain Focused Outcomes
Authors: Namrata D. Hiremath, Mahalaxmi Bhille, P. G. Sunitha Hiremath
Abstract:
Computer systems play an integral role in all facets of the engineering profession. This calls for an understanding of the processor-level components of computer systems, their design and operation, and their impact on the overall performance of the systems. Systems users are always in need of faster, more powerful, yet cheaper computer systems. The focus of Computer Science engineering graduates is inclined towards software oriented base. To be an efficient programmer there is a need to understand the role of hardware architecture towards the same. It is essential for the students of Computer Science and Engineering to know the basic building blocks of any computing device and how the digital principles can be used to build them. Hence two courses Digital Electronics of 3 credits, which is associated with lab of 1.5 credits and Computer Organization of 5 credits, were introduced at the sophomore level. Activity was introduced with the objective to teach the hardware concepts to the students of Computer science engineering through structured lab. The students were asked to design and implement a component of a computing device using MultiSim simulation tool and build the same using hardware components. The experience of the activity helped the students to understand the real time applications of the SSI and MSI components. The impact of the activity was evaluated and the performance was measured. The paper explains the achievement of the ABET outcomes a, c and k.Keywords: digital, computer organization, ABET, structured enquiry, course activity
Procedia PDF Downloads 5014430 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics
Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni
Abstract:
The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection
Procedia PDF Downloads 2904429 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing
Procedia PDF Downloads 1284428 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets
Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe
Abstract:
Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.Keywords: biomedical research, genomics, information systems, software
Procedia PDF Downloads 2704427 Investigating Real Ship Accidents with Descriptive Analysis in Turkey
Authors: İsmail Karaca, Ömer Söner
Abstract:
The use of advanced methods has been increasing day by day in the maritime sector, which is one of the sectors least affected by the COVID-19 pandemic. It is aimed to minimize accidents, especially by using advanced methods in the investigation of marine accidents. This research aimed to conduct an exploratory statistical analysis of particular ship accidents in the Transport Safety Investigation Center of Turkey database. 46 ship accidents, which occurred between 2010-2018, have been selected from the database. In addition to the availability of a reliable and comprehensive database, taking advantage of the robust statistical models for investigation is critical to improving the safety of ships. Thus, descriptive analysis has been used in the research to identify causes and conditional factors related to different types of ship accidents. The research outcomes underline the fact that environmental factors and day and night ratio have great influence on ship safety.Keywords: descriptive analysis, maritime industry, maritime safety, ship accident statistics
Procedia PDF Downloads 1394426 Some Statistical Properties of Residual Sea Level along the Coast of Vietnam
Authors: Doan Van Chinh, Bui Thi Kien Trinh
Abstract:
This paper outlines some statistical properties of residual sea level (RSL) at six representative tidal stations located along the coast of Vietnam. It was found that the positive RSL varied on average between 9.82 and 19.96cm and the negative RSL varied on average between -16.62 and -9.02cm. The maximum positive RSL varied on average between 102.8 and 265.5cm with the maximum negative RSL varied on average between -250.4 and -66.4cm. It is seen that the biggest positive RSL ere appeared in the summer months and the biggest negative RSL ere appeared in the winter months. The cumulative frequency of RSL less than 50 cm occurred between 95 and 99% of the times while the frequency of RSL higher than 100 cm accounted for between 0.01 and 0.2%. It also was found that the cumulative frequency of duration of RSL less than 24 hours occurred between 90 and 99% while the frequency of duration longer than 72 hours was in the order of 0.1 and 1%.Keywords: coast of Vietnam, residual sea level, residual water, surge, cumulative frequency
Procedia PDF Downloads 2904425 Controlling the Process of a Chicken Dressing Plant through Statistical Process Control
Authors: Jasper Kevin C. Dionisio, Denise Mae M. Unsay
Abstract:
In a manufacturing firm, controlling the process ensures that optimum efficiency, productivity, and quality in an organization are achieved. An operation with no standardized procedure yields a poor productivity, inefficiency, and an out of control process. This study focuses on controlling the small intestine processing of a chicken dressing plant through the use of Statistical Process Control (SPC). Since the operation does not employ a standard procedure and does not have an established standard time, the process through the assessment of the observed time of the overall operation of small intestine processing, through the use of X-Bar R Control Chart, is found to be out of control. In the solution of this problem, the researchers conduct a motion and time study aiming to establish a standard procedure for the operation. The normal operator was picked through the use of Westinghouse Rating System. Instead of utilizing the traditional motion and time study, the researchers used the X-Bar R Control Chart in determining the process average of the process that is used for establishing the standard time. The observed time of the normal operator was noted and plotted to the X-Bar R Control Chart. Out of control points that are due to assignable cause were removed and the process average, or the average time the normal operator conducted the process, which was already in control and free form any outliers, was obtained. The process average was then used in determining the standard time of small intestine processing. As a recommendation, the researchers suggest the implementation of the standard time established which is with consonance to the standard procedure which was adopted from the normal operator. With that recommendation, the whole operation will induce a 45.54 % increase in their productivity.Keywords: motion and time study, process controlling, statistical process control, X-Bar R Control chart
Procedia PDF Downloads 2174424 An Integrated Fuzzy Inference System and Technique for Order of Preference by Similarity to Ideal Solution Approach for Evaluation of Lean Healthcare Systems
Authors: Aydin M. Torkabadi, Ehsan Pourjavad
Abstract:
A decade after the introduction of Lean in Saskatchewan’s public healthcare system, its effectiveness remains a controversial subject among health researchers, workers, managers, and politicians. Therefore, developing a framework to quantitatively assess the Lean achievements is significant. This study investigates the success of initiatives across Saskatchewan health regions by recognizing the Lean healthcare criteria, measuring the success levels, comparing the regions, and identifying the areas for improvements. This study proposes an integrated intelligent computing approach by applying Fuzzy Inference System (FIS) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FIS is used as an efficient approach to assess the Lean healthcare criteria, and TOPSIS is applied for ranking the values in regards to the level of leanness. Due to the innate uncertainty in decision maker judgments on criteria, principals of the fuzzy theory are applied. Finally, FIS-TOPSIS was established as an efficient technique in determining the lean merit in healthcare systems.Keywords: lean healthcare, intelligent computing, fuzzy inference system, healthcare evaluation, technique for order of preference by similarity to ideal solution, multi-criteria decision making, MCDM
Procedia PDF Downloads 1624423 Smokeless Tobacco Oral Manifestation and Inflammatory Biomarkers in Saliva
Authors: Sintija Miļuna, Ričards Melderis, Loreta Briuka, Dagnija Rostoka, Ingus Skadiņš, Juta Kroiča
Abstract:
Objectives Smokeless tobacco products in Latvia become more available and favorable to young adults, especially students and athletes like hockey and floorball players. The aim of the research was to detect visual mucosal changes in the oral cavity in smokeless tobacco users and to evaluate pro - inflammatory and anti - inflammatory cytokine (IL-6, IL-1, IL-8, TNF Alpha) levels in saliva from smokeless tobacco users. Methods A smokeless tobacco group (n=10) and a control group (non-tobacco users) (n=10) were intraorally examined for oral lesions and 5 ml of saliva were collected. Saliva was analysed for Il-6, IL-1, Il-8, TNF Alpha using ELISA Sigma-Aldrich. For statistical analysis IBM Statistics 27 was used (Mann - Whitney U test, Spearman’s Rank Correlation coefficient). This research was approved by the Ethics Committee of Rīga Stradiņš University No.22/28.01.2016. This research has been developed with financing from the European Social Fund and Latvian state budget within the project no. 8.2.2.0/20/I/004 “Support for involving doctoral students in scientific research and studies” at Rīga Stradiņš University. Results IL-1, IL-6, IL-8, TNF Alpha levels were higher in the smokeless tobacco group (IL-1 83.34 pg/ml vs. 74.26 pg/ml; IL-6 195.10 pg/ml vs. 6.16 pg/ml; IL-8 736.34 pg/ml vs. 285.26 pg/ml; TNF Alpha 489.27 pg/ml vs. 200.9 pg/ml), but statistically there is no difference between control group and smokeless tobacco group (IL1 p=0.190, IL6 p=0.052, IL8 p=0.165, TNF alpha p=0.089). There was statistical correlation between IL1 and IL6 (p=0.023), IL6 and TNF alpha (p=0.028), IL8 and IL6 (p=0.005). Conclusions White localized lesions were detected in places where smokeless tobacco users placed sachets. There is a statistical correlation between IL6 and IL1 levels, IL6 and TNF alpha levels, IL8 and IL6 levels in saliva. There are no differences in the inflammatory cytokine levels between control group and smokeless tobacco group.Keywords: smokeless tobacco, Snus, inflammatory biomarkers, oral lesions, oral pathology
Procedia PDF Downloads 1394422 Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors
Authors: João Madureira, Ricardo Lagido, Inês Sousa, Fraunhofer Portugal
Abstract:
Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU.Keywords: inertial measurement unit (IMU), global positioning system (GPS), smartphone, surfing performance
Procedia PDF Downloads 4014421 The Impact of Environmental Dynamism on Strategic Outsourcing Success
Authors: Mohamad Ghozali Hassan, Abdul Aziz Othman, Mohd Azril Ismail
Abstract:
Adapting quickly to environmental dynamism is essential for an organization to develop outsourcing strategic and management in order to sustain competitive advantage. This research used the Partial Least Squares Structural Equation Modeling (PLS-SEM) tool to investigate the factors of environmental dynamism impact on the strategic outsourcing success among electrical and electronic manufacturing industries in outsourcing management. Statistical results confirm that the inclusion of customer demand, technological change, and competition level as a new combination concept of environmental dynamism, has positive effects on outsourcing success. Additionally, this research demonstrates the acceptability of PLS-SEM as a statistical analysis to furnish a better understanding of environmental dynamism in outsourcing management in Malaysia. A practical finding contributes to academics and practitioners in the field of outsourcing management.Keywords: environmental dynamism, customer demand, technological change, competition level, outsourcing success
Procedia PDF Downloads 5014420 Faster Pedestrian Recognition Using Deformable Part Models
Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia
Abstract:
Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time
Procedia PDF Downloads 2814419 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation
Authors: Abdal-Hafeez Alhussein
Abstract:
Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.Keywords: artificial intelligence, information technology, automation, scalability
Procedia PDF Downloads 174418 Predicting National Football League (NFL) Match with Score-Based System
Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor
Abstract:
This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.Keywords: game prediction, NFL, football, artificial neural network
Procedia PDF Downloads 844417 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows
Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang
Abstract:
We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis
Procedia PDF Downloads 464416 Statistical Optimization and Production of Rhamnolipid by P. aeruginosa PAO1 Using Prickly Pear Peel as a Carbon Source
Authors: Mostafa M. Abo Elsoud, Heba I. Elkhouly, Nagwa M. Sidkey
Abstract:
Production of rhamnolipids by Pseudomonas aeruginosa has attracted a growing interest during the last few decades due to its high productivity compared with other microorganisms. In the current work, rhamnolipids production by P. aeruginosa PAO1 was statistically modeled using Taguchi orthogonal array, numerically optimized and validated. Prickly Pear Peel (Opuntia ficus-indica) has been used as a carbon source for production of rhamnolipid. Finally, the optimum conditions for rhamnolipid production were applied in 5L working volume bioreactors at different aerations, agitation and controlled pH for maximum rhamnolipid production. In addition, kinetic studies of rhamnolipids production have been reported. At the end of the batch bioreactor optimization process, rhamnolipids production by P. aeruginosa PAO1 has reached the worldwide levels and can be applied for its industrial production.Keywords: rhamnolipids, pseudomonas aeruginosa, statistical optimization, tagushi, opuntia ficus-indica
Procedia PDF Downloads 1794415 Factors Influencing the Enjoyment and Performance of Students in Statistics Service Courses: A Mixed-Method Study
Authors: Wilma Coetzee
Abstract:
Statistics lecturers experience that many students who are taking a service course in statistics do not like statistics. Students in these courses tend to struggle and do not perform well. This research takes a look at the student’s perspective, with the aim to determine how to change the teaching of statistics so that students will enjoy it more and perform better. Questionnaires were used to determine the perspectives of first year service statistics students at a South African university. Factors addressed included motivation to study, attitude toward statistics, statistical anxiety, mathematical abilities and tendency to procrastinate. Logistic regression was used to determine what contributes to students performing badly in statistics. The results show that the factors that contribute the most to students performing badly are: statistical anxiety, not being motivated and having had mathematical literacy instead of mathematics in secondary school. Two open ended questions were included in the questionnaire: 'I will enjoy statistics more if…' and 'I will perform better in statistics if…'. The answers to these questions were analyzed using qualitative methods. Frequent themes were identified for each of the questions. A simulation study incorporating bootstrapping was done to determine the saturation of the themes. The majority of the students indicated that they would perform better in statistics if they studied more, managed their time better, had a flare for mathematics and if the lecturer was able to explain difficult concepts better. They also want more active learning. To ensure that students enjoy statistics more, they want an active learning experience. They want fun activities, more interaction with the lecturer and with one another, more computer based problems, and more challenges. They want a better understanding of the subject, want to understand the relevance of statistics to their future career and want excellent lecturers. These findings can be used to direct the improvement of the tuition of statistics.Keywords: active learning, performance in statistics, statistical anxiety, statistics education
Procedia PDF Downloads 1474414 Time-Domain Analysis of Pulse Parameters Effects on Crosstalk in High-Speed Circuits
Authors: Loubna Tani, Nabih Elouzzani
Abstract:
Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in high-speed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information.Keywords: multiconductor transmission line, crosstalk, finite difference time domain (FDTD), printed-circuit board (PCB), rise time, statistical analysis
Procedia PDF Downloads 4334413 An Investigation into the Correlation between Music Preferences and Emotional Regulation in Military Cadets
Authors: Chiu-Pin Wei
Abstract:
This research aims to explore the impact of music preferences on the emotional well-being of military academy students, recognizing the potential long-term implications for their high-stress careers post-graduation. Given the significance of positive emotion regulation in military personnel, this study focuses on understanding the types of music preferred by military cadets and analyzing how these preferences correlate with their emotional states. The study employs a quantitative approach, utilizing the Music Category Scale and Mood Scale to collect data. Statistical tools, such as Statistical Product and Service Solutions (SPSS), are employed for inferential analysis, including t-tests for emotional responses to instrumental and vocal music, one-way variance analysis for different demographic factors (grades, genders, and music listening frequencies), and Pearson's correlation to examine the relationship between music preferences and moods of military students.Keywords: music preference, emotional regulation, military academic students, SPASS
Procedia PDF Downloads 694412 Effective Nutrition Label Use on Smartphones
Authors: Vladimir Kulyukin, Tanwir Zaman, Sarat Kiran Andhavarapu
Abstract:
Research on nutrition label use identifies four factors that impede comprehension and retention of nutrition information by consumers: label’s location on the package, presentation of information within the label, label’s surface size, and surrounding visual clutter. In this paper, a system is presented that makes nutrition label use more effective for nutrition information comprehension and retention. The system’s front end is a smartphone application. The system’s back end is a four node Linux cluster for image recognition and data storage. Image frames captured on the smartphone are sent to the back end for skewed or aligned barcode recognition. When barcodes are recognized, corresponding nutrition labels are retrieved from a cloud database and presented to the user on the smartphone’s touchscreen. Each displayed nutrition label is positioned centrally on the touchscreen with no surrounding visual clutter. Wikipedia links to important nutrition terms are embedded to improve comprehension and retention of nutrition information. Standard touch gestures (e.g., zoom in/out) available on mainstream smartphones are used to manipulate the label’s surface size. The nutrition label database currently includes 200,000 nutrition labels compiled from public web sites by a custom crawler. Stress test experiments with the node cluster are presented. Implications for proactive nutrition management and food policy are discussed.Keywords: mobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning
Procedia PDF Downloads 3734411 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 4644410 Efficient Internal Generator Based on Random Selection of an Elliptic Curve
Authors: Mustapha Benssalah, Mustapha Djeddou, Karim Drouiche
Abstract:
The random number generation (RNG) presents a significant importance for the security and the privacy of numerous applications, such as RFID technology and smart cards. Since, the quality of the generated bit sequences is paramount that a weak internal generator for example, can directly cause the entire application to be insecure, and thus it makes no sense to employ strong algorithms for the application. In this paper, we propose a new pseudo random number generator (PRNG), suitable for cryptosystems ECC-based, constructed by randomly selecting points from several elliptic curves randomly selected. The main contribution of this work is the increasing of the generator internal states by extending the set of its output realizations to several curves auto-selected. The quality and the statistical characteristics of the proposed PRNG are validated using the Chi-square goodness of fit test and the empirical Special Publication 800-22 statistical test suite issued by NIST.Keywords: PRNG, security, cryptosystem, ECC
Procedia PDF Downloads 4454409 Context-Aware Alert Method in Hajj Pilgrim Location-Based Tracking System
Authors: Syarif Hidayat
Abstract:
As millions of people with different backgrounds perform hajj every year in Saudi Arabia, it brings out several problems. Missing people is among many crucial problems need to be encountered. Some people might have had insufficient knowledge of using tracking system equipment. Other might become a victim of an accident, lose consciousness, or even died, prohibiting them to perform certain activity. For those reasons, people could not send proper SOS message. The major contribution of this paper is the application of the diverse alert method in pilgrims tracking system. It offers a simple yet robust solution to send SOS message by pilgrims during Hajj. Knowledge of context aware computing is assumed herein. This study presents four methods that could be utilized by pilgrims to send SOS. The first method is simple mobile application contains only a button. The second method is based on behavior analysis based off GPS location movement anomaly. The third method is by introducing pressing pattern to smartwatch physical button as a panic button. The fourth method is by identifying certain accelerometer pattern recognition as a sign of emergency situations. Presented method in this paper would be an important part of pilgrims tracking system. The discussion provided here includes easy to use design whilst maintaining tracking accuracy, privacy, and security of its users.Keywords: context aware computing, emergency alert system, GPS, hajj pilgrim tracking, location-based services
Procedia PDF Downloads 2164408 Soil Salinity from Wastewater Irrigation in Urban Greenery
Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton
Abstract:
The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities
Procedia PDF Downloads 1624407 Educational Knowledge Transfer in Indigenous Mexican Areas Using Cloud Computing
Authors: L. R. Valencia Pérez, J. M. Peña Aguilar, A. Lamadrid Álvarez, A. Pastrana Palma, H. F. Valencia Pérez, M. Vivanco Vargas
Abstract:
This work proposes a Cooperation-Competitive (Coopetitive) approach that allows coordinated work among the Secretary of Public Education (SEP), the Autonomous University of Querétaro (UAQ) and government funds from National Council for Science and Technology (CONACYT) or some other international organizations. To work on an overall knowledge transfer strategy with e-learning over the Cloud, where experts in junior high and high school education, working in multidisciplinary teams, perform analysis, evaluation, design, production, validation and knowledge transfer at large scale using a Cloud Computing platform. Allowing teachers and students to have all the information required to ensure a homologated nationally knowledge of topics such as mathematics, statistics, chemistry, history, ethics, civism, etc. This work will start with a pilot test in Spanish and initially in two regional dialects Otomí and Náhuatl. Otomí has more than 285,000 speaking indigenes in Queretaro and Mexico´s central region. Náhuatl is number one indigenous dialect spoken in Mexico with more than 1,550,000 indigenes. The phase one of the project takes into account negotiations with indigenous tribes from different regions, and the Information and Communication technologies to deliver the knowledge to the indigenous schools in their native dialect. The methodology includes the following main milestones: Identification of the indigenous areas where Otomí and Náhuatl are the spoken dialects, research with the SEP the location of actual indigenous schools, analysis and inventory or current schools conditions, negotiation with tribe chiefs, analysis of the technological communication requirements to reach the indigenous communities, identification and inventory of local teachers technology knowledge, selection of a pilot topic, analysis of actual student competence with traditional education system, identification of local translators, design of the e-learning platform, design of the multimedia resources and storage strategy for “Cloud Computing”, translation of the topic to both dialects, Indigenous teachers training, pilot test, course release, project follow up, analysis of student requirements for the new technological platform, definition of a new and improved proposal with greater reach in topics and regions. Importance of phase one of the project is multiple, it includes the proposal of a working technological scheme, focusing in the cultural impact in Mexico so that indigenous tribes can improve their knowledge about new forms of crop improvement, home storage technologies, proven home remedies for common diseases, ways of preparing foods containing major nutrients, disclose strengths and weaknesses of each region, communicating through cloud computing platforms offering regional products and opening communication spaces for inter-indigenous cultural exchange.Keywords: Mexicans indigenous tribes, education, knowledge transfer, cloud computing, otomi, Náhuatl, language
Procedia PDF Downloads 4054406 Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models
Authors: Swetha Priya Darshini Thammadi, Sateesh Kumar Pisini, Sanjay Kumar Shukla
Abstract:
Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM2.5, while the AERMOD dispersion model has been used to account for missing sources of PM2.5 in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM2.5 pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests.Keywords: CMB, GIS, AERMOD, PM₂.₅, fugitive, emission inventory
Procedia PDF Downloads 3404405 A Statistical Study on Young UAE Driver’s Behavior towards Road Safety
Authors: Sadia Afroza, Rakiba Rouf
Abstract:
Road safety and associated behaviors have received significant attention in recent years, reflecting general public concern. This paper portrays a statistical scenario of the young drivers in UAE with emphasis on various concern points of young driver’s behavior and license issuance. Although there are many factors contributing to road accidents, statistically it is evident that age plays a major role in road accidents. Despite ensuring strict road safety laws enforced by the UAE government, there is a staggering correlation among road accidents and young driver’s at UAE. However, private organizations like BMW and RoadSafetyUAE have extended its support on conducting surveys on driver’s behavior with an aim to ensure road safety. Various strategies such as road safety law enforcement, license issuance, adapting new technologies like safety cameras and raising awareness can be implemented to improve the road safety concerns among young drivers.Keywords: driving behavior, Graduated Driver Licensing System (GLDS), road safety, UAE drivers, young drivers
Procedia PDF Downloads 261