Search results for: long-term variability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 939

Search results for: long-term variability

429 Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA

Authors: Siti Aishah Hasbullah

Abstract:

Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA.

Keywords: gold, screen printed electrode, ruthenium, porcine DNA

Procedia PDF Downloads 304
428 Evidence of Total Mercury Biomagnification in Tropical Estuary Lagoon in East Coast of Peninsula, Malaysia

Authors: Quang Dung Le, Kentaro Tanaka, Viet Dung Luu, Kotaro Shirai

Abstract:

Mercury pollutant is great concerns in globe due to its toxicity and biomagnification through the food web. Recently increasing approaches of stable isotope analyses which have applied in food-web structure are enabled to elucidate more insight trophic transfer of pollutants in ecosystems. In this study, the integration of total mercury (Hg) and stable isotopic analyses (δ13C and δ15N) were measured from basal food sources to invertebrates and fishes in order to determine Hg transfer in Setiu lagoon food webs. The average Hg concentrations showed the increasing trend from low to high trophic levels. The result also indicated that potential Hg exposure from inside mangrove could be higher than that from the tidal flat of mangrove creek. Fish Hg concentrations are highly variable, and many factors driving this variability need further examinations. A positive correlation found between Hg concentrations and δ15N values (the trophic magnification factor was 3.02), suggesting Hg biomagnification through the lagoon food web. Almost all Hg concentrations in fishes and mud crabs did not present a risk for human consumption, however, the Hg concentrations of Caranx ignobilis exceed the permitted level could raise a concern of the potential risk for the marine system. Further investigations should be done to elucidate whether trophic relay relates to high Hg concentrations of some fish species in coastal systems.

Keywords: mercury, transfer, stable isotopes, health risk, mangrove, food web

Procedia PDF Downloads 303
427 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 19
426 Sustainable and Aesthetic Features of Traditional Architectures in Central Part of Iran

Authors: Azadeh Rezafar

Abstract:

Iran is one of the oldest countries with traditional culture in the world. All over the history Iranians had traditional architectural designs, which were at the same time sustainable, ecological, functional and environmental consistent. These human scale architectures were built for maximum use, comfort, climate adaptation with available resources and techniques. Climate variability of the country caused developing of variety design methods. More of these methods such as windcatchers in Yazd City or Panam (Insulation) were scientific solutions at the same time. Renewable energy resources were used in these methods that featured in them. While climate and ecological issues were dominant parts of these traditional designs, aesthetic and beauty issues were not ignored. Conformity with the community’s culture caused more compact designs that the visual aesthetics of them can be seen inside of them. Different organizations of space were used for these visual aesthetic issues inside the houses as well as historical urban designs. For example dry and hot climates in central parts of the country designed with centralized organization. Most central parts of these designs functioned as a courtyard for temperate the air in the summer. This paper will give summary descriptive information about traditional Iranian architectural style by figures all around the country with different climate conditions, while focus of the paper is traditional architectural design of the central part of the country, with dry and hot climate condition. This information may be useful for contemporary architectural designs, which are designed without noticing to the vernacular condition and caused cities look like each other.

Keywords: architectural design, traditional design, Iran, sustainability

Procedia PDF Downloads 214
425 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics

Authors: Bulcha Belay Etana

Abstract:

Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring application

Keywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven

Procedia PDF Downloads 127
424 Landfill Failure Mobility Analysis: A Probabilistic Approach

Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed

Abstract:

Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.

Keywords: landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type

Procedia PDF Downloads 285
423 The Variation of the Inferior Gluteal Artery Origin in United Kingdom Population

Authors: Waseem Al Talalwah, Shorok Ali Al Dorazi, Roger Soames

Abstract:

The inferior gluteal artery is a largest branch of the anterior division of internal iliac artery. It escapes from the pelvic cavity through the greater sciatic foramen below the lower edge of piriformis. In gluteal region, it provides several muscular branches to gluteal maximus and articular branch to hip joint. Further, it provides sciatic branch to sciatic nerve. Present study explores the origin of the inferior gluteal artery of 41 cadavers in Centre for Anatomy and Human Identification, University of Dundee, UK. It arose directly from the anterior division of internal iliac artery in 39% and 45.7% indirectly as with the internal pudendal artery. Further, it arose indirectly from anterior division with internal pudendal and obturator arteries in 1.5% referred as obturatogluteopudendal trunk in 1.5%. Therefore, it arose from the anterior division of the internal iliac artery in 86.2%. However, it found to be as a branch of the posterior division of internal iliac artery in 7.7% which is either a direct branch in 6.2% as or indirect branch (as from the sciatic artery) in 1.5%. It neither arose from anterior or posterior division in 1.5% as from gluteopudendal trunk arising from the internal iliac artery bifurcation site. In few cases, the inferior gluteal artery found to be congenital absence in 4.6% which is compensated by the persistent sciatic artery. Therefore, radiologists have to aware of the origin variability of the inferior gluteal artery to alert surgeons. Knowing the origin of the inferior gluteal artery may help the surgeons to avoid iatrogenic sciatic neuropathy or gluteal claudication due to prolonged ligation in pelvic procedures such as removing prostate or of uterine fibroid.

Keywords: inferior gluteal artery, internal pudendal, sciatic nerve, sciatic artery, gluteal claudication, sciatic neuopathy

Procedia PDF Downloads 673
422 Evaluation of Drought Tolerant Sunflower Hybrids Indicated Their Broad Adaptability Under Stress Environment

Authors: Saeed Rauf

Abstract:

Purpose: Drought stress is a major production constraint in sunflowers and causes yield losses under tropical and subtropical environments having high evapo-tranpirational losses. Given the consequences, three trials were designed to evaluate drought-resistant sunflower hybrids. Research Methods: Field trials were conducted under a split-plot arrangement with 17 hybrids and two contrasting regimes at Sargodha, Pakistan and 7 hybrids at Karj, Iran. Water stress condition was simulated by holding water in a stress regime. Hybrids were also screened against five levels of osmotic-ally induced stress, i.e. 0-15%, under a completely randomized design with 3 replications. Findings: Hybrids H1 (C.112.× RH.344) and H3 (C.112.× RSIN.82) showed the highest seed yield ha-1 and early flowering at Karj Iran. Commercial hybrid had the highest CTD (18.2°C) followed by C112 × RH.344 (17.29 °C). Hybrid C.250 × R.SIN.82 had the highest seed yield (m-2), followed by C.112 × RH.365 and C.124 × RSIN.82 under both stress and non-stress regimes at Sargodha, Pakistan. Seedling trial results showed that 6 hybrids only germinated in 5 and 7.5% PEG-induced osmotic stress, respectively. H1 (C.112 × RH.344) and H2 (C.112 × RH.347) had the highest germination% at 5% and 7.5% osmotic stress (OS). Seedling vigor index (SVI) was the highest in H1 (C.112 × RH.344) hybrids at 5% OS, H2 had the highest SVI under 7.5% OS, followed by H3 (C112 × RH344) and H4 (C116 × RH344). Originality/Value: In view of above results, it was concluded that hybrid combination H1 had the highest seed yield under stress conditions in both environments. High seed yield may be due to its better germination and vigor index under stress conditions.

Keywords: climate change, CTD, genetic variability, osmotic stress

Procedia PDF Downloads 57
421 An Anthropometric and Postural Risk Assessment of Students in Computer Laboratories of a State University

Authors: Sarah Louise Cruz, Jemille Venturina

Abstract:

Ergonomics considers the capabilities and limitations of a person as they interact with tools, equipment, facilities and tasks in their work environment. Workplace is one example of physical work environment, be it a workbench or a desk. In school laboratories, sitting is the most common working posture of the students. Students maintain static sitting posture as they perform different computer-aided activities. The College of Engineering and College of Information and Communication Technology of a State University consist of twenty-two computer laboratories. Normally, students aren’t usually aware of the importance of sustaining proper sitting posture while doing their long hour computer laboratory activities. The study evaluates the perceived discomfort and working postures of students as they are exposed on current workplace design of computer laboratories. The current study utilizes Rapid Upper Limb Assessment (RULA), Body Discomfort Chart using Borg’s CR-10 Scale Rating and Quick Exposure Checklist in order to assess the posture and the current working condition. The result of the study may possibly minimize the body discomfort experienced by the students. The researchers redesign the individual workstations which includes working desk, sitting stool and other workplace design components. Also, the economic variability of each alternative was considered given that the study focused on improvement of facilities of a state university.

Keywords: computer workstation, ergonomics, posture, students, workplace

Procedia PDF Downloads 304
420 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 479
419 Development of Self Emulsifying Drug Delivery Systems (SEDDS) of Anticancer Agents Used in AYUSH System of Medicine for Improved Oral Bioavailability Followed by Their Pharmacological Evaluation Using Biotechnological Techniques

Authors: Meenu Mehta, Munish Garg

Abstract:

The use of oral anticancer drugs from AYUSH system of medicine is widely increased among the society due to their low cost, enhanced efficacy, increased patient preference, lack of inconveniences related to infusion and they provide an opportunity to develop chronic treatment regimens. However, oral delivery of these drugs usually laid down by the limited bioavailability of the drug, which is associated with a wide variation. As most of the cytotoxic agents have a narrow therapeutic window and are dosed at or near the maximum tolerated dose, a wide variability in the bioavailability can negatively affect treatment result. It is estimated that 40% of active substances are poorly soluble in water. The improvement of bio-availability of drugs with such properties presents one of the greatest challenges in drug formulations. There are several techniques reported in literature. Among all these Self Emulsifying Drug Delivery System (SEDDS) has gained more attention due to enhanced oral bio-availability enabling a reduction in dose. Thus, SEDDS anticancer drugs will have the increased bioavailability and efficacy. These dosage form will provide societal benefit in a cost-effective manner as compared to other oral dosage forms. Present study reflects on the formulation strategies as SEDDS for oral anticancer agents of AYUSH system for enhanced bioavailability with proven efficacy by cancer cell lines.

Keywords: anticancer agents, AYUSH system, bioavailability, SEDDS

Procedia PDF Downloads 297
418 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 66
417 A Study of the Establishment of the Evaluation Index System for Tourist Attraction Disaster Resilience

Authors: Chung-Hung Tsai, Ya-Ping Li

Abstract:

Tourism industry is highly depended on the natural environment and climate. Compared to other industries, it is more susceptible to environment and climate. Taiwan belongs to a sea island country and located in the subtropical monsoon zone. The events of climate variability, frequency of typhoons and rainfalls raged are caused regularly serious disaster. In traditional disaster assessment, it usually focuses on the disaster damage and risk assessment, which is short of the features from different industries to understand the impact of the restoring force in post-disaster resilience and the main factors that constitute resilience. The object of this study is based on disaster recovery experience of tourism area and to understand the main factors affecting the tourist area of disaster resilience. The combinations of literature review and interviews with experts are prepared an early indicator system of the disaster resilience. Then, it is screened through a Fuzzy Delphi Method and Analytic Network Process for weight analysis. Finally, this study will establish the tourism disaster resilience evaluation index system considering the Taiwan's tourism industry characteristics. We hope that be able to enhance disaster resilience after tourist areas and increases the sustainability of industrial development. It is expected to provide government departments the tourism industry as the future owner of the assets in extreme climates responses.

Keywords: resilience, Fuzzy Delphi Method, Analytic Network Process, industrial development

Procedia PDF Downloads 394
416 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)

Authors: Stephan Treuke

Abstract:

The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.

Keywords: economic mobility, neighborhood effects, Salvador, segregation

Procedia PDF Downloads 272
415 Estimating of Groundwater Recharge Value for Al-Najaf City, Iraq

Authors: Hayder H. Kareem

Abstract:

Groundwater recharge is a crucial parameter for any groundwater management system. The variability of the recharge rates and the difficulty in estimating this factor in many processes by direct observation leads to the complexity of estimating the recharge value. Various methods are existing to estimate the groundwater recharge, with some limitations for each method to be able for application. This paper focuses particularly on a real study area, Al-Najaf City, Iraq. In this city, there are few groundwater aquifers, but the aquifer which is considered in this study is the closest one to the ground surface, the Dibdibba aquifer. According to the Aridity Index, which is estimated in the paper, Al-Najaf City is classified as a region located in an arid climate, and this identified that the most appropriate method to estimate the groundwater recharge is Thornthwaite's formula or Thornthwaite's method. From the calculations, the estimated average groundwater recharge over the period 1980-2014 for Al-Najaf City is 40.32 mm/year. Groundwater recharge is completely affected the groundwater table level (groundwater head). Therefore, to make sure that this value of recharge is true, the MODFLOW program has been used to apply this value through finding the relationship between the calculated and observed heads where a groundwater model for the Al-Najaf City study area has been built by MODFLOW to simulate this area for different purposes, one of these purposes is to simulate the groundwater recharge. MODFLOW results show that this value of groundwater recharge is extremely high and needs to be reduced. Therefore, a further sensitivity test has been carried out for the Al-Najaf City study area by the MODFLOW program through changing the recharge value and found that the best estimation of groundwater recharge value for this city is 16.5 mm/year where this value gives the best fitting between the calculated and observed heads with minimum values of RMSE % (13.175) and RSS m² (1454).

Keywords: Al-Najaf City, groundwater modelling, recharge estimation, visual MODFLOW

Procedia PDF Downloads 131
414 Risk Analysis in Off-Site Construction Manufacturing in Small to Medium-Sized Projects

Authors: Atousa Khodadadyan, Ali Rostami

Abstract:

The objective of off-site construction manufacturing is to utilise the workforce and machinery in a controlled environment without external interference for higher productivity and quality. The usage of prefabricated components can save up to 14% of the total energy consumption in comparison with the equivalent number of cast-in-place ones. Despite the benefits of prefabrication construction, its current project practices encompass technical and managerial issues. Building design, precast components’ production, logistics, and prefabrication installation processes are still mostly discontinued and fragmented. Furthermore, collaboration among prefabrication manufacturers, transportation parties, and on-site assemblers rely on real-time information such as the status of precast components, delivery progress, and the location of components. From the technical point of view, in this industry, geometric variability is still prevalent, which can be caused during the transportation or production of components. These issues indicate that there are still many aspects of prefabricated construction that can be developed using disruptive technologies. Practical real-time risk analysis can be used to address these issues as well as the management of safety, quality, and construction environment issues. On the other hand, the lack of research about risk assessment and the absence of standards and tools hinder risk management modeling in prefabricated construction. It is essential to note that no risk management standard has been established explicitly for prefabricated construction projects, and most software packages do not provide tailor-made functions for this type of projects.

Keywords: project risk management, risk analysis, risk modelling, prefabricated construction projects

Procedia PDF Downloads 166
413 The impact of Climate Change and Land use/land Cover Change (LUCC) on Carbon Storage in Arid and Semi-Arid Regions of China

Authors: Xia Fang

Abstract:

Arid and semiarid areas of China (ASAC) have experienced significant land-use/cover changes (LUCC), along with intensified climate change. However, LUCC and climate changes and their individual and interactive effects on carbon stocks have not yet been fully understood in the ASAC. This study analyses the carbon stocks in the ASAC during 1980 - 2020 using the specific arid ecosystem model (AEM), and investigates the effects of LUCC and climate change on carbon stock trends. The results indicate that in the past 41 years, the ASAC carbon pool experienced an overall growth trend, with an increase of 182.03 g C/m2. Climatic factors (+291.99 g C/m2), especially the increase in precipitation, were the main drivers of the carbon pool increase. LUCC decreased the carbon pool (-112.27 g C/m2), mainly due to the decrease in grassland area (-2.77%). The climate-induced carbon sinks were distributed in northern Xinjiang, on the Ordos Plateau, and in Northeast China, while the LUCC-induced carbon sinks mainly occurred on the Ordos Plateau and the North China Plain, resulting in a net decrease in carbon sequestration in these regions according to carbon pool measurements. The study revealed that the combination of climate variability, LUCC, and increasing atmospheric CO2 concentration resulted in an increase of approximately 182.03 g C/m2, which was mainly distributed in eastern Inner Mongolia and the western Qinghai-Tibet Plateau. Our findings are essential for improving theoretical guidance to protect the ecological environment, rationally plan land use, and understand the sustainable development of arid and semiarid zones.

Keywords: AEM, climate change, LUCC, carbon stocks

Procedia PDF Downloads 71
412 Management of Diabetics on Hemodialysis

Authors: Souheila Zemmouchi

Abstract:

Introduction: Diabetes is currently the leading cause of end-stage chronic kidney disease and dialysis, so it adds additional complexity to the management of chronic hemodialysis patients. These patients are extremely fragile because of their multiple cardiovascular and metabolic comorbidities. Clear and complete description of the experience: the management of a diabetic on hemodialysis is particularly difficult due to frequent hypoglycaemia and significant inter and perdialyticglycemic variability that is difficult to predict. The aim of our study is to describe the clinical-biological profile and to assess the cardiovascular risk of diabetics undergoing chronic hemodialysis, and compare them with non-diabetic hemodialysis patients. Methods: This cross-sectional, descriptive, and analytical study was carried out between January 01 and December 31, 2018, involving 309 hemodialysis patients spread over 4 centersThe data were collected prospectively then compiled and analyzed by the SPSS Version 10 software The FRAMINGHAM RISK SCORE has been used to assess cardiovascular risk in all hemodialysis patients Results: The survey involved 309 hemodialysis patients, including 83 diabetics, for a prevalence of 27% The average age 53 ± 10.2 years. The sex ratio is 1.5. 50% of diabetic hemodialysis patients retained residual diuresis against 32% in non-diabetics. In the group of diabetics, we noted more hypertension (70% versus 38% non-diabetics P 0.004), more intradialytichypoglycemia (15% versus 3% non-diabetics P 0.007), initially, vascular exhaustion was found in 4 diabetics versus 2 non-diabetics. 70% of diabetics with anuria had postdialytichyperglycemia. The study found a statistically significant difference between the different levels of cardiovascular risk according to the diabetic status. Conclusion: There are many challenges in the management of diabetics on hemodialysis, both to optimize glycemic control according to an individualized target and to coordinate comprehensive and effective care.

Keywords: hemodialysis, diabetes, chronic renal failure, glycemic control

Procedia PDF Downloads 155
411 Rain Dropsize Distribution from Individual Storms and Variability in Nigeria Topical Region

Authors: Akinyemi Tomiwa

Abstract:

The microstructure of rainfall is important for predicting and modeling various environmental processes, such as rainfall interception by vegetation, soil erosion, and radar signals in rainfall. This rain microstructure was studied with a vertically pointing Micro Rain Radar (MRR) located at a tropical location in Akure South West Nigeria (7o 15’ N, 5o 15’ E). This research utilizes two years of data (2018 and 2019), and the data obtained comprises rainfall parameters such as Rain rates, radar reflectivity, liquid water content, fall velocity and Drop Size Distribution (DSD) based on vertical profiles. The measurement and variations of rain microstructure of these parameters with heights for different rain types were presented from ground level up to the height of 4800 m at 160 m range gates. It has been found that the convective, stratiform and mixed, which are the three major rain types, have different rain microstructures at different heights and were evaluated in this research. The correlation coefficient and the regression line equation were computed for each rain event. The highest rain rate and liquid water content were observed within the height range of 160-4800. It was found that a good correlation exists between the measured parameters. Hence it shows that specific liquid water content increases with increasing rain rate for both stratiform and convective rain types in this part of the world. The results can be very useful for a better understanding of rain structure over tropical regions.

Keywords: rain microstructure, drop size distribution, rain rates, stratiform, convective.

Procedia PDF Downloads 25
410 Mapping Thermal Properties Using Resistivity, Lithology and Thermal Conductivity Measurements

Authors: Riccardo Pasquali, Keith Harlin, Mark Muller

Abstract:

The ShallowTherm project is focussed on developing and applying a methodology for extrapolating relatively sparsely sampled thermal conductivity measurements across Ireland using mapped Litho-Electrical (LE) units. The primary data used consist of electrical resistivities derived from the Geological Survey Ireland Tellus airborne electromagnetic dataset, GIS-based maps of Irish geology, and rock thermal conductivities derived from both the current Irish Ground Thermal Properties (IGTP) database and a new programme of sampling and laboratory measurement. The workflow has been developed across three case-study areas that sample a range of different calcareous, arenaceous, argillaceous, and volcanic lithologies. Statistical analysis of resistivity data from individual geological formations has been assessed and integrated with detailed lithological descriptions to define distinct LE units. Thermal conductivity measurements from core and hand samples have been acquired for every geological formation within each study area. The variability and consistency of thermal conductivity measurements within each LE unit is examined with the aim of defining a characteristic thermal conductivity (or range of thermal conductivities) for each LE unit. Mapping of LE units, coupled with characteristic thermal conductivities, provides a method of defining thermal conductivity properties at a regional scale and facilitating the design of ground source heat pump closed-loop collectors.

Keywords: thermal conductivity, ground source heat pumps, resistivity, heat exchange, shallow geothermal, Ireland

Procedia PDF Downloads 172
409 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 321
408 Differentiating Morphological Patterns of the Common Benthic Anglerfishes from the Indian Waters

Authors: M. P. Rajeeshkumar, K. V. Aneesh Kumar, J. L. Otero-Ferrer, A. Lombarte, M. Hashim, N. Saravanane, V. N.Sanjeevan, V. M. Tuset

Abstract:

The anglerfishes are widely distributed from shallow to deep-water habitats and are highly diverse in morphology, behaviour, and niche occupancy patterns. To understand this interspecific variability and degree of niche overlap, we performed a functional analysis of five species inhabiting Indian waters where diversity of deep-sea anglerfishes is very high. The sensory capacities (otolith shape and eye size) were also studied to improve the understanding of coexistence of species. The analyses of fish body and otolith shape clustered species in two morphotypes related to phylogenetic lineages: i) Malthopsis lutea, Lophiodes lugubri and Halieutea coccinea were characterized by a dorso-ventrally flattened body with high swimming ability and relative small otoliths, and ii) Chaunax spp. were distinguished by their higher body depth, lower swimming efficiency, and relative big otoliths. The sensory organs did not show a pattern linked to depth distribution of species. However, the larger eye size in M. lutea suggested a nocturnal feeding activity, whereas Chaunax spp. had a large mouth and deeper body in response to different ecological niches. Therefore, the present study supports the hypothesis of spatial and temporal segregation of anglerfishes in the Indian waters, which can be explained from a functional approach and understanding from sensory capabilities.

Keywords: functional traits, otoliths, niche overlap, fishes, Indian waters

Procedia PDF Downloads 127
407 Phenological Variability among Stipagrostis ciliata Accessions Growing under Arid Bioclimate of Southern of Tunisia

Authors: Lobna Mnif Fakhfakh, Mohamed Chaieb

Abstract:

Most ecological studies in North Africa arid bioclimate reveal a process of continuous degradation of pastoral ecosystems as a result of overgrazing during a long time. This degradation appears across the depletion of perennial grass species. Indeed, the majority of steppe ecosystems are characterized by a low density of perennial grasses. The objective of the present work is to examine the phenology and the above ground growth of several Stipagrostis ciliata accessions, growing under different arid bioclimate of North Africa (case of Tunisia). The results of the ANOVA test, next to the mean values of all measurements show significant differences in all morphological parameters of S. ciliata accessions. Plant diameter, biovolume, root biomass with protective sleeve and spike number show very significant. Differences between S. ciliata accessions. Significance tests for the differences of means indicate high distinctiveness of accessions. Pearson’s correlation analysis of the morphological traits suggests that these traits are significantly and positively correlated. Cluster analysis indicates overall differences among accessions and exhibits the presence of three clusters. The Principal component analysis (PCA) is applied on a table with four observations and 12 variables. Dispersion of Stipagrostis ciliata accessions on the first two axes of principal component analysis confirms the presence of three groups of plants. The characterization of Stipagrostis ciliata plants has shown that significant differences exist in terms of morphological and phenological parameters.

Keywords: accession, morphology, phenology, Stipagrostis ciliata

Procedia PDF Downloads 253
406 Mapping of Solar Radiation Anomalies Based on Climate Change

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini

Abstract:

The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.

Keywords: climate change, energy, IPCC, solar radiation

Procedia PDF Downloads 188
405 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 72
404 Variability in Saturation Flow and Traffic Performance at Urban Signalized Intersection

Authors: P. N. Salini, B. Anish Kini, R. Ashalatha

Abstract:

At signalized intersections with heterogeneous traffic, the percentage share of different vehicle categories have a bearing on the inter-vehicle space utilization, which eventually impacts the saturation flow. This paper analyzed the impact of the percentage share of various vehicle categories in the traffic stream on the saturation flow at signalized intersections by video graphing major intersections with varying geometry in Kerala, India. It was found that as the percentage share of two-wheelers increases, the saturation flow at signalized intersections increases and vice-versa for the percentage share of cars. The effect of bus blockage and parking maneuvers on the saturation flow were also studied. As the distance of bus blockage increases from the stop line, the effect on the saturation flow decreases, while with more buses stopping at the same bus stop, the saturation flow reduces further. The study revealed that with higher kerbside parking maneuvers on the upstream, the saturation flow reduces, and with an increase in the distance of the parking maneuver from the stop line, the effect on the saturation flow decreases. The adjustment factors for bus blockage due to bus stops within 75m downstream and parking maneuvers within 75m upstream of the intersection have been established for mixed traffic conditions. These adjustment factors could empower the urban planners, enforcement personnel and decision-makers to estimate the reduction in the capacity of signalized intersections for suggesting improvements in the form of parking restrictions/ bus stop relocation for existing intersections or make design changes for planned intersections.

Keywords: signalized intersection, saturation flow, adjustment factors, capacity

Procedia PDF Downloads 119
403 Evaluating the Impact of Marine Protected Areas on Human-Shark Interactions at a Global Scale

Authors: Delphine Duval, Morgan Mangeas, Charlie Huveneers, Adam Barnett, Laurent Vigliola

Abstract:

The global number of shark bites has increased over the past four decades with, however, high regional variability both in space and time. A systematic review, aligned with the 2020 PRISMA guidelines, explored the peer-reviewed literature published between 1960 and 2023 to identify factors potentially explaining trends in human-shark interactions. Results revealed that variations in the frequency of human-shark interactions could be explained by a plethora of factors, including changes in prey availability, environmental conditions, human and shark population density and behavior, as well as habitat destruction. However, to our best knowledge, only five studies have conducted statistical assessments of the relative contribution of these factors. The increased number in human-shark interactions and the frequent clusters of shark bites within short timeframes offer opportunities to test the causative factors that may explain trends in unprovoked shark bites. it study aims to evaluate the impact of marine protected areas (MPAs) on the number of human-shark interactions, using data from the Global Shark Attack File and the World Database on Protected Areas. Results indicate contrasting effects of MPAs at different spatial scales. Enhancing our understanding of the factors contributing to shark bites is essential for improving risk reduction policies for humans and conservation plans for shark populations.

Keywords: unprovoked shark interactions, marine protected areas, attack risk, human-wildlife interaction

Procedia PDF Downloads 37
402 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network

Procedia PDF Downloads 271
401 The Efficiency of AFLP and ISSR Markers in Genetic Diversity Estimation and Gene Pool Classification of Iranian Landrace Bread Wheat (Triticum Aestivum L.) Germplasm

Authors: Reza Talebi

Abstract:

Wheat (Triticum aestivum) is one of the most important food staples in Iran. Understanding genetic variability among the landrace wheat germplasm is important for breeding. Landraces endemic to Iran are a genetic resource that is distinct from other wheat germplasm. In this study, 60 Iranian landrace wheat accessions were characterized AFLP and ISSR markers. Twelve AFLP primer pairs detected 128 polymorphic bands among the sixty genotypes. The mean polymorphism rate based on AFLP data was 31%; however, a wide polymorphism range among primer pairs was observed (22–40%). Polymorphic information content (PIC value) calculated to assess the informativeness of each marker ranged from 0.28 to 0.4, with a mean of 0.37. According to AFLP molecular data, cluster analysis grouped the genotypes in five distinct clusters. .ISSR markers generated 68 bands (average of 6 bands per primer), which 31 were polymorphic (45%) across the 60 wheat genotypes. Polymorphism information content (PIC) value for ISSR markers was calculated in the range of 0.14 to 0.48 with an average of 0.33. Based on data achieved by ISSR-PCR, cluster analysis grouped the genotypes in three distinct clusters. Both AFLP and ISSR markers able to showed that high level of genetic diversity in Iranian landrace wheat accessions has maintained a relatively constant level of genetic diversity during last years.

Keywords: wheat, genetic diversity, AFLP, ISSR

Procedia PDF Downloads 440
400 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder

Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu

Abstract:

Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.

Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network

Procedia PDF Downloads 139