Search results for: photonic crystal fiber
1449 The Behavior of Polypropylene Fiber Reinforced Sand Loaded by Squair Footing
Authors: Dhiaadin Bahaadin Noory
Abstract:
This research involves the effect of both sizes of reinforced zone and the amount of polypropylene fiber reinforcement on the structural behavior of model-reinforced sand loaded by square footing. The ratio of the side of the square reinforced zone to the footing width (W/B) and the ratio of the square reinforced zone depth to footing width (H/B) has been varied from one to six and from one to three, respectively. The tests were carried out on a small-scale laboratory model in which uniform-graded sand was used as a fill material. It was placed in a highly dense state by hitting a thin wooden board placed on the sand surface with a hammer. The sand was reinforced with randomly oriented discrete fibrillated polypropylene fibers. The test results indicated a significant increase in the bearing capacity and stiffness of the subgrade and a modification of load–the settlement behavior of sand with the size of the reinforced zone and amount of fiber reinforcement. On the basis of the present test results, the optimal side width and depth of the reinforced zone were 4B and 2B, respectively, while the optimal percentage of fibers was 0.4%.Keywords: square footing, polypropylene fibers, bearing capacity, stiffness, load settlement behavior, relative density
Procedia PDF Downloads 641448 Residual Compressive Strength of Drilled Glass Fiber Reinforced Composites
Authors: Navid Zarif Karimi, Giangiacomo Minak, Parnian Kianfar
Abstract:
Drilling is one of the most frequently used machining process for glass fiber reinforced polymer composites due to the need for structural joining. In drilling of composite laminates, interlaminar cracking, or delamination, has a detrimental effect on the compressive strength of these materials. The delamination can be controlled by adopting proper drilling condition. In this paper, the effect of feed rate, cutting speed and drill point angle on delamination and residual compressive strength of drilled GFRPs is studied. The objective is to find optimal conditions for maximum residual compressive strength.Keywords: composite material, delamination, drilling, residual compressive strength
Procedia PDF Downloads 4581447 A Study on the Comparatison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test
Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim
Abstract:
In rapid industrial development has increased the demand for high-strength and lightweight materials. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order, and thickness. Thus, the hardness and strength of CFRP depend much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75°, and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75°, and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.Keywords: Carbon Fiber Reinforced Plastic (CFRP), bending test, infrared camera, composite
Procedia PDF Downloads 3981446 Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View
Authors: T. Häfele, J. Kaspar, M. Vielhaber, W. Calles, J. Griebsch
Abstract:
The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.Keywords: additive manufacturing, fiber-reinforced plastics (FRP), hybrid design, lightweight design
Procedia PDF Downloads 2971445 Fabrication of Uniform Nanofibers Using Gas Dynamic Virtual Nozzle Based Microfluidic Liquid Jet System
Authors: R. Vasireddi, J. Kruse, M. Vakili, M. Trebbin
Abstract:
Here we present a gas dynamic virtual nozzle (GDVN) based microfluidic jetting devices for spinning of nano/microfibers. The device is fabricated by soft lithography techniques and is based on the principle of a GDVN for precise three-dimensional gas focusing of the spinning solution. The nozzle device is used to produce micro/nanofibers of a perfluorinated terpolymer (THV), which were collected on an aluminum substrate for scanning electron microscopy (SEM) analysis. The influences of air pressure, polymer concentration, flow rate and nozzle geometry on the fiber properties were investigated. It was revealed that surface properties are controlled by air pressure and polymer concentration while the diameter and shape of the fibers are influenced mostly by the concentration of the polymer solution and pressure. Alterations of the nozzle geometry had a negligible effect on the fiber properties, however, the jetting stability was affected. Round and flat fibers with differing surface properties from craters, grooves to smooth surfaces could be fabricated by controlling the above-mentioned parameters. Furthermore, the formation of surface roughness was attributed to the fast evaporation rate and velocity (mis)match between the polymer solution jet and the surrounding air stream. The diameter of the fibers could be tuned from ~250 nm to ~15 µm. Because of the simplicity of the setup, the precise control of the fiber properties, access to biocompatible nanofiber fabrication and the easy scale-up of parallel channels for high throughput, this method offers significant benefits compared to existing solution-based fiber production methods.Keywords: gas dynamic virtual nozzle (GDVN) principle, microfluidic device, spinning, uniform nanofibers
Procedia PDF Downloads 1501444 Zero Valent Iron Algal Biocomposite for the Removal of Crystal Violet from Aqueous Solution: Box-Behnken Optimization and Fixed Bed Column Studies
Authors: M. Jerold, V. Sivasubramanian
Abstract:
In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite a marine algal based biosorbent was used for the removal of simulated crystal violet (CV) in batch and continuous fixed bed operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. The effect of various column parameters like bed depth (3, 6 and 9 cm), flow rate (5, 10 and 15 mL/min) and influent CV concentration (5, 10 and 15 mg/L) were investigated. The exhaustion time increased with increase of bed depth, influent CV concentration and decrease of flow rate. Adam-Bohart, Thomas and Yoon-Nelson models were used to predict the breakthrough curve and to evaluate the model parameters. Out of these models, Thomas and Yoon-Nelson models well described the experimental data. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.Keywords: algae, biosorption, zero-valent, dye, wastewater
Procedia PDF Downloads 1961443 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites
Authors: Jifeng Zhang , Yongpeng Lei
Abstract:
Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface
Procedia PDF Downloads 1211442 Economic and Environmental Benefits of the Indium Recycling from the Waste Liquid Crystal Displays in China
Authors: Wu Yufeng, Gu Yifan, Wang Hengguang, Gongyu, Zuo Tieyong
Abstract:
Indium is one the scarce resources which can be only used less than 30 years, and more than 70% of the indium is used for the production of the LCD. The benefit of recycling Indium from waste LCD is large. Take the LCD-TV for example, the yield of which was close to 90 million units in 2010. If it was available to recycle the indium effectively, the yield of the secondary-indium could reach up to 110 metric ton, which accounted for one third of the primary indium production in China. And compared with the dispersion and long process extraction of the primary indium resources, secondary indium concentrates in the waste LCD, the exploitation has great economic and environmental benefits. However, the potential benefits were indefinite, resulting in China’s government did not pay enough attention to the indium recycling industry. In our study, an estimation model was constructed to analyze the potential of the indium in the waste LCD. The different types of LCD were detected to find out the content of indium. Then, the potential of the indium in the waste LCD was estimated in China. Furthermore, the pollution emissions of the product process of the primary and secondary indium was analyzed respectively to calculate the economic and environmental benefits of the indium recycling from the waste LCD in China.Keywords: indium recycling, waste liquid crystal displays, benefits, China
Procedia PDF Downloads 4251441 Biodegradability Evaluation of Polylactic Acid Composite with Natural Fiber (Sisal)
Authors: A. Bárbara Cattozatto Fortunato, D. de Lucca Soave, E. Pinheiro de Mello, M. Piasentini Oliva, V. Tavares de Moraes, G. Wolf Lebrão, D. Fernandes Parra, S. Marraccini Giampietri Lebrão
Abstract:
Due to increasing environmental pressure for biodegradable products, especially in polymeric materials, in order to meet the demands of the biological cycles of the circular economy, new materials have been developed as a sustainability strategy. This study proposes a composite material developed from the biodegradable polymer PLA Ecovio® (polylactic acid - PLA) with natural sisal fibers, where the soybean ester was used as a plasticizer, which can aid in adhesion between the materials and fibers, making the most attractive final composite from an environmental point of view. The composites were obtained by extrusion. The materials tests were produced and submitted to biodegradation tests. Through the biodegradation tests, it can be seen that the biodegradable polymer composition with 5% sisal fiber presented about 12.4% more biodegradability compared to the polymer without fiber addition. It has also been found that the plasticizer was not a compatible with fibers and the polymer. Finally, fibers help to anticipate the decomposition process of the material when subjected to conditions of a landfill. Therefore, its intrinsic properties are not affected during its use, only the biodegradation process begins after its exposure to landfill conditions.Keywords: biocomposites, sisal, polilactic acid, Polylactic Acid (PLA)
Procedia PDF Downloads 2471440 Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties
Authors: Maizatulnisa Othman, Mohamad Bukhari, Zahurin Halim, Souad A. Muhammad, Khalisani Khalid
Abstract:
Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 Gpa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results.Keywords: sandwich structure composite, epoxy, aluminium, kenaf fiber
Procedia PDF Downloads 3931439 Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites
Authors: Lee Siong Wee, Tan Kang Hai, Yang En-Hua
Abstract:
This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints.Keywords: bond stress, high performance fiber reinforced cement composites, slip, strain
Procedia PDF Downloads 4951438 Cr³⁺/SiO₄⁴⁻ Codoped Hydroxyapatite Nanorods: Fabrication and Microstructure Analysis
Authors: Ammar Z. Alshemary, Zafer Evis
Abstract:
In this study, nanorods of Cr³⁺/SiO₄⁴⁻ codoped hydroxyapatite (Cr³⁺/SiO₄⁴⁻-HA) were synthesized successfully and rapidly through microwave irradiation technique, using (Ca(NO₃)₂•4H₂O), ((NH₄)₂HPO₄), (SiC₈H₂₀O₄) and (Cr(NO₃)₃.9H₂O) as source materials for Ca²⁺, PO₄³⁻, SiO₄⁴⁻ and Cr³⁺ ions, respectively. The impact of dopants on the phase formation and microstructure of the powders were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectrum analysis (FT-IR) and Field emission electron microscopy (FESEM) techniques. XRD analysis showed that with an incorporation of Cr³⁺/SiO₄⁴⁻ ions into HA structure resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. FTIR spectroscopy revealed the existence of the different vibrational modes matching to phosphates and hydroxyl groups. The FESEM analysis showed a change in the crystal shape from spherical to rod shaped particles upon Cr³⁺ doping into the crystal structure. Acknowledgments: This study was supported by Karabük University (Project no. KBÜBAP-17-YD-144). The authors would like to thank for support.Keywords: nano-hydroxyapatite, microwave, dopants, characterization, microstructure
Procedia PDF Downloads 2271437 Fast Detection of Local Fiber Shifts by X-Ray Scattering
Authors: Peter Modregger, Özgül Öztürk
Abstract:
Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination
Procedia PDF Downloads 631436 Impact of Aging on Fatigue Performance of Novel Hybrid HMA
Authors: Faizan Asghar, Mohammad Jamal Khattak
Abstract:
Aging, in general, refers to changes in rheological characteristics of asphalt mixture due to changes in chemical composition over the course of construction and service life of the pavement. The main goal of this study was to investigate the impact of oxidation on fatigue characteristics of a novel HMA composite fabricated with a combination of crumb rubber (CRM) and polyvinyl alcohol (PVA) fiber subject to aging of 7 and 14 days. A flexural beam fatigue test was performed to evaluate several characteristics of control, CRM modified, PVA reinforced, and novel rubber-fiber HMA composite. Experimental results revealed that aging had a significant impact on the fatigue performance of novel HMA composite. It was found that a suitable proportion of CRM and PVA radically affected the performance of novel rubber-fiber HMA in resistance to fracture and fatigue cracking when subjected to long-term aging. The developed novel HMA composite containing 2% CRM and 0.2% PVA presented around 29 times higher resistance to fatigue cracking for a period of 7 days of aging. To develop a cumulative plastic deformation level of 250 micros, such a mixture required over 50 times higher cycles than control HMA. Moreover, the crack propagation rate was reduced by over 90%, with over 12 times higher energy required to propagate a unit crack length in such a mixture compared to conventional HMA. Further, digital imaging correlation analyses revealed a more twisted and convoluted fracture path and higher strain distribution in rubber-fiber HMA composite. The fatigue performance after long-term aging of such novel HMA composite explicitly validates the ability to withstand load repetition that could lead to an extension in the service life of pavement infrastructure and reduce taxpayers’ dollars spent.Keywords: crumb rubber, PVA fibers, dry process, aging, performance testing, fatigue life
Procedia PDF Downloads 661435 Fabrication and Characterization Analysis of La-Sr-Co-Fe-O Perovskite Hollow Fiber Catalyst for Oxygen Removal in Landfill Gas
Authors: Seong Woon Lee, Soo Min Lim, Sung Sik Jeong, Jung Hoon Park
Abstract:
The atmospheric concentration of greenhouse gas (GHG, Green House Gas) is increasing continuously as a result of the combustion of fossil fuels and industrial development. In response to this trend, many researches have been conducted on the reduction of GHG. Landfill gas (LFG, Land Fill Gas) is one of largest sources of GHG emissions containing the methane (CH₄) as a major constituent and can be considered renewable energy sources as well. In order to use LFG by connecting to the city pipe network, it required a process for removing impurities. In particular, oxygen must be removed because it can cause corrosion of pipes and engines. In this study, methane oxidation was used to eliminate oxygen from LFG and perovskite-type ceramic catalysts of La-Sr-Co-Fe-O composition was selected as a catalyst. Hollow fiber catalysts (HFC, Hollow Fiber Catalysts) have attracted attention as a new concept alternative because they have high specific surface area and mechanical strength compared to other types of catalysts. HFC was prepared by a phase-inversion/sintering technique using commercial La-Sr-Co-Fe-O powder. In order to measure the catalysts' activity, simulated LFG was used for feed gas and complete oxidation reaction of methane was confirmed. Pore structure of the HFC was confirmed by SEM image and perovskite structure of single phase was analyzed by XRD. In addition, TPR analysis was performed to verify the oxygen adsorption mechanism of the HFC. Acknowledgement—The project is supported by the ‘Global Top Environment R&D Program’ in the ‘R&D Center for reduction of Non-CO₂ Greenhouse gases’ (Development and demonstration of oxygen removal technology of landfill gas) funded by Korea Ministry of Environment (ME).Keywords: complete oxidation, greenhouse gas, hollow fiber catalyst, land fill gas, oxygen removal, perovskite catalyst
Procedia PDF Downloads 1171434 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance
Authors: Tomofumi Kubota, Mitsuhiro Okayasu
Abstract:
In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property
Procedia PDF Downloads 1251433 Effects of Rice Husk Ash on the Properties of Scrap Tyre Steel Fiber Reinforced High Performance Concrete (RHA-STSFRHAC)
Authors: Isyaka Abdulkadir, Egbe-Ngu Ntui Ogork
Abstract:
This research aims to investigate the effect of Rice Husk Ash (RHA) on Scrap Tyre Steel Fiber Reinforced High Performance Concrete (STSFRHPC). RHA was obtained by control burning of rice husk in a kiln to a temperature of 650-700oC and when cooled sieved through 75µm sieve and characterized. The effect of RHA were investigated on grade 50 STSFRHPC of 1:1.28:1.92 with water cement ratio of 0.39 at additions of Scrap Tyre Steel Fiber (STSF) of 1.5% by volume of concrete and partial replacement of cement with RHA at percentages of 0, 5, 10, 15 and 20. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. Results of RHA-STSFRHPC indicated a reduction in slump and compressive strength with increase in RHA content, while splitting tensile strength increased with RHA replacement up to 10% and reduction in strength above 10% RHA content. The 28 days compressive strength of RHA-STSFRHPC with up to 10% RHA attained the desired characteristic strength of 50N/mm2 and therefore up to 10% RHA is considered as the optimum replacement dosage in STSFRHPC-RHA.Keywords: compressive strength, high performance concrete, rice husk ash, scrap tyre steel fibers
Procedia PDF Downloads 3371432 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor
Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen
Abstract:
In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.
Procedia PDF Downloads 2521431 Security Issues on Smart Grid and Blockchain-Based Secure Smart Energy Management Systems
Authors: Surah Aldakhl, Dafer Alali, Mohamed Zohdy
Abstract:
The next generation of electricity grid infrastructure, known as the "smart grid," integrates smart ICT (information and communication technology) into existing grids in order to alleviate the drawbacks of existing one-way grid systems. Future power systems' efficiency and dependability are anticipated to significantly increase thanks to the Smart Grid, especially given the desire for renewable energy sources. The security of the Smart Grid's cyber infrastructure is a growing concern, though, as a result of the interconnection of significant power plants through communication networks. Since cyber-attacks can destroy energy data, beginning with personal information leaking from grid members, they can result in serious incidents like huge outages and the destruction of power network infrastructure. We shall thus propose a secure smart energy management system based on the Blockchain as a remedy for this problem. The power transmission and distribution system may undergo a transformation as a result of the inclusion of optical fiber sensors and blockchain technology in smart grids. While optical fiber sensors allow real-time monitoring and management of electrical energy flow, Blockchain offers a secure platform to safeguard the smart grid against cyberattacks and unauthorized access. Additionally, this integration makes it possible to see how energy is produced, distributed, and used in real time, increasing transparency. This strategy has advantages in terms of improved security, efficiency, dependability, and flexibility in energy management. An in-depth analysis of the advantages and drawbacks of combining blockchain technology with optical fiber is provided in this paper.Keywords: smart grids, blockchain, fiber optic sensor, security
Procedia PDF Downloads 1201430 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature
Authors: Josef Novák, Alena Kohoutková
Abstract:
The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.Keywords: elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation
Procedia PDF Downloads 3391429 The Effect of a Reactive Poly (2-Vinyl-2-Oxazoline) Monolayer of Carbon Fiber Surface on the Mechanical Property of Carbon Fiber/Polypropylene Composite Using Maleic Anhydride Grafted Polypropylene
Authors: Teruya Goto, Hokuto Chiba, Tatsuhiro Takahashi
Abstract:
Carbon fiber reinforced thermoplastic resin using short carbon fiber has been produced by melt mixing and the improvement of mechanical properties has been frequently reported up to now. One of the most frequently reported enhancement has been seen in carbon fiber / polypropylene (PP) composites by adding small amount of maleic anhydride grafted polypropylene (MA-g-PP) into PP matrix. However, the further enhancement of tensile strength and tensile modules has been expected for lightning the composite more. Our present research aims to improve the mechanical property by using a highly reactive monolayer polymer, which can react with both COOH of carbon fiber surface and maleic anhydride of MA-g-PP in the matrix, on carbon fiber for PP/CF composite. It has been known that oxazoline has much higher reactivity with COOH without catalysts, compared with amine group and alcohol OH group. However, oxazoline group has not been used for the interface. To achieve the purpose, poly-2-vinyl-2-oxazoline (Pvozo), having highly reactivity with COOH and maleic anhydride, has been originally synthesized through radical polymerization using 2-vinyl-2-oxazoline as a monomer, resulting in the Mw around 140,000. Monolayer Pvozo chemically reacted on CF was prepared in 1-methoxy-2-propanol solution of Pvozo by heating at 100oC for 3 hours. After this solution treatment, unreacted Pvozo was completely washed out by methanol, resulting the uniform formation of the monolayer Pvozo on CF. Monolayer Pvozo coated CF was melt mixed by with PP and a small amount of MA-g-PP for the preparation of the composite samples using a batch type melt mixer. With performing the tensile strength tests of the composites, the tensile strength of CF/MA-g-PP/PP showed 40% increase, compared to that of CF/PP. While, that of Pvozo coated CF/MA-g-PP/PP exhibited 80% increase, compared to that of CF/PP. To get deeper insight of the dramatic increase, the weight percentage of chemically grafted polymer based on CF was evaluated by dissolving and removing the matrix polymer by xylene using by thermos gravimetric analysis (TGA). The chemically grafted remained polymer was found to be 0.69wt% in CF/PP, 0.98wt% in CF/MA-g-PP/PP, 1.51wt% in Pvozo coated CF/MA-g-PP/PP, suggesting that monolayer Pvozo contributed to the increase of the grafted polymer amount. In addition, the very strong adhesion by Pvozo was confirmed by observing the fractured cross-sectional surface of the composite by scanning electron micrograph (SEM). As a conclusion, the effectiveness of a highly reactive monolayer Pvozo on CF for the enhancement of the mechanical properties of CF/PP composite was demonstrated, which can be interpreted by the clear evidence of the increase of the grafting polymer on CF.Keywords: CFRTP, interface, oxazoline, polymer graft, mechanical property
Procedia PDF Downloads 2131428 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties
Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying
Abstract:
SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.Keywords: crystallization, MTO, Si/Al ratio, SSZ-13
Procedia PDF Downloads 2941427 Integration of Load Introduction Elements into Fabrics
Authors: Jan Schwennen, Harlad Schmid, Juergen Fleischer
Abstract:
Lightweight design plays an important role in the automotive industry. Especially the combination of metal and CFRP shows great potential for future vehicle concepts. This requires joining technologies that are cost-efficient and appropriate for the materials involved. Previous investigations show that integrating load introduction elements during CFRP part manufacturing offers great advantages in mechanical performance. However, it is not yet clear how to integrate the elements in an automated process without harming the fiber structure. In this paper, a test rig is build up to investigate the effect of different parameters during insert integration experimentally. After a short description of the experimental equipment, preliminary tests are performed to determine a set of important process parameters. Based on that, the planning of design of experiments is given. The interpretation and evaluation of the test results show that with a minimization of the insert diameter and the peak angle less harm on the fiber structure can be achieved. Furthermore, a maximization of the die diameter above the insert shows a positive effect on the fiber structure. At the end of this paper, a theoretical description of alternative peak shaping is given and then the results get validated on the basis of an industrial reference part.Keywords: CFRP, fabrics, insert, load introduction element, integration
Procedia PDF Downloads 2431426 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol
Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov
Abstract:
The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.Keywords: liquid crystals, polymers, small-angle scattering, optical properties
Procedia PDF Downloads 6171425 A Study on Reinforced Concrete Beams Enlarged with Polymer Mortar and UHPFRC
Authors: Ga Ye Kim, Hee Sun Kim, Yeong Soo Shin
Abstract:
Many studies have been done on the repair and strengthening method of concrete structure, so far. The traditional retrofit method was to attach fiber sheet such as CFRP (Carbon Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) and AFRP (Aramid Fiber Reinforced Polymer) on the concrete structure. However, this method had many downsides in that there are a risk of debonding and an increase in displacement by a shortage of structure section. Therefore, it is effective way to enlarge the structural member with polymer mortar or Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) as a means of strengthening concrete structure. This paper intends to investigate structural performance of reinforced concrete (RC) beams enlarged with polymer mortar and compare the experimental results with analytical results. Nonlinear finite element analyses were conducted to compare the experimental results and predict structural behavior of retrofitted RC beams accurately without cost consuming experimental process. In addition, this study aims at comparing differences of retrofit material between commonly used material (polymer mortar) and recently used material (UHPFRC) by conducting nonlinear finite element analyses. In the first part of this paper, the RC beams having different cover type were fabricated for the experiment and the size of RC beams was 250 millimeters in depth, 150 millimeters in width and 2800 millimeters in length. To verify the experiment, nonlinear finite element models were generated using commercial software ABAQUS 6.10-3. From this study, both experimental and analytical results demonstrated good strengthening effect on RC beam and showed similar tendency. For the future, the proposed analytical method can be used to predict the effect of strengthened RC beam. In the second part of the study, the main parameters were type of retrofit materials. The same nonlinear finite element models were generated to compare the polymer mortar with UHPFRCC. Two types of retrofit material were evaluated and retrofit effect was verified by analytical results.Keywords: retrofit material, polymer mortar, UHPFRC, nonlinear finite element analysis
Procedia PDF Downloads 4181424 Magnetophotonics 3D MEMS/NEMS System for Quantitative Mitochondrial DNA Defect Profiling
Authors: Dar-Bin Shieh, Gwo-Bin Lee, Chen-Ming Chang, Chen Sheng Yeh, Chih-Chia Huang, Tsung-Ju Li
Abstract:
Mitochondrial defects have a significant impact in many human diseases and aging associated phenotypes. The pathogenic mitochondrial DNA (mtDNA) mutations are diverse and usually present as heteroplasmic. mtDNA 4977bps deletion is one of the common mtDNA defects, and the ratio of mutated versus normal copy is significantly associated with clinical symptoms thus their quantitative detection has become an important unmet needs for advanced disease diagnosis and therapeutic guidelines. This study revealed a Micro-electro-mechanical-system (MEMS) enabled automatic microfluidic chip that only required minimal sample. The system integrated multiple laboratory operation steps into a Lab-on-a-Chip for high-sensitive and prompt measurement. The entire process including magnetic nanoparticle based mtDNA extraction in chip, mutation selective photonic DNA cleavage, and nanoparticle accelerated photonic quantitative polymerase chain reaction (qPCR). All subsystems were packed inside a miniature three-dimensional micro structured system and operated in an automatic manner. Integration of magnetic beads with microfluidic transportation could promptly extract and enrich the specific mtDNA. The near infrared responsive magnetic nanoparticles enabled micro-PCR to be operated by pulse-width-modulation controlled laser pulsing to amplify the desired mtDNA while quantified by fluorescence intensity captured by a complementary metal oxide system array detector. The proportions of pathogenic mtDNA in total DNA were thus obtained. Micro capillary electrophoresis module was used to analyze the amplicone products. In conclusion, this study demonstrated a new magnetophotonic based qPCR MEMS system that successfully detects and quantify specific disease related DNA mutations thus provides a promising future for rapid diagnosis of mitochondria diseases.Keywords: mitochondrial DNA, micro-electro-mechanical-system, magnetophotonics, PCR
Procedia PDF Downloads 2181423 Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics
Authors: Michael Sigruener, Dirk Muscat, Nicole Struebbe
Abstract:
Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete.Keywords: fiber-matrix interface, polymeric fibers, fiber reinforced concrete, single fiber pull-out test
Procedia PDF Downloads 1131422 Enhancement of Interface Properties of Thermoplastic Composite Materials
Authors: Reyhan Ozbask, Emek Moroydor Derin, Mustafa Dogu
Abstract:
There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests.Keywords: carbon fiber reinforced composite, interface enhancement, boron nitride nanotube, thermoplastic composite
Procedia PDF Downloads 2251421 Developing a Tissue-Engineered Aortic Heart Valve Based on an Electrospun Scaffold
Authors: Sara R. Knigge, Sugat R. Tuladhar, Alexander Becker, Tobias Schilling, Birgit Glasmacher
Abstract:
Commercially available mechanical or biological heart valve prostheses both tend to fail long-term due to thrombosis, calcific degeneration, infection, or immunogenic rejection. Moreover, these prostheses are non-viable and do not grow with the patients, which is a problem for young patients. As a result, patients often need to undergo redo-operations. Tissue-engineered (TE) heart valves based on degradable electrospun fiber scaffolds represent a promising approach to overcome these limitations. Such scaffolds need sufficient mechanical properties to withstand the hydrodynamic stress of intracardiac hemodynamics. Additionally, the scaffolds should be colonized by autologous or homologous cells to facilitate the in vivo remodeling of the scaffolds to a viable structure. This study investigates how process parameters of electrospinning and degradation affect the mechanical properties of electrospun scaffolds made of FDA-approved, biodegradable polymer polycaprolactone (PCL). Fiber mats were produced from a PCL/tetrafluoroethylene solution by electrospinning. The e-spinning process was varied in terms of scaffold thickness, fiber diameter, fiber orientation, and fiber interconnectivity. The morphology of the fiber mats was characterized with a scanning electron microscope (SEM). The mats were degraded in different solutions (cell culture media, SBF, PBS and 10 M NaOH-Solution). At different time points of degradation (2, 4 and 6 weeks), tensile and cyclic loading tests were performed. Fresh porcine pericardium and heart valves served as a control for the mechanical assessment. The progression of polymer degradation was quantified by SEM and differential scanning calorimetry (DSC). Primary Human aortic endothelial cells (HAECs) and Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) were seeded on the fiber mats to investigate the cell colonization potential. The results showed that both the electrospinning parameters and the degradation significantly influenced the mechanical properties. Especially the fiber orientation has a considerable impact and leads to a pronounced anisotropic behavior of the scaffold. Preliminary results showed that the polymer became strongly more brittle over time. However, the embrittlement can initially only be detected in the mechanical test. In the SEM and DSC investigations, neither morphological nor thermodynamic changes are significantly detectable. Live/Dead staining and SEM imaging of the cell-seeded scaffolds showed that HAECs and iPSC-ECs were able to grow on the surface of the polymer. In summary, this study's results indicate a promising approach to the development of a TE aortic heart valve based on an electrospun scaffold.Keywords: electrospun scaffolds, long-term polymer degradation, mechanical behavior of electrospun PCL, tissue engineered aortic heart valve
Procedia PDF Downloads 1431420 Techno-Functional Characteristics, Mineral Composition and Antioxidant Potential of Dietary Fiber Extracted by Sonication from Different Oat Cultivars (Avena sativa)
Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Muhammad Sultan, Uzair Sajjad, Khalid Hamid, Tahir Mahmood Qureshi, Sadaf Javaria
Abstract:
Metabolic disorders, including hypertension, diabetes, cardiovascular disease etc., are major threats to public health and economy. Management and prevention of alarmingly increasing disorders have attracted researchers to explore natural barriers against these disorders. The objective of this study was to explore oats as a potential source of dietary fiber. Extraction of dietary was optimized by response surface methodology, and five indigenous oat cultivars, including SGD2011, Avon, SGD81, PD2LV65, and S2000, were also characterized for techno-functional characteristics, mineral composition and phytochemical quantification. These cultivars varied significantly (p < 0.05) for oil holding capacity, water saturation, and water holding capacity, respectively. SGD81 showed the highest oil-holding capacity, water-holding capacity, and water saturation due to the highest fraction of dietary fiber. The highest values of total phenolic contents, total flavonoid contents, total flavonol contents, 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging activity, and anthocyanin were shown by SGD81, and SGD2011, respectively. All cultivars varied significantly (P<0.05) with respect to phytochemical quantification. Oat cultivars SGD81 and SGD2011 showed the best phenolic acid profile and can be effectively used as a source of nutraceuticals. Beyond the nutritional properties of oats, these also contribute and emerged as potential sources of dietary fiber and have gained attention as nutraceutical cereal crops. This approach offers oats as a natural means of dietary fiber to protect humans from alarmingly increasing metabolic disorders, and its extraction by sonication has made it a sustainable and eco-friendly strategy.Keywords: oat cultivars, dietary fibers, mineral profile, antioxidant activity, color properties
Procedia PDF Downloads 42