Search results for: non-linear differential equations
3461 Free Vibration Characteristics of Nanoplates with Various Edge Supports Incorporating Surface Free Energy Effects
Authors: Saeid Sahmani
Abstract:
Due to size-dependent behavior of nanostrustures, the classical continuum models are not applicable for the analyses at this submicrion size. Surface stress effect is one of the most important matters which make the nanoscale structures to have different properties compared to the conventional structures due to high surface to volume ratio. In the present study, free vibration characteristics of nanoplates are investigated including surface stress effects. To this end, non-classical plate model based on Gurtin-Murdoch elasticity theory is proposed to evaluate the surface stress effects on the vibrational behavior of nanoplates subjected to different boundary conditions. Generalized differential quadrature (GDQ) method is employed to discretize the governing non-classical differential equations along with various edge supports. Selected numerical results are given to demonstrate the distinction between the behavior of nanoplates predicted by the classical and present non-classical plate models that leads to illustrate the great influence of surface stress effect. It is observed that this influence quite depends on the magnitude of the surface elastic constants which are relevant to the selected material.Keywords: nanomechanics, surface stress, free vibration, GDQ method, small scale effect
Procedia PDF Downloads 3563460 Soliton Solutions in (3+1)-Dimensions
Authors: Magdy G. Asaad
Abstract:
Solitons are among the most beneficial solutions for science and technology for their applicability in physical applications including plasma, energy transport along protein molecules, wave transport along poly-acetylene molecules, ocean waves, constructing optical communication systems, transmission of information through optical fibers and Josephson junctions. In this talk, we will apply the bilinear technique to generate a class of soliton solutions to the (3+1)-dimensional nonlinear soliton equation of Jimbo-Miwa type. Examples of the resulting soliton solutions are computed and a few solutions are plotted.Keywords: Pfaffian solutions, N-soliton solutions, soliton equations, Jimbo-Miwa
Procedia PDF Downloads 4533459 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid
Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal
Abstract:
In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.Keywords: electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, non-Newtonian power-law fluids, numerical simulation
Procedia PDF Downloads 3113458 Nilsson Model Performance in Estimating Bed Load Sediment, Case Study: Tale Zang Station
Authors: Nader Parsazadeh
Abstract:
The variety of bed sediment load relationships, insufficient information and data, and the influence of river conditions make the selection of an optimum relationship for a given river extremely difficult. Hence, in order to select the best formulae, the bed load equations should be evaluated. The affecting factors need to be scrutinized, and equations should be verified. Also, re-evaluation may be needed. In this research, sediment bed load of Dez Dam at Tal-e Zang Station has been studied. After reviewing the available references, the most common formulae were selected that included Meir-Peter and Muller, using MS Excel to compute and evaluate data. Then, 52 series of already measured data at the station were re-measured, and the sediment bed load was determined. 1. The calculated bed load obtained by different equations showed a great difference with that of measured data. 2. r difference ratio from 0.5 to 2.00 was 0% for all equations except for Nilsson and Shields equations while it was 61.5 and 59.6% for Nilsson and Shields equations, respectively. 3. By reviewing results and discarding probably erroneous measured data measurements (by human or machine), one may use Nilsson Equation due to its r value higher than 1 as an effective equation for estimating bed load at Tal-e Zang Station in order to predict activities that depend upon bed sediment load estimate to be determined. Also, since only few studies have been conducted so far, these results may be of assistance to the operators and consulting companies.Keywords: bed load, empirical relation ship, sediment, Tale Zang Station
Procedia PDF Downloads 3623457 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer
Authors: R. Loukil, M. Chtourou, T. Damak
Abstract:
In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability
Procedia PDF Downloads 3743456 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models
Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed
Abstract:
In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula
Procedia PDF Downloads 1343455 Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior
Authors: Sunghyun Kim, Hong-Gun Park
Abstract:
In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed.Keywords: performance based design, shear amplification factor, nonlinear dynamic analysis, RC shear wall
Procedia PDF Downloads 3793454 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory
Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov
Abstract:
The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.Keywords: analytical regularization method, electromagnetic theory evolutionary equations of time-domain, TM Field
Procedia PDF Downloads 5013453 Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction
Authors: Mohamed M. El Gendy, Ibrahim A. El Arabi, Rafeek W. Abdel-Missih, Omar A. Kandil
Abstract:
Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches.Keywords: nonlinear analysis, reinforced concrete arched structure, soil-structure interaction, geotechnical engineering
Procedia PDF Downloads 4383452 Earthquake Forecasting Procedure Due to Diurnal Stress Transfer by the Core to the Crust
Authors: Hassan Gholibeigian, Kazem Gholibeigian
Abstract:
In this paper, our goal is determination of loading versus time in crust. For this goal, we present a computational procedure to propose a cumulative strain energy time profile which can be used to predict the approximate location and time of the next major earthquake (M > 4.5) along a specific fault, which we believe, is more accurate than many of the methods presently in use. In the coming pages, after a short review of the research works presently going on in the area of earthquake analysis and prediction, earthquake mechanisms in both the jerk and sequence earthquake direction is discussed, then our computational procedure is presented using differential equations of equilibrium which govern the nonlinear dynamic response of a system of finite elements, modified with an extra term to account for the jerk produced during the quake. We then employ Von Mises developed model for the stress strain relationship in our calculations, modified with the addition of an extra term to account for thermal effects. For calculation of the strain energy the idea of Pulsating Mantle Hypothesis (PMH) is used. This hypothesis, in brief, states that the mantle is under diurnal cyclic pulsating loads due to unbalanced gravitational attraction of the sun and the moon. A brief discussion is done on the Denali fault as a case study. The cumulative strain energy is then graphically represented versus time. At the end, based on some hypothetic earthquake data, the final results are verified.Keywords: pulsating mantle hypothesis, inner core’s dislocation, outer core’s bulge, constitutive model, transient hydro-magneto-thermo-mechanical load, diurnal stress, jerk, fault behaviour
Procedia PDF Downloads 2763451 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model
Authors: Sidrah Ahmed
Abstract:
The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients
Procedia PDF Downloads 2033450 An Optimal Control Model to Determine Body Forces of Stokes Flow
Authors: Yuanhao Gao, Pin Lin, Kees Weijer
Abstract:
In this paper, we will determine the external body force distribution with analysis of stokes fluid motion using mathematical modelling and numerical approaching. The body force distribution is regarded as the unknown variable and could be determined by the idea of optimal control theory. The Stokes flow motion and its velocity are generated by given forces in a unit square domain. A regularized objective functional is built to match the numerical result of flow velocity with the generated velocity data. So that the force distribution could be determined by minimizing the value of objective functional, which is also the difference between the numerical and experimental velocity. Then after utilizing the Lagrange multiplier method, some partial differential equations are formulated consisting the optimal control system to solve. Finite element method and conjugate gradient method are used to discretize equations and deduce the iterative expression of target body force to compute the velocity numerically and body force distribution. Programming environment FreeFEM++ supports the implementation of this model.Keywords: optimal control model, Stokes equation, finite element method, conjugate gradient method
Procedia PDF Downloads 4053449 Mapping Method to Solve a Nonlinear Schrodinger Type Equation
Authors: Edamana Vasudevan Krishnan
Abstract:
This paper studies solitons in optical materials with the help of Mapping Method. Two types of nonlinear media have been investigated, namely, the cubic nonlinearity and the quintic nonlinearity. The soliton solutions, shock wave solutions and singular solutions have been derives with certain constraint conditions.Keywords: solitons, integrability, metamaterials, mapping method
Procedia PDF Downloads 4943448 Reducing Total Harmonic Content of 9-Level Inverter by Use of Cuckoo Algorithm
Authors: Mahmoud Enayati, Sirous Mohammadi
Abstract:
In this paper, a novel procedure to find the firing angles of the multilevel inverters of supply voltage and, consequently, to decline the total harmonic distortion (THD), has been presented. In order to eliminate more harmonics in the multilevel inverters, its number of levels can be lessened or pulse width modulation waveform, in which more than one switching occur in each level, be used. Both cases complicate the non-algebraic equations and their solution cannot be performed by the conventional methods for the numerical solution of nonlinear equations such as Newton-Raphson method. In this paper, Cuckoo algorithm is used to compute the optimal firing angle of the pulse width modulation voltage waveform in the multilevel inverter. These angles should be calculated in such a way that the voltage amplitude of the fundamental frequency be generated while the total harmonic distortion of the output voltage be small. The simulation and theoretical results for the 9-levels inverter offer the high applicability of the proposed algorithm to identify the suitable firing angles for declining the low order harmonics and generate a waveform whose total harmonic distortion is very small and it is almost a sinusoidal waveform.Keywords: evolutionary algorithms, multilevel inverters, total harmonic content, Cuckoo Algorithm
Procedia PDF Downloads 5323447 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds
Authors: Seyedehsomayeh Hosseini
Abstract:
Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential
Procedia PDF Downloads 3613446 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method
Authors: Felix Jr. Garde, Eric Augustus Tingatinga
Abstract:
Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method
Procedia PDF Downloads 3243445 Chebyshev Polynomials Relad with Fibonacci and Lucas Polynomials
Authors: Vandana N. Purav
Abstract:
Fibonacci and Lucas polynomials are special cases of Chebyshev polynomial. There are two types of Chebyshev polynomials, a Chebyshev polynomial of first kind and a Chebyshev polynomial of second kind. Chebyshev polynomial of second kind can be derived from the Chebyshev polynomial of first kind. Chebyshev polynomial is a polynomial of degree n and satisfies a second order homogenous differential equation. We consider the difference equations which are related with Chebyshev, Fibonacci and Lucas polynomias. Thus Chebyshev polynomial of second kind play an important role in finding the recurrence relations with Fibonacci and Lucas polynomials. Procedia PDF Downloads 3683444 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink
Authors: Bandari Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreementKeywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet
Procedia PDF Downloads 2753443 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance
Authors: Libo Jiang, Huan Li, Rongling Wu
Abstract:
Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance
Procedia PDF Downloads 6393442 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study
Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali
Abstract:
In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.Keywords: Navier’s condition, Newtonian fluid model, chemical reaction, heat source/sink
Procedia PDF Downloads 1713441 Control Law Design of a Wheeled Robot Mobile
Authors: Ghania Zidani, Said Drid, Larbi Chrifi-Alaoui, Abdeslam Benmakhlouf, Souad Chaouch
Abstract:
In this paper, we focus on the study for path tracking control of unicycle-type Wheeled Mobile Robots (WMR), by applying the Backstepping technic. The latter is a relatively new technic for nonlinear systems. To solve the problem of constraints nonholonomics met in the path tracking of such robots, an adaptive Backstepping based nonlinear controller is developed. The stability of the controller is guaranteed, using the Lyapunov theory. Simulation results show that the proposed controller achieves the objective and ensures good path tracking.Keywords: Backstepping control, kinematic and dynamic controllers, Lyapunov methods, nonlinear control systems, Wheeled Mobile Robot (WMR).
Procedia PDF Downloads 4393440 Melnikov Analysis for the Chaos of the Nonlocal Nanobeam Resting on Fractional-Order Softening Nonlinear Viscoelastic Foundations
Authors: Guy Joseph Eyebe, Gambo Betchewe, Alidou Mohamadou, Timoleon Crepin Kofane
Abstract:
In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that appearance of chaos in the system depends strongly on the fractional order parameter.Keywords: chaos, fractional-order, Melnikov method, nanobeam
Procedia PDF Downloads 1593439 Design of Reduced Links for Link-to-Column Connections in Eccentrically Braced Frames
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
Link-to-column connection in eccentrically braced frames (EBF) has been a critical problem since the link flange connected to the column fractured prior to the required link rotation. Even though the problem in link-to-column connection still exist, the use of an eccentrically braced frame (EBF) is increasing day by day as EBF have high elastic stiffness, stable inelastic response under repeated lateral loading, and excellent ductility and energy dissipation capacity. In order to address this problem, a reduced web and flange link section is proposed and evaluated in this study. Reducing the web with holes makes the link to control the failure at the edge of holes introduced. Reducing the flange allows the link to control the location at which the plastic hinge is formed. Thus, the failure supposed to occur in the link flange connected at the connection move to the web and to the reduced link flange. Nonlinear FE analysis and experimental investigations have been done on the developed links, and the result shows that the link satisfies the plastic rotation limit recommended in AICS-360-10. Design equations that define the behavior of the proposed link have been recommended, and the equations were verified through the experimental and FE analysis results.Keywords: EBFs, earthquake disaster, link-to-column connection, reduced link section
Procedia PDF Downloads 3803438 Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Muhammad Moaz
Abstract:
In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.Keywords: differential drive robot, hybrid fuzzy controller, optimization, path tracking, unicycle robot
Procedia PDF Downloads 4633437 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil
Authors: H. Bensouilah, H. Boucherit, M. Lahmar
Abstract:
A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.Keywords: elasto-aerodynamic lubrication, air foil bearing, steady-state deformation, dynamic deformation, stiffness and damping coefficients, perturbation method, fluid-structure interaction, Galerk infinite element method, finite difference method
Procedia PDF Downloads 3923436 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics
Procedia PDF Downloads 1633435 A Fundamental Functional Equation for Lie Algebras
Authors: Ih-Ching Hsu
Abstract:
Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?Keywords: fundamental functional equation, generalized functional equations, Lie algebras, quaternions
Procedia PDF Downloads 2243434 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model
Procedia PDF Downloads 1513433 Modulational Instability of Ion-Acoustic Wave in Electron-Positron-Ion Plasmas with Two-Electron Temperature Distributions
Authors: Jitendra Kumar Chawla, Mukesh Kumar Mishra
Abstract:
The nonlinear amplitude modulation of ion-acoustic wave is studied in the presence of two-electron temperature distribution in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolosky (KBM) perturbation method is used to derive the nonlinear Schrödinger equation. The dispersive and nonlinear coefficients are obtained which depend on the temperature and concentration of the hot and cold electron species as well as the positron density and temperature. The modulationally unstable regions are studied numerically for a wide range of wave number. The effects of the temperature and concentration of the hot and cold electron on the modulational stability are investigated in detail.Keywords: modulational instability, ion acoustic wave, KBM method
Procedia PDF Downloads 6663432 Multidimensional Integral and Discrete Opial–Type Inequalities
Authors: Maja Andrić, Josip Pečarić
Abstract:
Over the last five decades, an enormous amount of work has been done on Opial’s integral inequality, dealing with new proofs, various generalizations, extensions and discrete analogs. The Opial inequality is recognized as a fundamental result in the analysis of qualitative properties of solution of differential equations. We use submultiplicative convex functions, appropriate representations of functions and inequalities involving means to obtain generalizations and extensions of certain known multidimensional integral and discrete Opial-type inequalities.Keywords: Opial's inequality, Jensen's inequality, integral inequality, discrete inequality
Procedia PDF Downloads 439