Search results for: modified mangrove pen
2003 Preparation Nanocapsules of Chitosan Modified With Selenium Extracted From the Lactobacillus Acidophilus and Their Anticancer Properties
Authors: Akbar Esmaeili, Mahnoosh Aliahmadi
Abstract:
This study synthesized a modified imaging of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA). It contains Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Using the impregnation method, Se nanoparticles were then deposited on (Ga@DFA/FA/ CS/PANI/PVA). The modified contrast agents were mixed with M. nigra extract, and investigated their antibacterial activities by applying to L929 cell lines. The influence of variable factors, including 1. surfactant, 2. solvent, 3. aqueous phase, 4. pH, 5. buffer, 6. minimum Inhibitory concentration (MIC), 7. minimum bactericidal concentration (MBC), 8. cytotoxicity on cancer cells., 9. antibiotic, 10. antibiogram, 11. release and loading, 12. the emotional effect, 13. the concentration of nanoparticles, 14. olive oil, and 15. they have investigated thermotical methods. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), energy dispersive X-ray (EDX), ultraviolet–visible (UV–Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM), MTT, MIC, MBC, and cancer cytotoxic conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful and obtained MIC = 2 factors with less harmful effect. All experimental sections confirmed that our synthesized particles have potent antioxidant properties. Antibiogram testing revealed that NPS could kill P. aeruginosa and P. aeruginosa. A variety of synthetic conditions were done by diffusion emulsion method by varying parameters, the optimum state of DFA release Ga@DFA/FA/CS/PANI/PVA NPs (6 ml) with pH = 5.5, time = 3 h, NCs and DFA (3 mg), and achieved buffer (20 ml). DFA in Ga@DFA/FA/ CS/PANI/PVA was released and showed an absorption peak at 378 nm by applying a 300-rpm magnetic rate. In this report, Ga decreased the harmful effect on the human body.Keywords: nanocapsules, technolgy, biology, nano
Procedia PDF Downloads 402002 The Batch Method Approach for Adsorption Mechanism Processes of Some Selected Heavy Metal Ions and Methylene Blue by Using Chemically Modified Luffa Cylindrica
Authors: Akanimo Emene, Mark D. Ogden, Robert Edyvean
Abstract:
Adsorption is a low cost, efficient and economically viable wastewater treatment process. Utilization of this treatment process has not been fully applied due to the complex and not fully understood nature of the adsorption system. To optimize its process is to choose a sufficient adsorbent and to study further the experimental parameters that influence the adsorption design system. Chemically modified adsorbent, Luffa cylindrica, was used to adsorb heavy metal ions and an organic pollutant, methylene blue, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion or organic pollutant concentration, ionic strength, and pH of solution were studied. The experimental data were analyzed with kinetic and isotherm models. The antagonistic effect of the methylene and some heavy metal ions were recorded. An understanding of the use of this treated Luffa cylindrica for the removal of these toxic substances will establish and improve the commercial application of the adsorption process in treatment of contaminated waters.Keywords: adsorption, heavy metal ions, Luffa cylindrica, wastewater treatment
Procedia PDF Downloads 1972001 Assessing the Utility of Unmanned Aerial Vehicle-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping
Authors: Qiaosi Li, Frankie Kwan Kit Wong, Tung Fung
Abstract:
Lightweight unmanned aerial vehicle (UAV) loading with novel sensors offers a low cost approach for data acquisition in complex environment. This study established a framework for applying UAV system in complex environment quick mapping and assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area Mai Po Inner Deep Bay Ramsar Site, Hong Kong. The study area was part of shallow bay with flat terrain and the major species including reedbed and four mangroves: Kandelia obovata, Aegiceras corniculatum, Acrostichum auerum and Acanthus ilicifolius. Other species involved in various graminaceous plants, tarbor, shrub and invasive species Mikania micrantha. In particular, invasive species climbed up to the mangrove canopy caused damage and morphology change which might increase species distinguishing difficulty. Hyperspectral images were acquired by Headwall Nano sensor with spectral range from 400nm to 1000nm and 0.06m spatial resolution image. A sequence of multi-view RGB images was captured with 0.02m spatial resolution and 75% overlap. Hyperspectral image was corrected for radiative and geometric distortion while high resolution RGB images were matched to generate maximum dense point clouds. Furtherly, a 5 cm grid digital surface model (DSM) was derived from dense point clouds. Multiple feature reduction methods were compared to identify the efficient method and to explore the significant spectral bands in distinguishing different species. Examined methods including stepwise discriminant analysis (DA), support vector machine (SVM) and minimum noise fraction (MNF) transformation. Subsequently, spectral subsets composed of the first 20 most importance bands extracted by SVM, DA and MNF, and multi-source subsets adding extra DSM to 20 spectrum bands were served as input in maximum likelihood classifier (MLC) and SVM classifier to compare the classification result. Classification results showed that feature reduction methods from best to worst are MNF transformation, DA and SVM. MNF transformation accuracy was even higher than all bands input result. Selected bands frequently laid along the green peak, red edge and near infrared. Additionally, DA found that chlorophyll absorption red band and yellow band were also important for species classification. In terms of 3D data, DSM enhanced the discriminant capacity among low plants, arbor and mangrove. Meanwhile, DSM largely reduced misclassification due to the shadow effect and morphological variation of inter-species. In respect to classifier, nonparametric SVM outperformed than MLC for high dimension and multi-source data in this study. SVM classifier tended to produce higher overall accuracy and reduce scattered patches although it costs more time than MLC. The best result was obtained by combining MNF components and DSM in SVM classifier. This study offered a precision species distribution survey solution for inaccessible wetland area with low cost of time and labour. In addition, findings relevant to the positive effect of DSM as well as spectral feature identification indicated that the utility of UAV-borne hyperspectral and photogrammetry deriving 3D data is promising in further research on wetland species such as bio-parameters modelling and biological invasion monitoring.Keywords: digital surface model (DSM), feature reduction, hyperspectral, photogrammetric point cloud, species mapping, unmanned aerial vehicle (UAV)
Procedia PDF Downloads 2572000 Poly(S/DVB)HIPE Filled with Cellulose from Water Hyacinth
Authors: Metinee Kawsomboon, Thanchanok Tulaphol, Manit Nithitanakul, Jitima Preechawong
Abstract:
PolyHIPE is a porous polymeric material from polymerization of high internal phase emulsion (HIPE) which contains 74% of internal phase (disperse phase) and 26 % of external phase (continues phase). Typically, polyHIPE was prepared from styrene (S) and divinylbenzene (DVB) and they were used in various kind of applications such as catalyst support, gas adsorption, separation membranes, and tissue engineering scaffolds due to high specific surface areas, high porousity, ability to adsorb large quantities of liquid. In this research, cellulose from water hyacinth (Eichornia Crassipes), an aquatic plant that grows and spread rapidly in rivers and waterways in Thailand was added into polyHIPE to increase mechanical property of polyHIPE. Addition of unmodified and modified cellulose to poly(S/DVB)HIPE resulting in a decrease in the surface area and thermal stability of the resulting materials. Mechanical properties of the resulting polyHIPEs filled with both unmodified and modified cellulose exhibited higher compressive strength and Young’s modulus by 146.3% and 162.5% respectively, compared to unfilled polyHIPEs. The water adsorption capacity of filled polyHIPE was also improved.Keywords: porous polymer, PolyHIPE, cellulose, surface modification, water hyacinth
Procedia PDF Downloads 1421999 Feedback from a Service Evaluation of a Modified Intrauterine Device Insertor: A First Step to a Changement of the Standard of Iud Insertion Procedure
Authors: Desjardin, Michaels, Martinez, Ulmann
Abstract:
Copper IUD is one of the most efficient and cost-effective contraception. However, pain at insertion hampers the use of this method. This is especially unfortunate in nulliparous women, often younger, who are excellent candidates for this contraception, including Emergency Contraception. Standard insertion procedure of a copper IUD usually involves measurement of uterine cavity with an hysterometer and the use of a tenaculum in order to facilitate device insertion. Both procedures lead to patient pain which often constitutes a limitation of the method. To overcome these issues, we have developed a modified insertor combined with a copper IUD. The singular design of the inserter includes a flexible inflatable membrane technology allowing an easy access to the uterine cavity even in case of abnormal uterine positions or narrow cervical canal. Moreover, this inserter makes possible a direct IUD insertion with no hysterometry and no need for tenaculum. To assess device effectiveness and patient-reported pain, a study was conducted at two clinics in Fance with 31 individuals who wanted to use a copper IUD as contraceptive method. IUD insertions have been performed by four healthcare providers. Operators completed questionnaire and evaluated effectiveness of the procedure (including IUD correct fundal placement and other usability questions) as their satisfaction. Patient also completed questionnaire and pain during procedure was measured on a 10-cm Visual Analogue Scale (VAS). Analysis of the questionnaires indicates that correct IUD placement took place in more than 93% of women, which is a standard efficacy rate. It also demonstrates that IUD insertion resulted in no, light or moderate pain predominantly in nulliparous women. No insertion resulted in severe pain (none above 6cm on a 10-cm VAS). This translated by a high level of satisfaction from both patients and practitioners. In addition, this modified inserter allowed a simplification of the insertion procedure: correct fundal placement was ensured with no need for hysterometry (100%) prior to insertion nor for cervical tenaculum to pull on the cervix (90%). Avoidance of both procedures contributed to the decrease in pain during insertion. Taken together, the results of the study demonstrate that this device constitutes a significant advance in the use of copper IUDs for any woman. It allows a simplification of the insertion procedure: there is no need for pre-insertion hysterometry and no need for traction on the cervix with tenaculum. Increased comfort during insertion should allow a wider use of the method for nulliparous women and for emergency contraception. In addition, pain is often underestimated by practitioners, but fear of pain is obviously one of the blocking factors as indicated by the analysis of the questionnaire. This evaluation brings interesting information on the use of this modified inserter for standard copper IUD and promising perspectives to set up a changement in the standard of IUD insertion procedure.Keywords: contraceptio, IUD, innovation, pain
Procedia PDF Downloads 841998 Effective Virtual Tunnel Shape for Motion Modification in Upper-Limb Perception-Assist with a Power-Assist Robot
Authors: Kazuo Kiguchi, Kouta Ikegami
Abstract:
In the case of physically weak persons, not only motor abilities, but also sensory abilities are sometimes deteriorated. The concept of perception-assist has been proposed to assist the sensory ability of the physically weak persons with a power-assist robot. Since upper-limb motion is very important in daily living, perception-assist for upper-limb motion has been proposed to assist upper-limb motion in daily living. A virtual tunnel was applied to modify the user’s upper-limb motion if it was necessary. In this paper, effective shape of the virtual tunnel which is applied in the perception-assist for upper-limb motion is proposed. Not only the position of the grasped tool but also the angle of the grasped tool are modified if it is necessary. Therefore, the upper-limb motion in daily living can be effectively modified to realize certain proper daily motion. The effectiveness of the proposed virtual tunnel was evaluated by performing the experiments.Keywords: motion modification, power-assist robots, perception-assist, upper-limb motion
Procedia PDF Downloads 2411997 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model
Authors: Jian Yang, Atsushi Yagi
Abstract:
Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems
Procedia PDF Downloads 1601996 Characterization of the Ignitability and Flame Regression Behaviour of Flame Retarded Natural Fibre Composite Panel
Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari
Abstract:
Natural fibre composites (NFC) are becoming very attractive especially for automotive interior and non-structural building applications because they are biodegradable, low cost, lightweight and environmentally friendly. NFC are known to release high combustible products during exposure to heat atmosphere and this behaviour has raised concerns to end users. To improve on their fire response, flame retardants (FR) such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) are incorporated during processing to delay the start and spread of fire. In this paper, APP was modified with Gum Arabic powder (GAP) and synergized with carbon black (CB) to form new FR species. Four FR species at 0, 12, 15 and 18% loading ratio were added to oil palm fibre polyester composite (OPFC) panels as follows; OPFC12%APP-GAP, OPFC15%APP-GAP/CB, OPFC18%ATH/APP-GAP and OPFC18%ATH/APPGAP/CB. The panels were produced using hand lay-up compression moulding and cured at room temperature. Specimens were cut from the panels and these were tested for ignition time (Tig), peak heat released rate (HRRp), average heat release rate (HRRavg), peak mass loss rate (MLRp), residual mass (Rm) and average smoke production rate (SPRavg) using cone calorimeter apparatus as well as the available flame energy (ɸ) in driving the flame using radiant panel flame spread apparatus. From the ignitability data obtained at 50 kW/m2 heat flux (HF), it shows that the hybrid FR modified with APP that is OPFC18%ATH/APP-GAP exhibited superior flame retardancy and the improvement was based on comparison with those without FR which stood at Tig = 20 s, HRRp = 86.6 kW/m2, HRRavg = 55.8 kW/m2, MLRp =0.131 g/s, Rm = 54.6% and SPRavg = 0.05 m2/s representing respectively 17.6%, 67.4%, 62.8%, 50.9%, 565% and 62.5% improvements less than those without FR (OPFC0%). In terms of flame spread, the least flame energy (ɸ) of 0.49 kW2/s3 for OPFC18%ATH/APP-GAP caused early flame regression. This was less than 39.6 kW2/s3 compared to those without FR (OPFC0%). It can be concluded that hybrid FR modified with APP could be useful in the automotive and building industries to delay the start and spread of fire.Keywords: flame retardant, flame regression, oil palm fibre, composite panel
Procedia PDF Downloads 1281995 A Modified Periodic 2D Cellular Re-Entrant Honeycomb Model to Enhance the Auxetic Elastic Properties
Authors: Sohaib Z. Khan, Farrukh Mustahsan, Essam R. I. Mahmoud, S. H. Masood
Abstract:
Materials or structures that contract laterally on the application of a compressive load and vice versa are said to be Auxetic materials which exhibit Negative Poisson’s Ratio (NPR). Numerous auxetic structures are proposed in the literature. One of the most studied periodic auxetic structure is the re-entrant honeycomb model. In this paper, a modified re-entrant model is proposed to enhance the auxetic behavior. The paper aimed to investigate the elastic behaviour of the proposed model to improve Young’s modulus and NPR by evaluating the analytical model. Finite Element Analysis (FEA) is also conducted to support the analytical results. A significant increment in Young’s modulus and NPR can be achieved in one of the two orthogonal directions of the loading at the cost of compromising these values in other direction. The proposed modification resulted in lower relative densities when compared to the existing re-entrant honeycomb structure. A trade-off in the elastic properties in one direction at low relative density makes the proposed model suitable for uni-direction applications where higher stiffness and NPR is required, and strength to weight ratio is important.Keywords: 2D model, auxetic materials, re-entrant honeycomb, negative Poisson's ratio
Procedia PDF Downloads 1381994 Ultradrawing and Ultimate Pensile Properties of Ultra-High Molecular Weight Polyethylene Nanocomposite Fibers Filled with Cellulose Nanofibers
Authors: Zhong-Dan Tu, Wang-Xi Fan, Yi-Chen Huang, Jen-Taut Yeh
Abstract:
Novel ultrahigh molecular weight polyethylene (UHMWPE)/cellulose nanofiber (CNF) (F100CNFy) and UHMWPE/modified cellulose nanofiber (MCNF) (F100MCNFxy) as-prepared nanocomposite fibers were prepared by spinning F100CNFy and F100MCNFxy gel solutions, respectively. Cellulose nanofibers were successfully prepared by proper acid treatment of cotton fibers using sulfuric acid solutions. The best prepared CNF is with specific surface areas around 120 m2/g and a nanofiber diameter of 20 nm. Modified cellulose nanofiber was prepared by grafting maleic anhydride grafted polyethylene (PE-g-MAH) onto cellulose nanofibers. The achievable draw ratio (Dra) values of each F100MCNFxy as-prepared fiber series specimens approached a maximal value as their MCNF contents reached the optimal value at 0.05 phr. In which, the maximum Dra value obtained for F100MCNFx0.05 as-prepared fiber specimen prepared at the optimal MCNF content reached another maximum value as the weight ratio of PE-g-MAH to CNF approach an optimal value at 6. Similar to those found for the achievable drawing properties of the as-prepared fibers, the orientation factor, tensile strength (σ f) and initial modulus (E) values of drawn F100MCNF6y fiber series specimens with a fixed draw ratio reach a maximal value as their MCNF contents approach the optimal value, wherein the σ f and E values of the drawn F100MCNFxy fiber specimens are significantly higher than those of the drawn F100 fiber specimens and corresponding drawn F100CNFy fiber specimens prepared at the same draw ratios and CNF contents but without modification. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F100CNFy and F100MCNFxy fiber specimens, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of the original and modified CNF nanofillers were performed in this study.Keywords: ultradrawing, cellulose nanofibers, ultrahigh molecular weight polyethylene, nanocomposite fibers
Procedia PDF Downloads 2111993 Modified Plastic-Damage Model for FRP-Confined Repaired Concrete Columns
Authors: I. A Tijani, Y. F Wu, C.W. Lim
Abstract:
Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.Keywords: Concrete, FRP, Damage, Repairing, Plasticity, and Finite element method
Procedia PDF Downloads 1371992 Application of Voltammetry as a Non-Destructive Tool to Quantify Cathodic Protection of Steel in Simulated Soil Solution
Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi
Abstract:
Cathodic protection (CP) has been widely considered as a suitable technique for mitigating corrosion of steel structures buried in soil. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. This study was aimed at using a specifically modified voltammetry approach as a non-destructive tool to monitor and quantify the effectiveness of CP of steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for four days before applying CP for further 11 days. A specifically modified voltammetry technique was applied at various time intervals of the experiment to monitor the corrosion behaviour and therefore reflect CP effectiveness. The voltammetry results revealed that the application of CP reduced the corrosion rate from the highest value of 410 µm/yr to 8 µm/yr between days 5 and 14 of the experiments. The microstructural analysis of the steel surface performed using x-ray diffraction identified calcareous deposit as the dominant phase protecting the surface from corrosion. It was deduced that the formation of calcareous deposits was linked with the effectiveness of CP of steel.Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, XRD
Procedia PDF Downloads 681991 An Application of Contingent Valuation Method in Valuing Protected Area: A Case Study of Pulau Kukup National Parks
Authors: A. Mukrimah, M. Mohd Parid, H. F. Lim
Abstract:
Wetland ecosystem has valuable resources that contribute to national income generation and public well-being, either directly by resources that have a market value or indirectly by resources that have no market value. Economic approach is used to evaluate the resources to determine the best use of wetland resources and should be emphasized in policy development planning. This approach is to prevent imbalance in the allocation of resources and welfare benefits. A case study was conducted in 2016 to assess the economic value of wetland ecosystem services at Pulau Kukup National Parks (PKNP). This study has applied dichotomous choice survey design Contingent Valuation Method (CVM) to investigate empirically the willingness-to-pay (WTP) by the public. The study interviewed 400 household respondents at Pontian, Johor. Analysis showed 81% of household interviewed were willing to contribute to the Wetland Conservation Trust Fund. The results also indicated that on average a household was willing to pay RM87 annually. By taking into account 21,664 households in Pontian district in 2016, public’s contribution to conserves wetland ecosystem at PKNP was calculated to be RM1, 884,334. From the public’s interest to contribute to the conservation of wetland ecosystem services at PKNP, it indicates that more concerted effort is needed by both the federal and state governments to conserve and rehabilitate the mangrove ecosystem in Malaysia.Keywords: environmental economy, economic valuation, choice experiment, Pulau Kukup national parks
Procedia PDF Downloads 1901990 Catalytic Combustion of Methane over Pd-Meox-CeO₂/Al₂O₃ (Me= Co or Ni) Catalysts
Authors: Silviya Todorova, Anton Naydenov, Ralitsa Velinova, Alexander Larin
Abstract:
Catalytic combustion of methane has been extensively investigated for emission control and power generation during the last decades. The alumina-supported palladium catalyst is widely accepted as the most active catalysts for catalytic combustion of methane. The activity of Pd/Al₂O₃ decreases during the time on stream, especially underwater vapor. The following order of activity in the reaction of complete oxidation of methane was established: Co₃O₄> CuO>NiO> Mn₂O₃> Cr₂O₃. It may be expected that the combination between Pd and these oxides could lead to the promising catalysts in the reaction of complete methane. In the present work, we investigate the activity of Pd/Al₂O₃ catalysts promoted with other metal oxides (MOx; M= Ni, Co, Ce). The Pd-based catalysts modified by metal oxide were prepared by sequential impregnation of Al₂O₃ with aqueous solutions of Me(NO₃)₂.6H₂O and Pd(NO₃)₂H₂O. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). An improvement of activity was observed after modification with different oxides. The results demonstrate that the Pd/Al₂O₃ catalysts modified with Co and Ce by impregnation with a common solution of respective salts, exhibit the most promising catalytic activity for methane oxidation. Most probably, the presence of Co₃O₄ and CeO₂ on catalytic surface increases surface oxygen and therefore leads to the better reactivity in methane combustion.Keywords: methane combustion, palladium, Co-Ce, Ni-Ce
Procedia PDF Downloads 1861989 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran
Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi
Abstract:
Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.Keywords: crop coefficient, remote sensing, vegetation indices, wheat
Procedia PDF Downloads 4121988 Mechanical Properties of Ordinary Portland Cement Modified Cold Bitumen Emulsion Mixture
Authors: Hayder Kamil Shanbara, Felicite Ruddock, William Atherton, Nassier A. Nassir
Abstract:
Cold bitumen emulsion mixture (CBEM) offers a series benefits as compared with hot mix asphalt (HMA); these include environmental factors, energy saving, the resolution of logistical challenges that can characterise hot mix, and the potential to reserve funds. However, this mixture has some problems similar to any bituminous mixtures as it has low early strength, long curing time that needed to obtain the maximum performance, high air voids and considered inferior to HMA. Thus, CBEM has been used in limited applications such as lightly trafficked roads, footways and reinstatements. This laboratory study describes the development of CBEM using ordinary Portland cement (OPC) instead of the traditional mineral filler. Stiffness modulus, moisture damage and temperature sensitivity tests were used to evaluate the mechanical properties of the produced mixtures. The study concluded that there is a substantial improvement in the mechanical properties and moisture damage resistance of CBEMs containing OPC. Also, the produced cement modified CBEM shows a considerable lower thermal sensitivity than the conventional CBEM.Keywords: cold bitumen emulsion mixture, moisture damage, OPC, stiffness modulus, temperature sensitivity
Procedia PDF Downloads 2611987 Magnetic Nanoparticles Coated with Modified Polysaccharides for the Immobilization of Glycoproteins
Authors: Kinga Mylkie, Pawel Nowak, Marta Z. Borowska
Abstract:
The most important proteins in human serum responsible for drug binding are human serum albumin (HSA) and α1-acid glycoprotein (AGP). The AGP molecule is a glycoconjugate containing a single polypeptide chain composed of 183 amino acids (the core of the protein), and five glycan branched chains (sugar part) covalently linked by an N-glycosidic bond with aspartyl residues (Asp(N) -15, -38, -54, -75, - 85) of polypeptide chain. This protein plays an important role in binding alkaline drugs, a large group of drugs used in psychiatry, some acid drugs (e.g., coumarin anticoagulants), and neutral drugs (steroid hormones). The main goal of the research was to obtain magnetic nanoparticles coated with biopolymers in a chemically modified form, which will have highly reactive functional groups able to effectively immobilize the glycoprotein (acid α1-glycoprotein) without losing the ability to bind active substances. The first phase of the project involved the chemical modification of biopolymer starch. Modification of starch was carried out by methods of organic synthesis, leading to the preparation of a polymer enriched on its surface with aldehyde groups, which in the next step was coupled with 3-aminophenylboronic acid. Magnetite nanoparticles coated with starch were prepared by in situ co-precipitation and then oxidized with a 1 M sodium periodate solution to form a dialdehyde starch coating. Afterward, the reaction between the magnetite nanoparticles coated with dialdehyde starch and 3-aminophenylboronic acid was carried out. The obtained materials consist of a magnetite core surrounded by a layer of modified polymer, which contains on its surface dihydroxyboryl groups of boronic acids which are capable of binding glycoproteins. Magnetic nanoparticles obtained as carriers for plasma protein immobilization were fully characterized by ATR-FTIR, TEM, SEM, and DLS. The glycoprotein was immobilized on the obtained nanoparticles. The amount of mobilized protein was determined by the Bradford method.Keywords: glycoproteins, immobilization, magnetic nanoparticles, polysaccharides
Procedia PDF Downloads 1301986 Clinical and Radiographic Evaluation of Split-Crest Technique by Ultrasonic Bone Surgery Combined with Platelet Concentrates Prior to Dental Implant Placement
Authors: Ahmed Mohamed El-Shamy, Akram Abbas El-Awady, Mahmoud Taha Eldestawy
Abstract:
Background: The present study was to evaluate clinically and radiographically the combined effect of split crest technique by ultrasonic bone surgery and platelet concentrates in implant site development. Methods: Forty patients with narrow ridge were participated in this study. Patients were assigned randomly into one of the following four groups according to treatment: Group 1: Patients received split-crest technique by ultrasonic bone surgery with implant placement. Group 2: Patients received split-crest technique by ultrasonic bone surgery with implant placement and PRF. Group 3: Patients received split-crest technique by ultrasonic bone surgery with implant placement and PRP. Group 4: Patients received split-crest technique by ultrasonic bone surgery with implant placement and collagen membrane. Modified plaque index, modified sulcus bleeding index, and implant stability were recorded as a baseline and measured again at 3 and 6 months. CBCT scans were taken immediately after surgery completion and at 9 months to evaluate bone density at the bone-implant interface. Results after 6 months; collagen group showed statistically significantly lower mean modified bleeding index than the other groups. After 3 months, the PRF group showed statistically significantly higher mean implant stability with ostell ISQ units' than the other groups. After 6 months, the PRF group showed statistically significantly higher mean implant stability with ostell ISQ units' than the other groups. After 6 months, the PRF group showed statistically significantly higher mean bone density than the collagen group. Conclusion: Ultrasonic bone surgery in split-crest technique can be a successful option for increasing implant stability values throughout the healing period. The use of a combined technique of ultrasonic bone surgery with PRF and simultaneous implant placement potentially improves osseointegration (bone density). PRF membranes represent advanced technology for the stimulation and acceleration of bone regeneration.Keywords: dental implants, split-crest, PRF, PRP
Procedia PDF Downloads 1621985 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips
Authors: R. Ziaie Moayed, M. Hamidzadeh
Abstract:
The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.Keywords: improvement, shear strength, internal friction angle, sandy soil, rubber chip
Procedia PDF Downloads 1451984 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow
Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng
Abstract:
The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.Keywords: area-based traffic, car-following model, micro-simulation, stochastic modeling
Procedia PDF Downloads 1471983 Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites
Authors: Marianna I. Triantou, Petroula A. Tarantili
Abstract:
In this research work, poly (acrylonitrile-butadiene-styrene)/polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.Keywords: acrylonitrile, butadiene, styrene terpolymer, compatibilizer, organoclay, polypropylene
Procedia PDF Downloads 3211982 Investigation of Glacier Activity Using Optical and Radar Data in Zardkooh
Authors: Mehrnoosh Ghadimi, Golnoush Ghadimi
Abstract:
Precise monitoring of glacier velocity is critical in determining glacier-related hazards. Zardkooh Mountain was studied in terms of glacial activity rate in Zagros Mountainous region in Iran. In this study, we assessed the ability of optical and radar imagery to derive glacier-surface velocities in mountainous terrain. We processed Landsat 8 for optical data and Sentinel-1a for radar data. We used methods that are commonly used to measure glacier surface movements, such as cross correlation of optical and radar satellite images, SAR tracking techniques, and multiple aperture InSAR (MAI). We also assessed time series glacier surface displacement using our modified method, Enhanced Small Baseline Subset (ESBAS). The ESBAS has been implemented in StaMPS software, with several aspects of the processing chain modified, including filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing atmospheric noise, and removing the ramp caused by ionosphere turbulence and/or orbit errors. Our findings indicate an average surface velocity rate of 32 mm/yr in the Zardkooh mountainous areas.Keywords: active rock glaciers, landsat 8, sentinel-1a, zagros mountainous region
Procedia PDF Downloads 771981 Determination of Starting Design Parameters for Reactive-Dividing Wall Distillation Column Simulation Using a Modified Shortcut Design Method
Authors: Anthony P. Anies, Jose C. Muñoz
Abstract:
A new shortcut method for the design of reactive-dividing wall columns (RDWC) is proposed in this work. The RDWC is decomposed into its thermodynamically equivalent configuration naming the Petlyuk column, which consists of a reactive prefractionator and an unreactive main fractionator. The modified FUGK(Fenske-Underwood-Gilliland-Kirkbride) shortcut distillation method, which incorporates the effect of reaction on the Underwood equations and the Gilliland correlation, is used to design the reactive prefractionator. On the other hand, the conventional FUGK shortcut method is used to design the unreactive main fractionator. The shortcut method is applied to the synthesis of dimethyl ether (DME) through the liquid phase dehydration of methanol, and the results were used as the starting design inputs for rigorous simulation in Aspen Plus V8.8. A mole purity of 99 DME in the distillate stream, 99% methanol in the side draw stream, and 99% water in the bottoms stream were obtained in the simulation, thereby making the proposed shortcut method applicable for the preliminary design of RDWC.Keywords: aspen plus, dimethyl ether, petlyuk column, reactive-dividing wall column, shortcut method, FUGK
Procedia PDF Downloads 1931980 Reconstruction of Holographic Dark Energy in Chameleon Brans-Dicke Cosmology
Authors: Surajit Chattopadhyay
Abstract:
Accelerated expansion of the current universe is well-established in the literature. Dark energy and modified gravity are two approaches to account for this accelerated expansion. In the present work, we consider scalar field models of dark energy, namely, tachyon and DBI essence in the framework of chameleon Brans-Dicke cosmology. The equation of state parameter is reconstructed and the subsequent cosmological implications are studied. We examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields and we have seen that quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. In the subsequent phase, we have established a correspondence between the NHDE model and the quintessence, the DBI-essence and the tachyon scalar field models in the framework of chameleon Brans–Dicke cosmology. We reconstruct the potentials and the dynamics for these three scalar field models we have considered. The reconstructed potentials are found to increase with the evolution of the universe and in a very late stage they are observed to decay.Keywords: dark energy, holographic principle, modified gravity, reconstruction
Procedia PDF Downloads 4121979 Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode
Authors: Meareg Amare, Senait Aklog
Abstract:
Lignin film was deposited at the surface of the glassy carbon electrode potential-statically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at the modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10⁻⁶ to 100 × 10⁻⁶ mol L⁻¹ with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10⁻⁷ mol L⁻¹, respectively, supplemented by recovery results of 93.79–102.17%, validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected, confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.Keywords: electrochemical, lignin, caffeine, electrode
Procedia PDF Downloads 1191978 Numerical Study of Trailing Edge Serrations on a Wells Turbine
Authors: Abdullah S. AlKhalifa, Mohammad Nasim Uddin, Michael Atkinson
Abstract:
The primary objective of this investigation is to explore the aerodynamic impact of adding trailing edge serrations to a Wells turbine. The baseline turbine consists of eight blades with NACA 0015 airfoils. The blade chord length was 0.125 m, and the span was 0.100 m. Two modified NACA 0015 serrated configurations were studied: 1) full-span and 2) partial span serrations covering the trailing edge from hub to tip. Numerical simulations were carried out by solving the three-dimensional, incompressible steady-state Reynolds Averaged Navier-Stokes (RANS) equations using the k-ω SST turbulence model in ANSYS™ (CFX). The aerodynamic performance of the modified Wells turbine to the baseline was made by comparing non-dimensional parameters of torque coefficient, pressure drop coefficient, and turbine efficiency. A comparison of the surface limiting streamlines was performed to analyze the flow topology of the turbine blades. The trailing edge serrations generated a substantial change in surface pressure and effectively reduced the separated flow region, thus improving efficiency in most cases. As a result, the average efficiency increased across the range of simulated flow coefficients.Keywords: renewable energy, trailing edge serrations, Wells turbine, partial serration
Procedia PDF Downloads 1011977 Cartagena Protocol and Beyond: Issues and Challenges in the Nigeria's Response to Biosafety
Authors: Dalhat Binta Dan - Ali
Abstract:
The reality of the new world economic order and the ever increasing importance of biotechnology in the global economy have necessitated the ratification of the Cartagena Protocol on Biosafety and the recent promulgation of Biosafety Act in Nigeria 2015. The legal regimes are anchored on the need to create an enabling environment for the flourishing of bio-trade and also to ensure the safety of the environment and human health. This paper critically examines the legal framework on biosafety by taking a cursory look at its philosophical foundation, key issues and milestones. The paper argues that the extant laws, though a giant leap in the establishment of a legal framework on biosafety, it posits that the legal framework raises debate and controversy on the difficulties of risk assessment on biodiversity and human health, other challenges includes lack of sound institutional capacity and the regimes direction of a hybrid approach between environmental conservation and trade issues. The paper recommend the need for the country to do more in the area of stimulating awareness and establishment of a sound institutional capacity to enable the law ensure adequate level of protection in the field of safe transfer, handling, and use of genetically modified organisms (GMOs) in Nigeria.Keywords: Cartagena protocol, biosafety, issues, challenges, biotrade, genetically modified organism (GMOs), environment
Procedia PDF Downloads 3261976 Modification of Polyolefin Membrane Using Supercritical Carbon Dioxide for Redox Flow Batteries
Authors: Vadim V. Zefirov, Victor E. Sizov, Marina A. Pigaleva, Igor V. Elmanovich, Mikhail S. Kondratenko, Marat O. Gallyamov
Abstract:
This work presents a novel method for treating porous hydrophobic polyolefin membranes using supercritical carbon dioxide that allows usage of the modified membrane in redox flow batteries with an aqueous electrolyte. Polyolefin membranes are well known and widely used, however, they cannot be used as separators in redox flow batteries with an aqueous electrolyte since they have insufficient wettability, and therefore do not provide sufficient proton conductivity. The main aim of the presented work was the development of hydrophilic composites based on cheap membranes and precursors. Supercritical fluid was used as a medium for the deposition of the hydrophilic phase on the hydrophobic surface of the membrane. Due to the absence of negative capillary effects in a supercritical medium, a homogeneous composite is obtained as a result of synthesis. The in-situ synthesized silicon oxide nanoparticles and the chitosan polymer layer act as the hydrophilic phase and not only increase the affinity of the membrane towards the electrolyte, but also reduce the pore size of the polymer matrix, which positively affects the ion selectivity of the membrane. The composite material obtained as a result of synthesis has enhanced hydrophilic properties and is capable of providing proton conductivity in redox flow batteries. The morphology of the obtained composites was characterized by electron microscopy. To analyze the phase composition, infrared spectroscopy was used. The hydrophilic properties were studied by water contact angle measurements. In addition, the proton conductivity and ion selectivity of the obtained samples were studied, and tests in real redox flow batteries were performed. As a result, modified membrane was characterised in detail and moreover it was shown that modified cheap polyolefin membranes have pronounced proton conductivity and high ion selectivity, so their performance in a real redox flow battery approaches expensive commercial analogues, reaching 70% of energy efficiency.Keywords: carbon dioxide, chitosan, polymer membrane, redox flow batteries, silica nanoparticles, supercritical fluid
Procedia PDF Downloads 1531975 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search
Authors: D. S. Naumann, B. J. Evans, O. Hassan
Abstract:
This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation
Procedia PDF Downloads 3371974 Numerical Analysis of Bearing Capacity of Caissons Subjected to Inclined Loads
Authors: Hooman Dabirmanesh, Mahmoud Ghazavi, Kazem Barkhordari
Abstract:
A finite element modeling for determination of the bearing capacity of caissons subjected to inclined loads is presented in this paper. The model investigates the uplift capacity of the caisson with varying cross sectional area. To this aim, the behavior of the soil is assumed to be elasto-plastic, and its failure is controlled by Modified Cam-Clay failure criterion. The simulation takes into account the couple analysis. The approach is verified using available data from other research work especially centrifuge data. Parametric studies are subsequently performed to investigate the effect of contributing parameters such as aspect ratio of the caisson, the loading rate, the loading direction angle, and points where the external load is applied. In addition, the influence of the caisson geometry is taken into account. The results show the bearing capacity of the caisson increases with increasing the taper angle. Hence, the pullout capacity will increase using the same material. In addition, the bearing capacity of caissons strongly depends on the suction that is generated at tip and in sealed surface on top of caisson. Other results concerning the influencing factors will be presented.Keywords: aspect ratio, finite element method, inclined load, modified Cam clay, taper angle, undrained condition
Procedia PDF Downloads 263