Search results for: solid alcohol biofuel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2892

Search results for: solid alcohol biofuel

2382 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions

Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani

Abstract:

Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.

Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration

Procedia PDF Downloads 341
2381 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets

Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar

Abstract:

Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).

Keywords: coupled effect, heat transfer, sink, solid rocket motors, source

Procedia PDF Downloads 218
2380 Solid Waste and Its Impact on the Human Health

Authors: Waseem Akram, Hafiz Azhar Ali Khan

Abstract:

Unplanned urbanization together with change in life from simple to more technologically advanced style with flow of rural masses to urban areas has played a vital role in pilling loads of solid wastes in our environment. The cities and towns have expanded beyond boundaries. Even the uncontrolled population expansion has caused the overall environmental burden. Thus, today the indifference remains as one of the biggest trash that has come up due to the non-responsive behavior of the people. Everyday huge amount of solid waste is thrown in the streets, on the roads, parks, and in all those places that are frequently and often visited by the human beings. This behavior based response in many countries of the world has led to serious health concerns and environmental issues. Over 80% of our products that are sold in the market are packed in plastic bags. None of the bags are later recycled but simply become a permanent environment concern that flies, choke lines or are burnt and release toxic gases in the environment or form dumps of heaps. Lack of classification of the daily waste generated from houses and other places lead to worst clogging of the sewerage lines and formation of ponding areas which ultimately favor vector borne disease and sometimes become a cause of transmission of polio virus. Solid waste heaps were checked at different places of the cities. All of the wastes on visual assessments were classified into plastic bags, papers, broken plastic pots, clay pots, steel boxes, wrappers etc. All solid waste dumping sites in the cities and wastes that were thrown outside of the trash containers usually contained wrappers, plastic bags, and unconsumed food products. Insect populations seen in these sites included the house flies, bugs, cockroaches and mosquito larvae breeding in water filled wrappers, containers or plastic bags. The population of the mosquitoes, cockroaches and houseflies were relatively very high in dumping sites close to human population. This population has been associated with cases like dengue, malaria, dysentery, gastro and also to skin allergies during the monsoon and summer season. Thus, dumping of the huge amount of solid wastes in and near the residential areas results into serious environmental concerns, bad smell circulation, and health related issues. In some places, the same waste is burnt to get rid of mosquitoes through smoke which ultimately releases toxic material in the atmosphere. Therefore, a proper environmental strategy is needed to minimize environmental burden and promote concepts of recycled products and thus, reduce the disease burden.

Keywords: solid waste accumulation, disease burden, mosquitoes, vector borne diseases

Procedia PDF Downloads 274
2379 Magnitude of Transactional Sex and Its Determinant Factors Among Women in Sub-Saharan Africa: Systematic Review and Meat Analysis

Authors: Gedefaye Nibret Mihretie

Abstract:

Background: Transactional sex is casual sex between two people to receive material incentives in exchange for sexual favors. Transactional sex is associated with negative consequences, which increase the risk of sexually transmitted diseases, including HIV/AIDS, unintended pregnancy, unsafe abortion, and physiological trauma. Many primary studies in Sub-Saharan Africa have been conducted to assess the prevalence and associated factors of transactional sex among women. These studies had great discrepancies and inconsistent results. Hence, this systematic review and meta-analysis aimed to synthesize the pooled prevalence of the practice of transactional sex among women and its associated factors in Sub-Saharan Africa. Method: Cross-sectional studies were systematically searched from March 6, 2022, to April 24, 2022, using PubMed, Google Scholar, HINARI, Cochrane Library, and grey literature. The pooled prevalence of transactional sex and associated factors was estimated using DerSemonial-Laird Random Effect Model. Stata (version 16.0) was used to analyze the data. The I-squared statistic was used to assess the studies' heterogeneity. A funnel plot and Egger's test were used to check for publication bias. A subgroup analysis was performed to minimize the underline heterogeneity depending on the study years, source of data, sample sizes and geographical location. Results: Four thousand one hundred thirty articles were extracted from various databases. The final thirty-two studies were included in this systematic review, including 108,075 participants. The pooled prevalence of transactional sex among women in Sub-Saharan Africa was 12.55%, with a confidence interval of 9.59% to 15.52%. Educational status (OR = .48, 95%CI, 0.27, 0.69) was the protective factors of transactional sex whereas, alcohol use (OR = 1.85, 95% CI: 1.19, 2.52), early sex debut (OR = 2.57, 95%CI, 1.17, 3.98), substance abuse (OR = 4.21, 95% CI: 2.05, 6.37), having history of sexual experience abuse (OR = 4.08, 95% CI: 1.38, 6.78), physical violence abuse (OR = 6.59, 95% CI: 1.17, 12.02), and sexual violence abuse (OR = 3.56, 95% CI: 1.15, 8.27) were the risk factors of transactional sex. Conclusion: The prevalence of transactional sex among women in Sub-Saharan Africa was high. Educational status, alcohol use, substance abuse, early sex debut, having a history of sexual experiences, physical violence, and sexual violence were predictors of transaction sex. Governmental and other stakeholders are designed to reduce alcohol utilization, provide health information about the negative consequences of early sex debut, substance abuse, and reduce sexual violence, ensuring gender equality through mass media, which should be included in state policy.

Keywords: women’s health, child health, reproductive health, midwifery

Procedia PDF Downloads 84
2378 Local Ordinances with Sharia Nuances in Pluralism Society of Indonesia: Convergence or Divergence

Authors: Farida Prihatini

Abstract:

As a largest Muslim country in the world with around 215 Muslim inhabitants, Indonesia interestingly is not an Islamic country. Yet, Indonesia is not a secular country as well. The country has committed to be a unity in diversity country where people from various socio-political background may be coexistent live in this archipelago country. However, many provinces and Muslim groups are disposed of special regulation for Muslim people, namely local ordinances with sharia nuances, applied specifically in provinces, cities or regions where Muslim inhabitants are the majority. For the last two decades, particularly since Indonesia reform movement of 1998, a lot of local ordinances (Peraturan Daerah) with Sharia nuance have been enacted and applied in several provinces, cities and regions in Indonesia. The local ordinances are mostly deal with restriction of alcohol, prohibition of prostitution, Al Qur'an literacy, obligation to wear Muslim attire and zakat or alms management. Some of local ordinances have been warmly welcomed by society, while other ordinances have created tension. Those who oppose the ordinances believe that such things regulated by the ordinances are in violation of human rights and democracy, part of privacy rights of the people and must not be regulated by the State or local government. This paper describes the dynamic of local Ordinances with sharia nuances in Indonesia, in this research is limited to three ordinances: on the restriction of alcohol, prohibition of prostitution and obligation to wear Muslim attire. The researcher employs a normative method by studying secondary data and local ordinances in selected areas in Indonesia. The findings of the paper are that local ordinances with sharia nuances are indeed part of the needs of society, yet, in their implementation must take the pluralism of Indonesia and the state basic foundation, which is Pancasila (five pillars) into account.

Keywords: local, ordinances, sharia, rights

Procedia PDF Downloads 272
2377 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation

Procedia PDF Downloads 172
2376 Study of Oxidative Stability, Cold Flow Properties and Iodine Value of Macauba Biodiesel Blends

Authors: Acacia A. Salomão, Willian L. Gomes da Silva, Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

Biodiesel physical and chemical properties depend on the raw material composition used in its synthesis. Saturated fatty acid esters confer high oxidative stability, while unsaturated fatty acid esters improve the cold flow properties. In this study, an alternative vegetal source - the macauba kernel oil - was used in the biodiesel synthesis instead of conventional sources. Macauba can be collected from native palm trees and is found in several regions in Brazil. Its oil is a promising source when compared to several other oils commonly obtained from food products, such as soybean, corn or canola oil, due to its specific characteristics. However, the usage of biodiesel made from macauba oil alone is not recommended due to the difficulty of producing macauba in large quantities. For this reason, this project proposes the usage of blends of the macauba oil with conventional oils. These blends were prepared by mixing the macauba biodiesel with biodiesels obtained from soybean, corn, and from residual frying oil, in the following proportions: 20:80, 50:50 e 80:20 (w/w). Three parameters were evaluated, using the standard methods, in order to check the quality of the produced biofuel and its blends: oxidative stability, cold filter plugging point (CFPP), and iodine value. The induction period (IP) expresses the oxidative stability of the biodiesel, the CFPP expresses the lowest temperature in which the biodiesel flows through a filter without plugging the system and the iodine value is a measure of the number of double bonds in a sample. The biodiesels obtained from soybean, residual frying oil and corn presented iodine values higher than 110 g/100 g, low oxidative stability and low CFPP. The IP values obtained from these biodiesels were lower than 8 h, which is below the recommended standard value. On the other hand, the CFPP value was found within the allowed limit (5 ºC is the maximum). Regarding the macauba biodiesel, a low iodine value was observed (31.6 g/100 g), which indicates the presence of high content of saturated fatty acid esters. The presence of saturated fatty acid esters should imply in a high oxidative stability (which was found accordingly, with IP = 64 h), and high CFPP, but curiously the latter was not observed (-3 ºC). This behavior can be explained by looking at the size of the carbon chains, as 65% of this biodiesel is composed by short chain saturated fatty acid esters (less than 14 carbons). The high oxidative stability and the low CFPP of macauba biodiesel are what make this biofuel a promising source. The soybean, corn and residual frying oil biodiesels also have low CFPP, but low oxidative stability. Therefore the blends proposed in this work, if compared to the common biodiesels, maintain the flow properties but present enhanced oxidative stability.

Keywords: biodiesel, blends, macauba kernel oil, stability oxidative

Procedia PDF Downloads 530
2375 Effect on the Performance of the Nano-Particulate Graphite Lubricant in the Turning of AISI 1040 Steel under Variable Machining Conditions

Authors: S. Srikiran, Dharmala Venkata Padmaja, P. N. L. Pavani, R. Pola Rao, K. Ramji

Abstract:

Technological advancements in the development of cutting tools and coolant/lubricant chemistry have enhanced the machining capabilities of hard materials under higher machining conditions. Generation of high temperatures at the cutting zone during machining is one of the most important and pertinent problems which adversely affect the tool life and surface finish of the machined components. Generally, cutting fluids and solid lubricants are used to overcome the problem of heat generation, which is not effectively addressing the problems. With technological advancements in the field of tribology, nano-level particulate solid lubricants are being used nowadays in machining operations, especially in the areas of turning and grinding. The present investigation analyses the effect of using nano-particulate graphite powder as lubricant in the turning of AISI 1040 steel under variable machining conditions and to study its effect on cutting forces, tool temperature and surface roughness of the machined component. Experiments revealed that the increase in cutting forces and tool temperature resulting in the decrease of surface quality with the decrease in the size of nano-particulate graphite powder as lubricant.

Keywords: solid lubricant, graphite, minimum quantity lubrication (MQL), nano–particles

Procedia PDF Downloads 262
2374 Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR

Authors: C. Rattanakawin, S. Vasailor

Abstract:

Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 oC and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study.

Keywords: agitation leaching, dissolution kinetics, flotation concentrate, oxide copper ore, sulfuric acid

Procedia PDF Downloads 114
2373 The Leaching Kinetics of Zinc from Industrial Zinc Slag Waste

Authors: Hilary Rutto

Abstract:

The investigation was aimed at determining the extent at which the zinc will be extracted from secondary sources generated from galvanising process using dilute sulphuric acid under controlled laboratory conditions of temperature, solid-liquid ratio, and agitation rate. The leaching experiment was conducted for a period of 2 hours and to total zinc extracted calculated in relation to the amount of zinc dissolved at a unit time in comparison to the initial zinc content of the zinc ash. Sulphuric acid was found to be an effective leaching agent with an overall extraction of 91.1% when concentration is at 2M, and solid/liquid ratio kept at 1g/200mL leaching solution and temperature set at 65ᵒC while slurry agitation is at 450rpm. The leaching mechanism of zinc ash with sulphuric acid was conformed well to the shrinking core model.

Keywords: leaching, kinetics, shrinking core model, zinc slag

Procedia PDF Downloads 145
2372 High Resolution Solid State NMR Structural Study of a Ternary Hydraulic Mixture

Authors: Rym Sassi, Franck Fayon, Mohend Chaouche, Emmanuel Veron, Valerie Montouillout

Abstract:

The chemical phenomena occurring during cement hydration are complex and interdependent, and even after almost two centuries of studies, they are still difficult to solve for complex mixtures combining different hydraulic binders. Powder-XRD has been widely used for characterizing the crystalline phases in both anhydrous and hydrated cement, but only limited information is obtained in the case of strongly disordered and amorphous phases. In contrast, local spectroscopies like solid-state NMR can provide a quantitative description of noncrystalline phases. In this work, the structural modifications occurring during hydration of a fast-setting ternary binder based on white Portland cement, white calcium aluminate cement, and calcium sulfate were investigated using advanced solid-state NMR methods. We particularly focused on the early stage of the hydration up to 28 days, working with samples whose hydration was controlled and stopped. ²⁷Al MQ-MAS as well as {¹H}-²⁷Al and {¹H}-²⁹Si Cross- Polarization MAS NMR techniques were combined to distinguish all of the aluminum and silicon species formed during the hydration. The NMR quantification of the different phases was conducted in parallel with the XRD analyses. The consumption of initial products, as well as the precipitation of hydraulic phases (ettringite, monosulfate, strätlingite, CSH, and CASH), were unambiguously quantified. Finally, the drawing of the consumption and formation of phases was correlated with mechanical strength measurements.

Keywords: cement, hydration, hydrates structure, mechanical strength, NMR

Procedia PDF Downloads 149
2371 Olive Stone Valorization to Its Application on the Ceramic Industry

Authors: M. Martín-Morales, D. Eliche-Quesada, L. Pérez-Villarejo, M. Zamorano

Abstract:

Olive oil is a product of particular importance within the Mediterranean and Spanish agricultural food system, and more specifically in Andalusia, owing to be the world's main production area. Olive oil processing generates olive stones which are dried and cleaned to remove pulp and olive stones fines to produce biofuel characterized to have high energy efficiency in combustion processes. Olive stones fine fraction is not too much appreciated as biofuel, so it is important the study of alternative solutions to be valorized. Some researchers have studied recycling different waste to produce ceramic bricks. The main objective of this study is to investigate the effects of olive stones addition on the properties of fired clay bricks for building construction. Olive stones were substituted by volume (7.5%, 15%, and 25%) to brick raw material in three different sizes (lower than 1 mm, lower than 2 mm and between 1 and 2 mm). In order to obtain comparable results, a series without olive stones was also prepared. The prepared mixtures were compacted in laboratory type extrusion under a pressure of 2.5MPa for rectangular shaped (30 mm x 60 mm x 10 mm). Dried and fired industrial conditions were applied to obtain laboratory brick samples. Mass loss after sintering, bulk density, porosity, water absorption and compressive strength of fired samples were investigated and compared with a sample manufactured without biomass. Results obtained have shown that olive stone addition decreased mechanical properties due to the increase in water absorption, although values tested satisfied the requirements in EN 772-1 about methods of test for masonry units (Part 1: Determination of compressive strength). Finally, important advantages related to the properties of bricks as well as their environmental effects could be obtained with the use of biomass studied to produce ceramic bricks. The increasing of the percentage of olive stones incorporated decreased bulk density and then increased the porosity of bricks. On the one hand, this lower density supposes a weight reduction of bricks to be transported, handled as well as the lightening of building; on the other hand, biomass in clay contributes to auto thermal combustion which involves lower fuel consumption during firing step. Consequently, the production of porous clay bricks using olive stones could reduce atmospheric emissions and improve their life cycle assessment, producing eco-friendly clay bricks.

Keywords: clay bricks, olive stones, sustainability, valorization

Procedia PDF Downloads 149
2370 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors

Authors: Minal Jain, Vinayak Malhotra

Abstract:

Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.

Keywords: combustion, propellant, regression, safety

Procedia PDF Downloads 155
2369 Learners’ Violent Behaviour and Drug Abuse as Major Causes of Tobephobia in Schools

Authors: Prakash Singh

Abstract:

Many schools throughout the world are facing constant pressure to cope with the violence and drug abuse of learners who show little or no respect for acceptable and desirable social norms. These delinquent learners tend to harbour feelings of being beyond reproach because they strongly believe that it is well within their rights to engage in violent and destructive behaviour. Knives, guns, and other weapons appear to be more readily used by them on the school premises than before. It is known that learners smoke, drink alcohol, and use drugs during school hours, hence, their ability to concentrate, work, and learn, is affected. They become violent and display disruptive behaviour in their classrooms as well as on the school premises, and this atrocious behaviour makes it possible for drug dealers and gangsters to gain access onto the school premises. The primary purpose of this exploratory quantitative study was therefore to establish how tobephobia (TBP), caused by school violence and drug abuse, affects teaching and learning in schools. The findings of this study affirmed that poor discipline resulted in producing poor quality education. Most of the teachers in this study agreed that educating learners who consumed alcohol and other drugs on the school premises resulted in them suffering from TBP. These learners are frequently abusive and disrespectful, and resort to violence to seek attention. As a result, teachers feel extremely demotivated and suffer from high levels of anxiety and stress. The word TBP will surely be regarded as a blessing by many teachers throughout the world because finally, there is a word that will make people sit up and listen to their problems that cause real fear and anxiety in schools.

Keywords: aims and objectives of quality education, debilitating effects of tobephobia, fear of failure associated with education, learners' violent behaviour and drug abuse

Procedia PDF Downloads 275
2368 Effect of Naameh Landfill (Lebanon) on Groundwater Quality of the Surrounding Area

Authors: Rana Sawaya, Jalal Halwani, Isam Bashour, Nada Nehme

Abstract:

Mismanagement of municipal solid wastes in Lebanon might lead to serious environmental problems, especially that a big portion of mixed wastes including putrescible is transferred to Naameh landfill. One of the consequences of municipal solid waste deposition is the production of landfill leachate, which if unproperly treated will threaten the main crucial matrices such as soil, water, and air. The main aim of this one of a kind study is to assess the risk posed to groundwater as a result of leachate infiltration on off-site wells especially after stoppage of Naameh landfill's operation end of the year 2016 and initiation of the capping process which is still ongoing and will be finalized in December 2019. For this purpose, nine representative points around the landfill were selected to undergo physicochemical and microbial analysis on a seasonal basis (every three months). The study extended from the year 2014 until the end of the year 2016 (closure of Naameh landfill). The preliminary data obtained are statistically analyzed using the Statistical Package for Social Sciences (SPSS) and was found in conformity with international and Lebanese norms. Thus, the study will be extended an additional year, especially after the finalization of capping and the results obtained, will enable us to propose new techniques and tools (treatment systems) in water resources management depending on the direction of its usage (domestic, irrigation, drinking).

Keywords: contamination, groundwater, leachate, Lebanon, solid waste

Procedia PDF Downloads 127
2367 Correlation Analysis of Reactivity in the Oxidation of Para and Meta-Substituted Benzyl Alcohols by Benzimidazolium Dichromate in Non-Aqueous Media: A Kinetic and Mechanistic Aspects

Authors: Seema Kothari, Dinesh Panday

Abstract:

An observed correlation of the reaction rates with the changes in the nature of substituent present on one of the reactants often reveals the nature of transition state. Selective oxidation of organic compounds under non-aqueous media is an important transformation in synthetic organic chemistry. Inorganic chromates and dichromates being drastic oxidant and are generally insoluble in most organic solvents, a number of different chromium (VI) derivatives have been synthesized. Benzimidazolium dichromate (BIDC) is one of the recently reported Cr(VI) reagents which is neither hygroscopic nor light sensitive being, therefore, much stable. Not many reports on the kinetics of the oxidations by BIDC are seemed to be available in the literature. In the present investigation, the kinetics and mechanism of benzyl alcohol (BA) and a number of para- and meta-substituted benzyl alcohols by benzimidazolium dichromate (BIDC), in dimethyl sulphoxide, is reported. The reactions were followed spectrophotometrically at 364 nm by monitoring the decrease in [BIDC] for up to 85-90% reaction, the temperature being constant. The observed oxidation product is the corresponding benzaldehyde. The reactions were of first order with respect to each the alcohol and BIDC. The reactions are catalyzed by proton, and the dependence is of the form: kobs = a + b[H+]. The reactions thus follow both, an acid-dependent and acid-independent paths. The oxidation of [1,1 2H2]benzyl alcohol exhibited the presence of a substantial kinetic isotope effect ( kH/kD = 6.20 at 298 K ). This indicated the cleavage of a α-C-H bond in the rate-determining step. An analysis of the temperature dependence of the deuterium isotope effect showed that the loss of hydrogen proceeds through a concerted cyclic process. The rate of oxidation of BA was determined in 19 organic solvents. An analysis of the solvent effect by Swain’s equation indicated that though both the anion and cation-solvating powers of the solvent contribute to the observed solvent effect, the role of cation-solvation is major. The rates of the para and meta compounds, at 298 K, failed to exhibit a significant correlation in terms of Hammett or Brown's substituent constants. The rates were then subjected to analyses in terms of dual substituent parameter (DSP) equations. The rates of oxidation of the para-substituted benzyl alcohols show an excellent correlation with Taft's σI and σRBA values. However, the rates for the meta-substituted benzyl alcohols show an excellent correlation with σI and σR0. The polar reaction constants are negative indicating an electron-deficient transition state. Hence the overall mechanism is proposed to involve the formation of a chromate ester in a fast pre-equilibrium and then a decomposition of the ester in a subsequent slow step via a cyclic concerted symmetrical transition state, involving hydride-ion transfer, leading to the product. The first order dependence on alcohol may be accounted in terms of the small value of the formation constant of the ester intermediate. An another reaction mechanism accounting the acid-catalysis involve the formation of a protonated BIDC prior to formation of an ester intermediate which subsequently decomposes in a slow step leading to the product.

Keywords: benzimidazolium dichromate, benzyl alcohols, correlation analysis, kinetics, oxidation

Procedia PDF Downloads 339
2366 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes

Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov

Abstract:

Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of  5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.

Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics

Procedia PDF Downloads 277
2365 Municipal Solid Waste Management in an Unplanned Hill Station in India

Authors: Moanaro Ao, Nzanthung Ngullie

Abstract:

Municipal solid waste management (MSWM) has unique challenges in hilly urban settlements. Efforts have been taken by municipalities, private players, non-governmental organizations, etc. for managing solid waste by preventing its generation, reusing, and recovering them into useful products to the extent possible, thereby minimizing its impact on the environment and human health. However, there are many constraints that lead to inadequate management of solid waste. Kohima is an unplanned hill station city in the North Eastern Region of India. The city is facing numerous issues due to the mismanagement of the MSW generated. Kohima Municipal Council (KMC) is the Urban Local Body (ULB) responsible for providing municipal services. The present MSWM system in Kohima comprises of collection, transportation, and disposal of waste without any treatment. Several efforts and experimental projects on waste management have been implemented without any success. Waste management in Kohima city is challenging due to its remote location, difficult topography, dispersed settlements within the city, sensitive ecosystem, etc. Furthermore, the narrow road network in Kohima with limited scope for expansion, inadequate infrastructure facilities, and financial constraints of the ULB add up to the problems faced in managing solid waste. This hill station also has a unique system of traditional local self-governance. Thus, shifting from a traditional system to a modern system in implementing systematic and scientific waste management is also a challenge in itself. This study aims to analyse the existing situation of waste generation, evaluate the effectiveness of the existing management system of MSW, and evolve a strategic approach to achieve a sustainable and resilient MSWM system. The results from the study show that a holistic approach, including social aspects, technical aspects, environmental aspects, and financial aspects, is needed to reform the MSWM system. Stringent adherence to source segregation is required by encouraging public participation through awareness programs. Active involvement of community-based organizations (CBOs) has brought a positive change in sensitizing the public. A waste management model was designed to be adopted at a micro-level such as composting household biodegradable waste and incinerator plants at the community level for non-biodegradable waste. Suitable locations for small waste stations were identified using geographical information system (GIS) tools for waste recovery and recycling. Inculcating the sense of responsibility in every waste generator towards waste management by implementing incentive-based strategies at the Ward level was explored. Initiatives based on the ‘polluters pay principle’ were also explored to make the solid waste management model “self-sustaining”.

Keywords: municipal solid waste management, public participation, source segregation, sustainable

Procedia PDF Downloads 64
2364 CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement

Authors: Syed Islam, Yiyun Huang, Sebastian Magierowski, Ebrahim Ghafar-Zadeh

Abstract:

This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable rangeof multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.

Keywords: DNA, nanopore, amplifier, ADC, multichannel

Procedia PDF Downloads 449
2363 Numerical Simulation of Fluid Structure Interaction Using Two-Way Method

Authors: Samira Laidaoui, Mohammed Djermane, Nazihe Terfaya

Abstract:

The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software.

Keywords: ALE, coupling, FEM, fluid-structure, interaction, one-way method, two-way method

Procedia PDF Downloads 672
2362 Protective Effect of Nigella sativa Oil and Its Neutral Lipid Fraction on Ethanol-Induced Hepatotoxicity in Rat Model

Authors: Asma Mosbah, Hanane Khither, Kamelia Mosbah, Noreddine Kacem Chaouche, Mustapha Benboubetra

Abstract:

In the present investigation, total oil (TO) and its neutral lipid fraction (NLF) extracted from the seed of the well know studied medicinal plant Nigella sativa were tested for their therapeutically effect on alcohol-induced liver injury in rat model. Male Albino rats were divided into five groups of eight animals each and fed a Lieber–DeCarli liquid diet containing 5% ethanol for experimental groups and dextran for control group, for a period of six weeks. Afterwards, rats received, orally, treatments with Nigella sativa extracts (TO, NLF) and N- acetylcysteine (NAC) as a positive control for four weeks. Activities of antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), as well as malondialdehyde (MDA) and reduced glutathione (GSH). Biochemical parameters for kidney and liver functions, in treated and non treated rats, were evaluated throughout the time course of an experiment. Liver histological changes were taken into account. Enzymatic activities of both SOD and CAT increased significantly in rats treated with NLF and TO. While MDA level decreased in TO and NLF treated rats, GSH level increased significantly in TO and NLF treated rats. We noted equally a decrease in liver enzymes AST, ALT, and ALP. Microscopic observation of slides from the liver of ethanol treated rats showed a severe hepatotoxicity with lesions. Treatment with fractions leads to an improvement in liver lesions and a marked reduction in necrosis and infiltration. As a conclusion, both extracts of Nigella sativa seeds, TO and NLF, possess an important therapeutic protective potential against ethanol-induced hepatotoxicity in rats.

Keywords: alcohol-induced hepatotoxicity, antioxidant enzymes, Nigella sativa seeds, oil fractions

Procedia PDF Downloads 163
2361 Synthesis and Characterization of Iron and Aluminum-Containing AFm Phases

Authors: Aurore Lechevallier, Mohend Chaouche, Jerome Soudier, Guillaume Renaudin

Abstract:

The cement industry accounts for 8% of the global CO₂ emissions, and approximately 60% of these emissions are associated with the Portland cement clinker production from the decarbonization of limestone (CaCO3). Their impact on the greenhouse effect results in growing social awareness. Therefore, CO2 footprint becomes a product selection choice, and substituting Portland cement with a lower CO2-footprint alternative binder is sought. In this context, new hydraulic binders have been studied as a potential Ordinary Portland Cement substitute. Many of them are composed of iron oxides and aluminum oxides, present in the Ca₄Al₂-xFe₂+ₓO₁₀-like phase and forming Ca-LDH (i.e. AFM) as a hydration product. It has become essential to study the possible existence of Fe/Al AFM solid solutions to characterize the hydration process properly. Ca₂Al₂-xFex(OH)₆.X.nH₂O layered AFM samples intercalated with either nitrate or chloride X anions were synthesized based on the co-precipitation method under a nitrogen atmosphere to avoid the carbonation effect.AFM samples intercalated with carbonate anions were synthesized based on the anionic exchange process, using AFM-NO₃ as the source material. These three AFM samples were synthesized with varying Fe/Al molar ratios. The experimental conditions were optimized to make possible the formation of Al-AFM and Fe-AFM using the same parameters (namely pH value and salt concentration). Rietveld refinements were performed to demonstrate the existence of a solid solution between the two trivalent metallic end members. Spectroscopic analyses were used to confirm the intercalation of the targeted anion; secondary electron images were taken to analyze the AFM samples’ morphology, and energy dispersive X-ray spectroscopy (EDX) was carried out to determine the elemental composition of the AFM samples. Results of this study make it possible to quantify the Al/Fe ratio of the AFM phases precipitated in our hydraulic binder, thanks to the determined Vegard's law characteristic to the corresponding solid solutions

Keywords: AFm phase, iron-rich binder, low-carbon cement, solid solution

Procedia PDF Downloads 129
2360 Thermolysin Entrapment in a Gold Nanoparticles/Polymer Composite: Construction of an Efficient Biosensor for Ochratoxin a Detection

Authors: Fatma Dridi, Mouna Marrakchi, Mohammed Gargouri, Alvaro Garcia Cruz, Sergei V. Dzyadevych, Francis Vocanson, Joëlle Saulnier, Nicole Jaffrezic-Renault, Florence Lagarde

Abstract:

An original method has been successfully developed for the immobilization of thermolysin onto gold interdigitated electrodes for the detection of ochratoxin A (OTA) in olive oil samples. A mix of polyvinyl alcohol (PVA), polyethylenimine (PEI) and gold nanoparticles (AuNPs) was used. Cross-linking sensors chip was made by using a saturated glutaraldehyde (GA) vapor atmosphere in order to render the two polymers water stable. Performance of AuNPs/ (PVA/PEI) modified electrode was compared to a traditional immobilized enzymatic method using bovine serum albumin (BSA). Atomic force microscopy (AFM) experiments were employed to provide a useful insight into the structure and morphology of the immobilized thermolysin composite membranes. The enzyme immobilization method influence the topography and the texture of the deposited layer. Biosensors optimization and analytical characteristics properties were studied. Under optimal conditions AuNPs/ (PVA/PEI) modified electrode showed a higher increment in sensitivity. A 700 enhancement factor could be achieved with a detection limit of 1 nM. The newly designed OTA biosensors showed a long-term stability and good reproducibility. The relevance of the method was evaluated using commercial doped olive oil samples. No pretreatment of the sample was needed for testing and no matrix effect was observed. Recovery values were close to 100% demonstrating the suitability of the proposed method for OTA screening in olive oil.

Keywords: thermolysin, A. ochratoxin , polyvinyl alcohol, polyethylenimine, gold nanoparticles, olive oil

Procedia PDF Downloads 583
2359 Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines

Authors: Ipek Gunay, Efe B. Orman, Metin Ozer, Bekir Salih, Ali R. Ozkaya

Abstract:

Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions.

Keywords: phthalocyanine, electrocatalysis, electrochemistry, in-situ spectroelectrochemistry

Procedia PDF Downloads 310
2358 Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer

Authors: Munir Rusan

Abstract:

Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity.

Keywords: composting, organic solid waste, soil, plant

Procedia PDF Downloads 79
2357 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel

Authors: Sellidj Abdelaziz, Lebaili Soltane

Abstract:

A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).

Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment

Procedia PDF Downloads 108
2356 Green Technology for the Treatment of Industrial Effluent Contaminated with Dyes

Authors: Afzaal Gulzar, Shafaq Mubarak, M. Zia-Ur-Rehman

Abstract:

Industrial waste waters put environmental constrains to the water quality of aqueous reserves. Number of techniques has been used to treat them before disposal to water bodies. In this work a novel green approach is study by using poultry waste eggshells as a low cost efficient adsorbent for the dyes present in industrial effluent of textile and paper industries. The developed technique not only used to treat contaminated waters but also resulted in the utilization of poultry eggshell waste which in turn assists in solid waste management. Batch sorption studies like contact time, adsorbent dose, dye concentration, temp and pH has been conducted to find the optimum adsorption parameters.

Keywords: green technology, solid waste management, industrial effluent, eggshell waste utilization, waste water treatment

Procedia PDF Downloads 460
2355 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem

Authors: Feng Yang

Abstract:

Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.

Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics

Procedia PDF Downloads 143
2354 Microencapsulation of Phenobarbital by Ethyl Cellulose Matrix

Authors: S. Bouameur, S. Chirani

Abstract:

The aim of this study was to evaluate the potential use of EthylCellulose in the preparation of microspheres as a Drug Delivery System for sustained release of phenobarbital. The microspheres were prepared by solvent evaporation technique using ethylcellulose as polymer matrix with a ratio 1:2, dichloromethane as solvent and Polyvinyl alcohol 1% as processing medium to solidify the microspheres. Size, shape, drug loading capacity and entrapement efficiency were studied.

Keywords: phenobarbital, microspheres, ethylcellulose, polyvinylacohol

Procedia PDF Downloads 359
2353 Seroprevalence and Associated Factors of Hepatitis B and Hepatitis C Viral Infections among Prisoners in Tigrai, Northern Ethiopia

Authors: Belaynesh Tsegay Beyene, Teklay Gebrecherkos, Atsebaha Gebrekidan Kahsay, Mahmud Abdulkader

Abstract:

Background: Hepatitis B and C viruses are of important health and socioeconomic problem of the globe with remarkable diseases and deaths in Sub-Saharan African countries. The burden of hepatitis is unknown in the prison settings of Tigrai. Therefore, we aimed to describe the seroprevalence and associated factors of hepatitis B and C viruses among prisoners of Tigrai, Ethiopia. Methods: A cross-sectional study was carried out from February 2020 to May 2020 at the prison facilities of Tigrai. Demographics and associated factors were collected from 315 prisoners prospectively. Five milliliter of blood was collected and tested using rapid tests kits of HBsAg (Zhejiang orient Gene Biotech Co., Ltd., China) and HCV antibodies (Volkan Kozmetik Sanayi Ve Ticaret Ltd. STI, Turkey). Positive samples were confirmed using enzyme-linked immunosorbent assay (ELISA) (Beijing Wantai Biological Pharmacy Enterprise Co. Ltd). Data were analyzed using Statistical Package for Social Sciences (SPSS) version 20 and p < 0.05 was considered statistically significant. Results: The overall seroprevalence of HBV and HCV were 25 (7.9%) and 1(0.3%), respectively. The majority of hepatitis B viral infections were identified from the age groups of 18-25 years (10.7%) and unmarried prisoners (11.8%). Prisoners greater than 100 per cell [AOR =3.95, 95% CI= (1.15, 13.6, p =0.029)] and having history of alcohol consumption [AOR =3.01, 95% CI= (1.17, 7.74, p =0.022)] were significantly associated with HBV infections. Conclusions: The seroprevalence of HBV among prisoners was nearly high or borderline (7.9%) with a very low HCV prevalence (0.3%). HBV was most prevalent among young adults, large number of prisoners per cell and those who had history of alcohol consumption. This study recommends that there should be prison-focused intervention including regular health education by emphasis on the mode of transmission and introducing HBV screening policy for prisoners especially when they enter to the prison.

Keywords: seroprevalence, HBV, HCV, prisoners, Tigrai

Procedia PDF Downloads 69