Search results for: hybrid forecasting models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8553

Search results for: hybrid forecasting models

8043 Hybrid Control Strategy for Nine-Level Asymmetrical Cascaded H-Bridge Inverter

Authors: Bachir Belmadani, Rachid Taleb, M’hamed Helaimi

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the hybrid pulse-width modulation (HPWM) strategy of a uniform step asymmetrical cascaded H-bridge nine-level Inverter (USACHB9LI). The HPWM approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the HPWM controller in feeding a high power induction motor.

Keywords: uniform step asymmetrical cascaded h-bridge high-level inverter, hybrid pwm, sinusoidal pwm, high power induction motor

Procedia PDF Downloads 571
8042 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference

Authors: Jang kyun Cho, Jeong-dong Lee

Abstract:

The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.

Keywords: innovation diffusion, agent based model, small-world network, demand forecasting

Procedia PDF Downloads 341
8041 Drivetrain Comparison and Selection Approach for Armored Wheeled Hybrid Vehicles

Authors: Çağrı Bekir Baysal, Göktuğ Burak Çalık

Abstract:

Armored vehicles may have different traction layouts as a result of terrain capabilities and mobility needs. Two main categories of layouts can be separated as wheeled and tracked. Tracked vehicles have superior off-road capabilities but what they gain on terrain performance they lose on mobility front. Wheeled vehicles on the other hand do not have as good terrain capabilities as tracked vehicles but they have superior mobility capabilities such as top speed, range and agility with respect to tracked vehicles. Conventional armored vehicles employ a diesel ICE as main power source. In these vehicles ICE is mechanically connected to the powertrain. This determines the ICE rpm as a result of speed and torque requested by the driver. ICE efficiency changes drastically with torque and speed required and conventional vehicles suffer in terms of fuel consumption because of this. Hybrid electric vehicles employ at least one electric motor in order to improve fuel efficiency. There are different types of hybrid vehicles but main types are Series Hybrid, Parallel Hybrid and Series-Parallel Hybrid. These vehicles introduce an electric motor for traction and also can have a generator electric motor for range extending purposes. Having an electric motor as the traction power source brings the flexibility of either using the ICE as an alternative traction source while it is in efficient range or completely separating the ICE from traction and using it solely considering efficiency. Hybrid configurations have additional advantages for armored vehicles in addition to fuel efficiency. Heat signature, silent operation and prolonged stationary missions can be possible with the help of the high-power battery pack that will be present in the vehicle for hybrid drivetrain. Because of the reasons explained, hybrid armored vehicles are becoming a target area for military and also for vehicle suppliers. In order to have a better idea and starting point when starting a hybrid armored vehicle design, hybrid drivetrain configuration has to be selected after performing a trade-off study. This study has to include vehicle mobility simulations, integration level, vehicle level and performance level criteria. In this study different hybrid traction configurations possible for an 8x8 vehicle is compared using above mentioned criteria set. In order to compare hybrid traction configurations ease of application, cost, weight advantage, reliability, maintainability, redundancy and performance criteria have been used. Performance criteria points have been defined with the help of vehicle simulations and tests. Results of these simulations and tests also help determining required tractive power for an armored vehicle including conditions like trench and obstacle crossing, gradient climb. With the method explained in this study, each configuration is assigned a point for each criterion. This way, correct configuration can be selected objectively for every application. Also, key aspects of armored vehicles, mine protection and ballistic protection will be considered for hybrid configurations. Results are expected to vary for different types of vehicles but it is observed that having longitudinal differential locking capability improves mobility and having high motor count increases complexity in general.

Keywords: armored vehicles, electric drivetrain, electric mobility, hybrid vehicles

Procedia PDF Downloads 86
8040 Surface Roughness Formed during Hybrid Turning of Inconel Alloy

Authors: Pawel Twardowski, Tadeusz Chwalczuk, Szymon Wojciechowski

Abstract:

Inconel 718 is a material characterized by the unique mechanical properties, high temperature strength, high thermal conductivity and the corrosion resistance. However, these features affect the low machinability of this material, which is usually manifested by the intense tool wear and low surface finish. Therefore, this paper is focused on the evaluation of surface roughness during hybrid machining of Inconel 718. The primary aim of the study was to determine the relations between the vibrations generated during hybrid turning and the formed surface roughness. Moreover, the comparison of tested machining techniques in terms of vibrations, tool wear and surface roughness has been made. The conducted tests included the face turning of Inconel 718 with laser assistance in the range of variable cutting speeds. The surface roughness was inspected with the application of stylus profile meter and accelerations of vibrations were measured with the use of three-component piezoelectric accelerometer. The carried out research shows that application of laser assisted machining can contribute to the reduction of surface roughness and cutting vibrations, in comparison to conventional turning. Moreover, the obtained results enable the selection of effective cutting speed allowing the improvement of surface finish and cutting dynamics.

Keywords: hybrid machining, nickel alloys, surface roughness, turning, vibrations

Procedia PDF Downloads 324
8039 Control of Hybrid System Using Fuzzy Logic

Authors: Faiza Mahi, Fatima Debbat, Mohamed Fayçal Khelfi

Abstract:

This paper proposes a control approach using Fuzzy Lo system. More precisely, the study focuses on the improvement of users service in terms of analysis and control of a transportation system their waiting times in the exchange platforms of passengers. Many studies have been developed in the literature for such problematic, and many control tools are proposed. In this paper we focus on the use of fuzzy logic technique to control the system during its evolution in order to minimize the arrival gap of connected transportation means at the exchange points of passengers. An example of illustration is worked out and the obtained results are reported. an important area of research is the modeling and simulation ordering system. We describe an approach to analysis using Fuzzy Logic. The hybrid simulator developed in toolbox Matlab consists calculation of waiting time transportation mode.

Keywords: Fuzzy logic, Hybrid system, Waiting Time, Transportation system, Control

Procedia PDF Downloads 555
8038 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito

Abstract:

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador

Procedia PDF Downloads 244
8037 Optimal Planning and Design of Hybrid Energy System for Taxila University

Authors: Habib Ur Rahman Habib

Abstract:

Renewable energy resources are being realized as suitable options in hybrid energy planning for on-grid and micro grid. In this paper, operation, planning and optimal design of on-grid distributed energy resources based hybrid system are investigated. The aim is to minimize the cost of the overall energy system keeping in view the environmental emission and minimum penetration of conventional energy resources. Seven grid connected different case studies including diesel only, diesel-renewable based, and renewable based only are designed to perform economic analysis, operational planning and emission. Sensitivity analysis is implemented to investigate the impact of different parameters on the performance of energy resources.

Keywords: data management, renewable energy, distributed energy, smart grid, micro-grid, modeling, energy planning, design optimization

Procedia PDF Downloads 460
8036 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.

Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis

Procedia PDF Downloads 365
8035 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation

Authors: Benson Ade Eniola Afere

Abstract:

Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.

Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation

Procedia PDF Downloads 93
8034 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 122
8033 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement

Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey

Abstract:

The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.

Keywords: hybrid, hydrodynamic cavitation, wet air oxidation, biodegradability index

Procedia PDF Downloads 618
8032 Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System

Authors: Asmamaw Yehun, Tsegaye Kassa, Addisu Hunegnaw, Martin Vermeer

Abstract:

There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations.

Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour

Procedia PDF Downloads 61
8031 The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions.

Keywords: marine current energy, tidal turbines, wave turbine, renewable energy, surface waves, hydraulic flume experiments, instantaneous wave phase

Procedia PDF Downloads 408
8030 A High-Level Co-Evolutionary Hybrid Algorithm for the Multi-Objective Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for the multi-objective job shop scheduling problem. Many new approaches are used at design steps of the distributed algorithm. Co-evolutionary structure of the algorithm and competition between different communicated hybrid algorithms, which are executed simultaneously, causes to efficient search. Using several machines for distributing the algorithms, at the iteration and solution levels, increases computational speed. The proposed algorithm is able to find the Pareto solutions of the big problems in shorter time than other algorithm in the literature. Apache Spark and Hadoop platforms have been used for the distribution of the algorithm. The suggested algorithm and implementations have been compared with results of the successful algorithms in the literature. Results prove the efficiency and high speed of the algorithm.

Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, multi-objective optimization

Procedia PDF Downloads 363
8029 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation

Authors: Li-hsing Shih, Wei-Jen Hsu

Abstract:

Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.

Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation

Procedia PDF Downloads 69
8028 Analysis of Tactile Perception of Textiles by Fingertip Skin Model

Authors: Izabela L. Ciesielska-Wrόbel

Abstract:

This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, so-called Hand of Textiles (HoT). Many objective and subjective techniques have been developed to analyze HoT, however none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the stage of building the models. The same concerns models of woven structures, however their utilitarian value was maintained. The models reflect only friction between skin and woven textiles, deformation of the skin and fabrics when “touching” textiles and heat transfer from the surface of the skin into direction of textiles.

Keywords: fingertip skin models, finite element models, modelling of textiles, sensation of textiles through the skin

Procedia PDF Downloads 465
8027 HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems

Authors: Shu Yin, Zhiyang Ding, Jianzhong Huang, Xiaojun Ruan, Xiaomin Zhu, Xiao Qin

Abstract:

Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan.

Keywords: arallel storage system, hybrid storage system, data inten- sive, solid state disks, reliability

Procedia PDF Downloads 448
8026 Analysis of Atomic Models in High School Physics Textbooks

Authors: Meng-Fei Cheng, Wei Fneg

Abstract:

New Taiwan high school standards emphasize employing scientific models and modeling practices in physics learning. However, to our knowledge. Few studies address how scientific models and modeling are approached in current science teaching, and they do not examine the views of scientific models portrayed in the textbooks. To explore the views of scientific models and modeling in textbooks, this study investigated the atomic unit in different textbook versions as an example and provided suggestions for modeling curriculum. This study adopted a quantitative analysis of qualitative data in the atomic units of four mainstream version of Taiwan high school physics textbooks. The models were further analyzed using five dimensions of the views of scientific models (nature of models, multiple models, purpose of the models, testing models, and changing models); each dimension had three levels (low, medium, high). Descriptive statistics were employed to compare the frequency of describing the five dimensions of the views of scientific models in the atomic unit to understand the emphasis of the views and to compare the frequency of the eight scientific models’ use to investigate the atomic model that was used most often in the textbooks. Descriptive statistics were further utilized to investigate the average levels of the five dimensions of the views of scientific models to examine whether the textbooks views were close to the scientific view. The average level of the five dimensions of the eight atomic models were also compared to examine whether the views of the eight atomic models were close to the scientific views. The results revealed the following three major findings from the atomic unit. (1) Among the five dimensions of the views of scientific models, the most portrayed dimension was the 'purpose of models,' and the least portrayed dimension was 'multiple models.' The most diverse view was the 'purpose of models,' and the most sophisticated scientific view was the 'nature of models.' The least sophisticated scientific view was 'multiple models.' (2) Among the eight atomic models, the most mentioned model was the atomic nucleus model, and the least mentioned model was the three states of matter. (3) Among the correlations between the five dimensions, the dimension of 'testing models' was highly related to the dimension of 'changing models.' In short, this study examined the views of scientific models based on the atomic units of physics textbooks to identify the emphasized and disregarded views in the textbooks. The findings suggest how future textbooks and curriculum can provide a thorough view of scientific models to enhance students' model-based learning.

Keywords: atomic models, textbooks, science education, scientific model

Procedia PDF Downloads 158
8025 Experimental Investigation of Hybrid Rocket Motor: Ignition, Throttling and Re-Ignition Phenomena

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

Ignition phenomena are of great interest area over the past many years, and it has a direct impact on many propulsion and combustion applications. The direct goal of the paper is to realize and evaluate a functioning ignition method, shut-off, throttling and re-start operations for the hybrid rocket motor. A small-scale hybrid rocket motor (SSHRM) is designed, manufactured, demonstrated at various operating conditions and finally equipped for laboratory firing tests with high level of safety. Various solid fuel grains as Polymethyle-methacrylate (PMMA) and Polyethylene (PE) are selected, and it is decided to use the commercial gaseous oxygen (GO2) for its availability and low cost. Examine different types of ignition methods, pyrotechnic charge, fuse wire, heat wire and finally hot oxidizer method by using the heat exchanger, which are proposed as very safe ignition methods. Finally; recognize phenomena of throttling and re-start operations. Ignition by hot GO2 impingement is proved to be a very attractive ignition method for laboratory SSHRM, for its high safety, reliability and acceptable delay time. Finally; the throttling and re-start operations are demonstrated several times and can be carried out more easily with hot air ignition method.

Keywords: hybrid rocket motor, ignition system, re-start phenomena, throttling

Procedia PDF Downloads 301
8024 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 227
8023 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model

Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf

Abstract:

Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.

Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV

Procedia PDF Downloads 126
8022 A Hybrid Adomian Decomposition Method in the Solution of Logistic Abelian Ordinary Differential and Its Comparism with Some Standard Numerical Scheme

Authors: F. J. Adeyeye, D. Eni, K. M. Okedoye

Abstract:

In this paper we present a Hybrid of Adomian decomposition method (ADM). This is the substitution of a One-step method of Taylor’s series approximation of orders I and II, into the nonlinear part of Adomian decomposition method resulting in a convergent series scheme. This scheme is applied to solve some Logistic problems represented as Abelian differential equation and the results are compared with the actual solution and Runge-kutta of order IV in order to ascertain the accuracy and efficiency of the scheme. The findings shows that the scheme is efficient enough to solve logistic problems considered in this paper.

Keywords: Adomian decomposition method, nonlinear part, one-step method, Taylor series approximation, hybrid of Adomian polynomial, logistic problem, Malthusian parameter, Verhulst Model

Procedia PDF Downloads 400
8021 A Metaheuristic Approach for Optimizing Perishable Goods Distribution

Authors: Bahare Askarian, Suchithra Rajendran

Abstract:

Maintaining the freshness and quality of perishable goods during distribution is a critical challenge for logistics companies. This study presents a comprehensive framework aimed at optimizing the distribution of perishable goods through a mathematical model of the Transportation Inventory Location Routing Problem (TILRP). The model incorporates the impact of product age on customer demand, addressing the complexities associated with inventory management and routing. To tackle this problem, we develop both simple and hybrid metaheuristic algorithms designed for small- and medium-scale scenarios. The hybrid algorithm combines Biogeographical Based Optimization (BBO) algorithms with local search techniques to enhance performance in small- and medium-scale scenarios, extending our approach to larger-scale challenges. Through extensive numerical simulations and sensitivity analyses across various scenarios, the performance of the proposed algorithms is evaluated, assessing their effectiveness in achieving optimal solutions. The results demonstrate that our algorithms significantly enhance distribution efficiency, offering valuable insights for logistics companies striving to improve their perishable goods supply chains.

Keywords: perishable goods, meta-heuristic algorithm, vehicle problem, inventory models

Procedia PDF Downloads 18
8020 Structural Behaviour of Small-Scale Fibre-Filled Steel Tubular Planar Frames

Authors: Sadaf Karkoodi, Hassan Karampour

Abstract:

There is a growing interest in the construction industry towards hybrid systems. The hybrid systems use construction materials such as timber, steel, and concrete smartly, can be prefabricated, and are cost-effective and sustainable solutions to an industry targeting reduced carbon footprint. Moreover, in case of periodical shortage in timber resources, reusable and waste wood such as fibres can be used in the hybrid modules, which facilitates the circular economy. In this research, a hybrid frame is proposed and experimentally validated by introducing dried wood fibre products inside cold-formed steel square hollow sections without using any adhesives. As such, fibre-filled steel tubular (FFST) columns, beams, and 2D frames are manufactured and tested. The results show that the FFST columns have stiffness and strength 44% and 55% higher than cold-formed steel columns, respectively. The bearing strength of the FFST beams shows an increase of 39.5% compared to steel only. The flexural stiffness and strength of the FFST beams are 8.5% and 28% higher than the bare steel beams, respectively. The FFST frame depicted an 18.4% higher ultimate load capacity than the steel-only frame under a mid-point concentrated load. Moreover, the FFST beam-to-column bolted connection showed high ductile performance. The initial results and the proposed simple manufacturing process suggest that the proposed FFST concept can be upscaled and used in real structures.

Keywords: wood fibre, reusing wood, fibre-filled steel, hybrid construction

Procedia PDF Downloads 79
8019 Creep Behaviour of Asphalt Modified by Waste Polystyrene and Its Hybrids with Crumb Rubber and Low-Density Polyethylene

Authors: Soheil Heydari, Ailar Hajimohammadi, Nasser Khalili

Abstract:

Polystyrene, being made from a monomer called styrene, is a rigid and easy-to mould polymer that is widely used for many applications, from foam packaging to disposable containers. Considering that the degradation of waste polystyrene takes up to 500 years, there is an urgent need for a sustainable application for waste polystyrene. This study evaluates the application of waste polystyrene as an asphalt modifier. The inclusion of waste plastics in asphalt is either practised by the dry process or the wet process. In the dry process, plastics are added straight into the asphalt mixture and in the wet process, they are mixed and digested into bitumen. In this article, polystyrene was used as an asphalt modifier in a dry process. However, the mixing process is precisely designed to make sure that the polymer is melted and modified in the binder. It was expected that, due to the rigidity of polystyrene, it will have positive effects on the permanent deformation of the asphalt mixture. Therefore, different mixtures were manufactured with different contents of polystyrene and Marshall specimens were manufactured, and dynamic creep tests were conducted to evaluate the permanent deformation of the modification. This is a commonly repeated loading test conducted at different stress levels and temperatures. Loading cycles are applied to the AC specimen until failure occurs; with the amount of deformation constantly recorded the cumulative, permanent strain is determined and reported as a function of the number of cycles. Also, to our best knowledge, hybrid mixes of polystyrene with crumb rubber and low-density polyethylene were made and compared with a polystyrene-modified mixture. The test results of this study showed that the hybrid mix of polystyrene and low-density polyethylene has the highest resistance against permanent deformation. However, the polystyrene-modified mixture outperformed the hybrid mix of polystyrene and crumb rubber, and both demonstrated way lower permanent deformation than the unmodified specimen.

Keywords: permanent deformation, waste plastics, polystyrene, hybrid plastics, hybrid mix, hybrid modification, dry process

Procedia PDF Downloads 105
8018 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
8017 New Approach for Load Modeling

Authors: Slim Chokri

Abstract:

Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression

Procedia PDF Downloads 435
8016 A Hybrid Algorithm for Collaborative Transportation Planning among Carriers

Authors: Elham Jelodari Mamaghani, Christian Prins, Haoxun Chen

Abstract:

In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver.

Keywords: centralized collaborative transportation, collaborative transportation with pickup and delivery, collaborative transportation with time windows, hybrid algorithm of GA and SA

Procedia PDF Downloads 392
8015 Hybrid Fixation in Management of Proximal Diaphyseal Forearm Bone Fractures in Children

Authors: Tarek Aly

Abstract:

Introduction: Maintenance of the length, providing rotational stability, and preserving functional range of forearm motion is the mainstay of both bone forearm fractures treatment. Conservative treatment in older children may lead to malunion with poor remodeling capacity. Recent studies emphasized that the rate of complications with IM nailing was obviously increased in old children. Open reduction and internal fixation have been criticized for the amount of soft tissue dissection and periosteal stripping needed for fixation and excessive scar formation. The aim of this study was to evaluate the anatomical and functional outcomes of hybrid fixation in the treatment of closed proximal radius and ulna fractures in adolescents between 12 and 17 years of age. Patients and Methods: 30 cases of diaphyseal both bone forearm fractures treated with hybrid fixation (Nail radius – Plate ulna) and were available for a follow-up period of fewer than 24 months. Results: Clinically, 72% of cases had an excellent function, 22% had a good function, 4% had a fair function, and 2% had a poor function. Radiologically, signs of the union had appeared in the radius 2weeks earlier than in the ulna in 55% of cases. Conclusion: A hybrid fixation technique in adolescent proximal both-bones forearm fractures could be a viable option in managing these injuries.

Keywords: hyprid fixation, both bones, forearm, fractures

Procedia PDF Downloads 98
8014 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach

Authors: Rama Bhargava

Abstract:

In the current paper, numerical simulation has been performed for the two-dimensional time dependent Pennes’ heat transfer model which is solved for irregular diseased tumor cells. An elliptic cryoprobe of varying sizes is taken at the center of the computational domain in such a manner that the location of the probe is fixed throughout the computation. The phase transition occurs due to the effect of probe with infusion of different nanoparticles Au, Al₂O₃, Fe₃O₄. The cooling performance of these nanoparticles injected at very low temperature, has been studied by implementing a hybrid FEM/EFGM method in which the whole domain is decomposed into two subdomains. The results are shown in terms of temperature profile inside the computational domain. Rate of cooling is obtained for various nanoparticles and it is observed that infusion of Au nanoparticles is very much efficient in increasing the heating rate than other nanoparticles. Such numerical scheme has direct applications where the domain is irregular.

Keywords: cryosurgery, hybrid EFGM/FEM, nanoparticles, simulation

Procedia PDF Downloads 242