Search results for: fusion protein
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2733

Search results for: fusion protein

2223 Quantitative Proteome Analysis and Bioactivity Testing of New Zealand Honeybee Venom

Authors: Maryam Ghamsari, Mitchell Nye-Wood, Kelvin Wang, Angela Juhasz, Michelle Colgrave, Don Otter, Jun Lu, Nazimah Hamid, Thao T. Le

Abstract:

Bee venom, a complex mixture of peptides, proteins, enzymes, and other bioactive compounds, has been widely studied for its therapeutic application. This study investigated the proteins present in New Zealand (NZ) honeybee venom (BV) using bottom-up proteomics. Two sample digestion techniques, in-solution digestion and filter-aided sample preparation (FASP), were employed to obtain the optimal method for protein digestion. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH–MS) analysis was conducted to quantify the protein compositions of NZ BV and investigate variations in collection years. Our results revealed high protein content (158.12 µg/mL), with the FASP method yielding a larger number of identified proteins (125) than in-solution digestion (95). SWATH–MS indicated melittin and phospholipase A2 as the most abundant proteins. Significant variations in protein compositions across samples from different years (2018, 2019, 2021) were observed, with implications for venom's bioactivity. In vitro testing demonstrated immunomodulatory and antioxidant activities, with a viable range for cell growth established at 1.5-5 µg/mL. The study underscores the value of proteomic tools in characterizing bioactive compounds in bee venom, paving the way for deeper exploration into their therapeutic potentials. Further research is needed to fractionate the venom and elucidate the mechanisms of action for the identified bioactive components.

Keywords: honeybee venom, proteomics, bioactivity, fractionation, swath-ms, melittin, phospholipase a2, new zealand, immunomodulatory, antioxidant

Procedia PDF Downloads 12
2222 LIZTOXD: Inclusive Lizard Toxin Database by Using MySQL Protocol

Authors: Iftikhar A. Tayubi, Tabrej Khan, Mansoor M. Alsubei, Fahad A. Alsaferi

Abstract:

LIZTOXD provides a single source of high-quality information about proteinaceous lizard toxins that will be an invaluable resource for pharmacologists, neuroscientists, toxicologists, medicinal chemists, ion channel scientists, clinicians, and structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to explore the detail information of Lizard and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Lizard, toxin and toxin protein of different Lizard species. These interfaces created in this database will satisfy the demands of the scientific community by providing in-depth knowledge about Lizard and its toxin. In the next phase of our project we will adopt methodology and by using A MySQL and Hypertext Preprocessor (PHP) which and for designing Smart Draw. A database is a wonderful piece of equipment for storing large quantities of data efficiently. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, toxins, clinical data etc. LIZTOXD resource that provides comprehensive information about protein toxins from lizard toxins. The combination of specific classification schemes and a rich user interface allows researchers to easily locate and view information on the sequence, structure, and biological activity of these toxins. This manually curated database will be a valuable resource for both basic researchers as well as those interested in potential pharmaceutical and agricultural applications of lizard toxins.

Keywords: LIZTOXD, MySQL, PHP, smart draw

Procedia PDF Downloads 146
2221 Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism

Authors: Rui Liu, Pengyu Cui, Nan Jiang

Abstract:

At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery.

Keywords: navigation electronic map, united navigation, multi-element expression pattern, multi-source information fusion

Procedia PDF Downloads 182
2220 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome

Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis

Abstract:

Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.

Keywords: protein-interactions, machine-learning, metagenomics, microbiome

Procedia PDF Downloads 361
2219 Bioactive Potentials of Peptides and Lipids from Green Mussel (Perna viridis), Horse Mussel (Modiolus philippinarum) and Charru Mussel (Mytella charruana)

Authors: Sharon N. Nuñal, May Flor S. Muegue, Nizzy Hope N. Cartago, Raymund B. Parcon, Sheina B. Logronio

Abstract:

The antioxidant and anti-inflammatory potentials of Perna Viridis, Modiolus philippinarum, and Mytella charruana found in the Philippines were assessed. Mussel protein samples were hydrolyzed using trypsin, maturase, alcalase and pepsin at 1% and 2% concentrations and then fractionated through membrane filtration (<10 kDa and <30 kDa). Antioxidant assays showed that pepsin hydrolysate at 2% enzyme concentration exhibited the maximum activities for both 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity (155-176 µM TE/mg protein) and 2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging (67-68 µM TE/mg protein) assays while trypsin hydrolysate dominated the Ferric Reducing Antioxidant Power (FRAP) for the three mussel species. Lower molecular weight peptide fractions at <10 kDa exhibited better antioxidant activities than the higher molecular weight fractions. The anti-inflammatory activities of M. philippinarum and M. charruana showed comparable protein denaturation inhibition potentials with the highest in P. Viridis samples (98.93%). The 5-Lipoxygenase (5-LOX) inhibitory activities of mussel samples showed no significant difference with inhibition exceeding 70%. P. Viridis demonstrated the highest inhibition against Cyclooxygenase-2 (COX-2) at 56.19%, while the rest showed comparable activities. This study showed that the three mussel species are potential sources of bioactive peptides and lipids with antioxidant and anti-inflammatory properties.

Keywords: anti-inflammatory, antioxidant, bioactive properties, mussel

Procedia PDF Downloads 198
2218 Zingiberaceous Plants as a Source of Anti-Bacterial Activity: Targeting Bacterial Cell Division Protein (FtsZ)

Authors: S. Reshma Reghu, Shiburaj Sugathan, T. G. Nandu, K. B. Ramesh Kumar, Mathew Dan

Abstract:

Bacterial diseases are considered to be one of the most prevalent health hazards in the developing world and many bacteria are becoming resistant to existing antibiotics making the treatment ineffective. Thus, it is necessary to find novel targets and develop new antibacterial drugs with a novel mechanism of action. The process of bacterial cell division is a novel and attractive target for new antibacterial drug discovery. FtsZ, a homolog of eukaryotic tubulin, is the major protein of the bacterial cell division machinery and is considered as an important antibacterial drug target. Zingiberaceae, the Ginger family consists of aromatic herbs with creeping rhizomes. Many of these plants have antimicrobial properties.This study aimed to determine the anti-bacterial activity of selected Zingiberaceous plants by targeting bacterial cell division protein, FtsZ. Essential oils and methanol extracts of Amomum ghaticum, Alpinia galanga, Kaempferia galanga, K. rotunda, and Zingiber officinale were tested to find its antibacterial efficiency using disc diffusion method against authentic bacterial strains obtained from MTCC (India). Essential oil isolated from A.galanga and Z.officinale were further assayed for FtsZ inhibition assay following non-radioactive malachite green-phosphomolybdate assay using E. coli FtsZ protein obtained from Cytoskelton Inc., USA. Z.officinale essential oil possess FtsZ inhibitory property. A molecular docking study was conducted with the known bioactive compounds of Z. officinale as ligands with the E. coli FtsZ protein homology model. Some of the major constituents of this plant like catechin, epicatechin, and gingerol possess agreeable docking scores. The results of this study revealed that several chemical constituents in Ginger plants can be utilised as potential source of antibacterial activity and it can warrant further investigation through drug discovery studies.

Keywords: antibacterial, FtsZ, zingiberaceae, docking

Procedia PDF Downloads 465
2217 Growth Performance, Survival Rate and Feed Efficacy of Climbing Perch, Anabas testudineus, Feed Experimental Diet with Several Dosages of Papain Enzyme

Authors: Zainal A. Muchlisin, Muhammad Iqbal, Abdullah A. Muhammadar

Abstract:

The objective of the present study was to determine the optimum dose of papain enzyme in the diet for growing, survival rate and feed efficacy of climbing perch (Anabas testudineus). The study was conducted at the Laboratory of Aquatic of Faculty of Veterinary, Syiah Kuala University from January to March 2016. The completely randomized design was used in this study. Six dosages level of papain enzyme were tested with 4 replications i.e. 0 g kg-1 of feed, 20.0 g kg-1 feed, 22.5 g kg-1 of feed, 25.0 g kg-1 of feed, 27.5 g kg-1 of feed, and 30.0 g kg-1 of feed. The experimental fish fed twice a day at feeding level of 5% for 60 days. The results showed that weight gain ranged from 2.41g to 7.37g, total length gain ranged from 0.67cm to 3.17cm, specific growth rate ranged from 1.46 % day to 3.41% day, daily growth rate ranged from 0.04 g day to 0.13 g day, feed conversion ratio ranged from 1.94 to 3.59, feed efficiency ranged from 27.99% to 51.37%, protein retention ranged from 3.38% to 28.28%, protein digestibility ranged from 50.63% to 90.38%, and survival rate ranged from 88.89% to 100%. The highest rate for all parameters was found in the dosage of 3.00% papain enzyme kg feed. The ANOVA test showed that enzyme papain gave a significant effect on the weight gain, total length gain, daily growth rate, specific growth rate, feed conversion ratio, feed efficiency, protein retention, protein digestibility, and survival rate of the climbing perch (Anabas testudieus). The best enzyme papain dosage was 3.0%.

Keywords: betok, feed conversion ratio, freshwater fish, nutrition, feeding

Procedia PDF Downloads 224
2216 Effect of Whey Protein-Rice Bran Oil Incorporated Zataria multiflora Extract Edible Coating on Chemical, Physical and Microbial Quality of Chicken Egg

Authors: Majid Javanmard

Abstract:

In this study, the effects of coating with whey protein concentrate (7.5% w/v) alone and/or in combination with rice bran oil (0.2, 0.4, 0.6 g in 100 ml coating solution) and Zataria multiflora extract (1 and 2 μL in 100 ml coating solution) on the quality attributes and egg shelf life were carefully observed and analyzed. Weight loss, Haugh index, yolk index, pH, air cell depth, shell strength and the impact of this coating on the microbial load of the eggs surface were studied at the end of each week (during the 4 weeks of storage in a room environment temperature and humidity). After 4 weeks of storage, it was observed that the weight loss in all of the treated eggs with whey protein concentrate and 0.2 gr of rice bran oil (experimental group) was significantly lower than that of the control group(P < 0/05). With regard to Haugh index and yolk index, egg shelf life increased about 4 weeks compared with the control samples. Haugh Index changes revealed that the coated samples remained at grade A after 3 weeks of storage, while the control samples were relegated from grade AA to B after one week. Haugh and yolk Indices in all coated eggs were more than those of the control group. In the coated groups, Haugh and yolk indices of the coated samples with whey protein concentrate and 0.2 g rice bran oil and with whey protein concentrate and 0.2g of rice bran oil and 1 micro liter of Zataria multiflora extract were more than those of the other coated eggs and the control group eggs. PH values of the control group were higher than those of the coated groups during the storage of the eggs. The shell strength of the coated group was more than that of the control group (uncoated) and in coated samples, whey protein concentrate and 0.2 gr of rice bran oil coated samples had high shell strength. In the other treatments, no significant differences were observed. The depth of the air cell of the coated groups was determined to be less than that of the control group during the storage period. The minimum inhibitory concentration was 1 μL of Zataria multiflora extract. The results showed that 1 μL concentration of Zataria multiflora extract reduces the microbial load of the egg shell surface to 87% and 2 μL reduced total bacterial load to zero. In sensory evaluation, from evaluator point of view, the coated eggs had more overall acceptance than the uncoated group (control), and in the treatment group coated eggs, those containing a low percentage of rice bran oil had higher overall acceptability. In conclusion, coating as a practical and cost effective method can maintain the quality parameters of eggs and lead to durability of supply conditions in addition to the product marketability.

Keywords: edible coating, chicken egg, whey protein concentrate, rice bran oil, Zataria multiflora extract, shelf life

Procedia PDF Downloads 283
2215 Immuno-Protective Role of Mucosal Delivery of Lactococcus lactis Expressing Functionally Active JlpA Protein on Campylobacter jejuni Colonization in Chickens

Authors: Ankita Singh, Chandan Gorain, Amirul I. Mallick

Abstract:

Successful adherence of the mucosal epithelial cells is the key early step for Campylobacter jejuni pathogenesis (C. jejuni). A set of Surface Exposed Colonization Proteins (SECPs) are among the major factors involved in host cell adherence and invasion of C. jejuni. Among them, constitutively expressed surface-exposed lipoprotein adhesin of C. jejuni, JlpA, interacts with intestinal heat shock protein 90 (hsp90α) and contributes in disease progression by triggering pro-inflammatory response via activation of NF-κB and p38 MAP kinase pathway. Together with its ability to express in the bacterial surface, higher sequence conservation and predicted predominance of several B cells epitopes, JlpA protein reserves its potential to become an effective vaccine candidate against wide range of Campylobacter sps including C. jejuni. Given that chickens are the primary sources for C. jejuni and persistent gut colonization remain as major cause for foodborne pathogenesis to humans, present study explicitly used chickens as model to test the immune-protective efficacy of JlpA protein. Taking into account that gastrointestinal tract is the focal site for C. jejuni colonization, to extrapolate the benefit of mucosal (intragastric) delivery of JlpA protein, a food grade Nisin inducible Lactic acid producing bacteria, Lactococcus lactis (L. lactis) was engineered to express recombinant JlpA protein (rJlpA) in the surface of the bacteria. Following evaluation of optimal surface expression and functionality of recombinant JlpA protein expressed by recombinant L. lactis (rL. lactis), the immune-protective role of intragastric administration of live rL. lactis was assessed in commercial broiler chickens. In addition to the significant elevation of antigen specific mucosal immune responses in the intestine of chickens that received three doses of rL. lactis, marked upregulation of Toll-like receptor 2 (TLR2) gene expression in association with mixed pro-inflammatory responses (both Th1 and Th17 type) was observed. Furthermore, intragastric delivery of rJlpA expressed by rL. lactis, but not the injectable form, resulted in a significant reduction in C. jejuni colonization in chickens suggesting that mucosal delivery of live rL. lactis expressing JlpA serves as a promising vaccine platform to induce strong immune-protective responses against C. jejuni in chickens.

Keywords: chickens, lipoprotein adhesion of Campylobacter jejuni, immuno-protection, Lactococcus lactis, mucosal delivery

Procedia PDF Downloads 126
2214 Evaluation of Differential Interaction between Flavanols and Saliva Proteins by Diffusion and Precipitation Assays on Cellulose Membranes

Authors: E. Obreque-Slier, V. Contreras-Cortez, R. López-Solís

Abstract:

Astringency is a drying, roughing, and sometimes puckering sensation that is experienced on the various oral surfaces during or immediately after tasting foods. This sensation has been closely related to the interaction and precipitation between salivary proteins and polyphenols, specifically flavanols or proanthocyanidins. In addition, the type and concentration of proanthocyanidin influences significantly the intensity of the astringency and consequently the protein/proanthocyanidin interaction. However, most of the studies are based on the interaction between saliva and highly complex polyphenols, without considering the effect of monomeric proanthoancyanidins present in different foods. The aim of this study was to evaluate the effect of different monomeric proanthocyanidins on the diffusion and precipitation of salivary proteins. Thus, solutions of catechin, epicatechin, epigallocatechin and gallocatechin (0, 2.0, 4.0, 6.0, 8.0 and 10 mg/mL) were mixed with human saliva (1: 1 v/v). After incubation for 5 min at room temperature, 15 µL aliquots of each mix were dotted on a cellulose membrane and allowed to dry spontaneously at room temperature. The membrane was fixed, rinsed and stained for proteins with Coomassie blue. After exhaustive washing in 7% acetic acid, the membrane was rinsed once in distilled water and dried under a heat lamp. Both diffusion area and stain intensity of the protein spots were semiqualitative estimates for protein-tannin interaction (diffusion test). The rest of the whole saliva-phenol solution mixtures of the diffusion assay were centrifuged, and 15-μL aliquots from each of the supernatants were dotted on a cellulose membrane. The membrane was processed for protein staining as indicated above. The blue-stained area of protein distribution corresponding to each of the extract dilution-saliva mixtures was quantified by Image J 1.45 software. Each of the assays was performed at least three times. Initially, salivary proteins display a biphasic distribution on cellulose membranes, that is, when aliquots of saliva are placed on absorbing cellulose membranes, and free diffusion of saliva is allowed to occur, a non-diffusible protein fraction becomes surrounded by highly diffusible salivary proteins. In effect, once diffusion has ended, a protein-binding dye shows an intense blue-stained roughly circular area close to the spotting site (non-diffusible fraction) (NDF) which becomes surrounded by a weaker blue-stained outer band (diffusible fraction) (DF). Likewise, the diffusion test showed that epicatechin caused the complete disappearance of DF from saliva with 2 mg/mL. Also, epigallocatechin and gallocatechin caused a similar effect with 4 mg/mL, while catechin generated the same effect at 8 mg/mL. In the precipitation test, the use of epicatechin and gallocatechin generated evident precipitates at the bottom of the Eppendorf tubes. In summary, the flavanol type differentially affects the diffusion and precipitation of saliva, which would affect the sensation of astringency perceived by consumers.

Keywords: astringency, polyphenols, tannins, tannin-protein interaction

Procedia PDF Downloads 186
2213 Overcoming Obstacles in UHTHigh-protein Whey Beverages by Microparticulation Process: Scientific and Technological Aspects

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh, Seyed Jalal Razavi Zahedkolaei

Abstract:

Herein, a shelf stable (no refrigeration required) UHT processed, aseptically packaged whey protein drink was formulated by using a new strategy in microparticulate process. Applying thermal and two-dimensional mechanical treatments simultaneously, a modified protein (MWPC-80) was produced. Then the physical, thermal and thermodynamic properties of MWPC-80 were assessed using particle size analysis, dynamic temperature sweep (DTS), and differential scanning calorimetric (DSC) tests. Finally, using MWPC-80, a new RTD beverage was formulated, and shelf stability was assessed for three months at ambient temperature (25 °C). Non-isothermal dynamic temperature sweep was performed, and the results were analyzed by a combination of classic rate equation, Arrhenius equation, and time-temperature relationship. Generally, results showed that temperature dependency of the modified sample was significantly (Pvalue<0.05) less than the control one contained WPC-80. The changes in elastic modulus of the MWPC did not show any critical point at all the processed stages, whereas, the control sample showed two critical points during heating (82.5 °C) and cooling (71.10 °C) stages. Thermal properties of samples (WPC-80 & MWPC-80) were assessed using DSC with 4 °C /min heating speed at 20-90 °C heating range. Results did not show any thermal peak in MWPC DSC curve, which suggested high thermal resistance. On the other hands, WPC-80 sample showed a significant thermal peak with thermodynamic properties of ∆G:942.52 Kj/mol ∆H:857.04 Kj/mole and ∆S:-1.22Kj/mole°K. Dynamic light scattering was performed and results showed 0.7 µm and 15 nm average particle size for MWPC-80 and WPC-80 samples, respectively. Moreover, particle size distribution of MWPC-80 and WPC-80 were Gaussian-Lutresian and normal, respectively. After verification of microparticulation process by DTS, PSD and DSC analyses, a 10% why protein beverage (10% w/w/ MWPC-80, 0.6% w/w vanilla flavoring agent, 0.1% masking flavor, 0.05% stevia natural sweetener and 0.25% citrate buffer) was formulated and UHT treatment was performed at 137 °C and 4 s. Shelf life study did not show any jellification or precipitation of MWPC-80 contained beverage during three months storage at ambient temperature, whereas, WPC-80 contained beverage showed significant precipitation and jellification after thermal processing, even at 3% w/w concentration. Consumer knowledge on nutritional advantages of whey protein increased the request for using this protein in different food systems especially RTD beverages. These results could make a huge difference in this industry.

Keywords: high protein whey beverage, micropartiqulation, two-dimentional mechanical treatments, thermodynamic properties

Procedia PDF Downloads 58
2212 MICA-TM Peptide Selectively Binds to HLAs Associated with Behçet's Disease

Authors: Sirilak Kongkaew, Pathumwadee Yodmanee, Nopporn Kaiyawet, Arthitaya Meeprasert, Thanyada Rungrotmongkol, Toshikatsu Kaburaki, Hiroshi Noguchi, Fujio Takeuch, Nawee Kungwan, Supot Hannongbua

Abstract:

Behçet’s disease (BD) is a genetic autoimmune expressed by multisystemic inflammatory disorder mostly occurred at the skin, joints, gastrointestinal tract, and genitalia, including ocular, oral, genital, and central nervous systems. Most BD patients in Japan and Korea were strongly indicated by the genetic factor namely HLA-B*51 (especially, HLA-B*51:01) marker in HMC class I, while HLA-A*26:01 allele has been detected from the BD patients in Greek, Japan, and Taiwan. To understand the selective binding of the MICA-TM peptide towards the HLAs associated with BD, the molecular dynamics simulations were applied on the four HLA alleles (B*51:01, B*35:01, A*26:01, and A*11:01) in complex with such peptide. As a result, the key residues in the binding groove of HLA protein which play an important role in the MICA-TM peptide binding and stabilization were revealed. The Van der Waals force was found to be the main protein-protein interaction. Based on the binding free energy prediction by MM/PBSA method, the MICA-TM peptide interacted stronger to the HLA alleles associated to BD in the identical class by 7-12 kcal/mol. The obtained results from the present study could help to differentiate the HLA alleles and explain a source of Behçet’s disease.

Keywords: Behçet’s disease, MD simulations, HMC class I, autoimmune

Procedia PDF Downloads 386
2211 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion

Authors: Hantian Wu, Bo Huang, Yuan Zeng

Abstract:

Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.

Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management

Procedia PDF Downloads 112
2210 Regulation of PKA-Dependent Calcineurin as a Switch in Cell Secretion

Authors: Hani M. M. Alothaid, Louise Robson, Richmond Muimo

Abstract:

This study will investigate cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) dependent calcineurin (Cn), known as protein phosphatase 2 B (PP2B) as well, regulation of chloride ion (Cl⁻) secretion and the release of pro-inflammatory molecules in immune cells such as cytokines. THP-1-derived monocytes, primary human monocytes and the bronchial epithelial cell line (16HBE14o-) were used in this study. The 16HBE14o- cells were chosen as positive control. Hence, to further confirm the expression of cystic fibrosis transmembrane conductance regulator (CFTR), calcium binding protein (S100A10), annexin A2 (AnxA2) and calcineurin A subunit (CnA) in all three cell types, cell lysate was probed against corresponding primary antibodies by immunoblotting. Western blot analyses show the expression of CFTR, AnxA2, CnA and S100A10 in THP-1-derived monocytes and primary human monocytes. In conclusion, CFTR, S100A10, CnA and AnxA2 are expressed in THP-1-derived monocytes and primary human monocytes and regulate Cl⁻ secretion. Also, they may play a role in the pro-inflammatory molecules release. The ongoing work will confirm interaction between these proteins in the cell lines.

Keywords: annexin A2, calcineurin, CFTR, chloride, monocytes, pro-inflammatory molecules, S100A10

Procedia PDF Downloads 223
2209 Value Added by Spirulina Platensis in Two Different Diets on Growth Performance, Gut Microbiota, and Meat Quality of Japanese Quails

Authors: Mohamed Yusuf

Abstract:

Aim: The growth promoting the effect of the blue-green filamentous alga Spirulina platensis (SP) was observed on meat type Japanese quail with antibiotic growth promoter alternative and immune enhancing power. Materials and Methods: This study was conducted on 180 Japanese quail chicks for 4 weeks to find out the effect of diet type (vegetarian protein diet [VPD] and fish meal protein diet [FMPD])- Spirulina dose interaction (1 or 2 g/kg diet) on growth performance, gut microbiota, and sensory meat quality of growing Japanese quails (1-5 weeks old). Results: Data revealed improvement (p<0.05) of weight gain, feed conversion ratio, and European efficiency index due to 1, 2 g (SP)/kg VPD, and 2 g (SP)/kg FMPD, respectively. There was a significant decrease of ileum mean pH value by 1 g(SP)/kg VPD. Concerning gut microbiota, there was a trend toward an increase in Lactobacilli count in both 1; 2 g (SP)/kgVPD and 2 g (SP)/kg FMPD. It was concluded that 1 or 2 g (SP)/kg vegetarian diet may enhance parameters of performance without obvious effect on both meat quality and gut microbiota. Moreover, 1 and/or 2 g (SP) may not be invited to share fishmeal based diet for growing Japanese quails. Conclusion: Using of SP will support the profitable production of Japanese quails fed vegetable protein diet.

Keywords: isocaloric, isonitrogenous, meat quality, performances, quails, spirulina, spirulina

Procedia PDF Downloads 237
2208 Kinetics and Specificity of Drosophila melanogaster Molybdo-Flavoenzymes towards Their Substrates

Authors: Khaled S. Al Salhen

Abstract:

Aldehyde oxidase (AO) and xanthine oxidoreductase (XOR) catalyze the oxidation of many different N-heterocyclic compounds as well as aliphatic and aromatic aldehydes to their corresponding lactam and carboxylic acids respectively. The present study examines the oxidation of dimethylamino-cinnamaldehyde (DMAC), vanillin and phenanthridine by AO and xanthine by XOR from Drosophila cytosol. Therefore, the results obtained in the present study showed the DMAC, vanillin and phenanthridine substrates used were found to be good substrates of Drosophila AO and xanthine is the preferred substrate for Drosophila XOR. Km values of AO substrates were observed with DMAC (50±5.4 µM), phenanthridine (80±9.1 µM) and vanillin (303±11.7 µM) respectively for Drosophila cytosol. The Km values for DMAC and phenanthridine were ~6 and ~4 fold lower than that for vanillin as a substrate. The Km for XOR with xanthine using NAD+ as an electron acceptor was 27±4.1 µM. Relatively low Vmax values were obtained with phenanthridine (1.78±0.38 nmol/min/mg protein) and DMAC (1.80±0.35 nmol/min/mg protein). The highest Vmax was obtained from Drosophila cytosol with vanillin (7.58±2.11 nmol/min/mg protein). It is concluded these results that AO and XOR in Drosophila were able to catalyse the biotransformation of numerous substrates of the well-characterised mammalian AO and XOR. The kinetic parameters have indicated that the activity of AO of Drosophila may be a significant factor the oxidation of aromatic aldehyde compounds.

Keywords: aldehyde oxidase, xanthine oxidoreductase, dimethylamino-cinnamaldehyde, vanillin, phenanthridine, Drosophila melanogaster

Procedia PDF Downloads 432
2207 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 166
2206 Energy Metabolism and Mitochondrial Biogenesis in Muscles of Rats Subjected to Cold Water Immersion

Authors: Bosiacki Mateusz, Anna Lubkowska, Dariusz Chlubek, Irena Baranowska-Bosiacka

Abstract:

Exposure to cold temperatures can be considered a stressor that can lead to adaptive responses. The present study hypothesized the possibility of a positive effect of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The purpose of this study was to evaluate the effects of cold water exercise on energy status, purine compounds, and mitochondrial biogenesis in the muscles of aging rats as indicators of the effects of cold water exercise and their usefulness in monitoring adaptive changes. The study was conducted on 64 aging rats of both sexes, 15 months old at the time of the experiment. The rats (male and female separately) were randomly assigned to the following study groups: control, sedentary animals; 5°C groups animals - training swimming in cold water at 5°C; 36°C groups - animals training swimming in water at thermal comfort temperature. The study was conducted with the approval of the Local Ethical Committee for Animal Experiments. The animals in the experiment were subjected to swimming training for 9 weeks. During the first week of the study, the duration of the first swimming training was 2 minutes (on the first day), increasing daily by 0.5 minutes up to 4 minutes on the fifth day of the first week. From the second to the eighth week, the swimming training was 4 minutes per day, five days a week. At the end of the study, forty-eight hours after the last swim training, the animals were dissected. In the skeletal muscle tissue of the thighs of the rats, we determined the concentrations of ATP, ADP, AMP, Ado (HPLC), PGC-1a protein expression (Western blot), PGC1A, Mfn1, Mfn2, Opa1, and Drp1 gene expression (qRT PCR). The study showed that swimming in water at a thermally comfortable temperature improved the energy metabolism of the aging rat muscles by increasing the metabolic rate (increase in ATP, ADP, TAN, AEC) and enhancing mitochondrial fusion (increase in mRNA expression of regulatory proteins Mfn1 and Mfn2). Cold water swimming improved muscle energy metabolism in aging rats by increasing the rate of muscle energy metabolism (increase in ATP, ADP, TAN, AEC concentrations) and enhancing mitochondrial biogenesis and dynamics (increase in the mRNA expression of proteins of fusion-regulating factors – Mfn1, Mfn2, and Opa1, and the factor regulating mitochondrial fission – Drp1). The concentration of high-energy compounds and the expression of proteins regulating mitochondrial dynamics in the muscle may be a useful indicator in monitoring adaptive changes occurring in aging muscles under the influence of exercise in cold water. It represents a short-term adaptation to changing environmental conditions and has a beneficial effect on maintaining the bioenergetic capacity of muscles in the long term. Conclusion: exercise in cold water can exert positive effects on energy metabolism, biogenesis and dynamics of mitochondria in aging rat muscles. Enhancement of mitochondrial dynamics under cold water exercise conditions can improve mitochondrial function and optimize the bioenergetic capacity of mitochondria in aging rat muscles.

Keywords: cold water immersion, adaptive responses, muscle energy metabolism, aging

Procedia PDF Downloads 68
2205 Integration of Edible Insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria: Teachers’ Perception

Authors: Ali Christian Chinedu, Asogwa Vincent Chidindu, Ejiofor Toochukwu Eleazar, Okadi Ashagwu Ojang

Abstract:

The increasing rate of Boko Haram insurgency, farmer-herder clashes, and kidnapping in Nigeria has resulted in food shortages and high cost of protein sources like beef and fish. This challenge could be curbed with the production of edible insects, which contain several nutritional benefits like calories, protein, fat, vitamins, and minerals, depending on their species, metamorphic stage, and diet. Unfortunately, the benefits and competencies in producing, preserving, and marketing edible insects are still unknown to the public, including prospective farmers in Nigeria. Hence, this study determined teachers’ perception of integrating edible insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria to equip the future generation with the relevant competencies for alternative sustainable protein supply. The study was carried out in Enugu State, Nigeria. The participants for the study comprised 162 agricultural science teachers. A questionnaire titled: Edible Insects Integration in Animal Husbandry Curriculum Questionnaire (EIIAHCQ) was used to collect data using a descriptive survey research design. We conducted data collection with the help of six research assistants. The study identified 11 objectives, 11 contents, 10 teaching methods, and 9 evaluation methods that could be integrated into the existing curriculum of animal husbandry in Nigeria. Among others, the Ministry of Education should integrate the finding of this study into the curriculum of Animal Husbandry in Nigeria to enhance the protein supply and curb food insecurity now and in the future.

Keywords: animal husbandry curriculum, edible insects, entomophagy, integration, secondary school, Nigeria

Procedia PDF Downloads 77
2204 HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy

Authors: Xian-Peng Jiang, Catherine C. Baucom, Toby Jiang, Robert L. Elliott

Abstract:

HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target.

Keywords: HLA-G, Breast carcinoma, NK cells, Immunosuppressive checkpoint

Procedia PDF Downloads 74
2203 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors

Authors: Gajanan M. Sonwane

Abstract:

The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.

Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking

Procedia PDF Downloads 126
2202 Polymorphisms of Calpastatin Gene and Its Association with Growth Traits in Indonesian Thin Tail Sheep

Authors: Muhammad Ihsan Andi Dagong, Cece Sumantri, Ronny Rachman Noor, Rachmat Herman, Mohamad Yamin

Abstract:

Calpastatin involved in various physiological processes in the body such as the protein turnover, growth, fusion and mioblast migration. Thus, allegedly Calpastatin gene diversity (CAST) have an association with growth and potential use as candidate genes for growth trait. This study aims to identify the association between the genetic diversity of CAST gene with some growth properties such as body dimention (morphometric), body weight and daily weight gain in sheep. A total of 157 heads of Thin Tail Sheep (TTS) reared intensively for fattening purposes in the uniform environmental conditions. Overall sheep used were male, and maintained for 3 months. The parameters of growth properties were measured among others: body weight gain (ADG) (g/head / day), body weight (kg), body length (cm), chest circumference (cm), height (cm). All the sheep were genotyped by using PCR-SSCP (single strand conformational polymorphism) methods. CAST gene in locus fragment intron 5 - exon 6 were amplified with a predicted length of about 254 bp PCR products. Then the sheep were stratified based on their CAST genotypes. The result of this research showed that no association were found between the CAST gene variations with morphometric body weight, but there was a significant association with daily body weight gain (ADG) in sheep observed. CAST-23 and CAST-33 genotypes has higher average daily gain than other genotypes. CAST-23 and CAST-33 genotypes that carrying the CAST-2 and CAST-3 alleles potential to be used in the selection of the nature of the growth trait of the TTS sheep.

Keywords: body weight, calpastatin, genotype, growth trait, thin tail sheep

Procedia PDF Downloads 304
2201 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay

Authors: Zhen Cao, Yu Zhu, Junxue Fu

Abstract:

Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.

Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration

Procedia PDF Downloads 94
2200 The Evaluation of Substitution of Acacia villosa in Ruminants Ration

Authors: Hadriana Bansi, Elizabeth Wina, Toto Toharmat

Abstract:

Acacia villosa is thornless shrub legume which contents high crude protein. However, the utilization of A. villosa as ruminant feed is limited by its secondary compounds. The aim of this article is to find out the maximum of substitution A. villosa in sheep ration. The nutritional evaluation consisted of in vitro two stages, in vivo, and in vitro gas production trials. The secondary compounds of A. villosa also were analyzed. Evaluating digestibility of increasing level of substitution A. villosa replacing Pennisetum purpureum was using in vitro two stages. The substitution of 30% A. villosa was compared to 100% P. purpureum by in vitro gas production technique and in vivo digestibility. The results of two stages in vitro showed that total phenol, condensed tannin, and non-protein amino acid (NPAA) were high. Substitution 15% A. villosa reached the highest digestibility for both dry matter (DM) and crude protein (CP) which were 67% and 86% respectively, but it was shown that DM and CP digestibility of substitution 30% of A. villosa was still high which were 61.82% and 75-67% respectively. The pattern of gas production showed that first 8 hours total gas production substitution of 30% A. villosa was higher than 100% P. purpureum and declined after 10 hours incubation. In vivo trials showed that substitution of 30% A. villosa significantly increased CP intake, CP digestibility, and nitrogen retention. It can be concluded that substitution A. villosa until 30% still gave the good impact even though it has high secondary compounds.

Keywords: Acacia villosa, digestibility, gas production, secondary compounds

Procedia PDF Downloads 148
2199 Studies on Tolerance of Chickpea to Some Pre and Post Emergence Herbicides

Authors: Rahamdad Khan, Ijaz Ahmad Khan

Abstract:

In modern agriculture the herbicides application are considered the most effective and fast in action against all types of weeds. But it’s a fact that the herbicide applicator cannot totally secure the crop plants from the possible herbicide injuries that further leads to several destructive changes in plant biochemistry. For the purpose pots studies were undertaken to test the tolerance order of chickpea against pre- emergence herbicides (Stomp 330 EC- Dual Gold 960 EC) and post- emergence herbicides (Topik 15 WP- Puma Super 75 EW- Isoproturon 500 EW) during 2012-13 and 2013-14. The experimental design was CRD with three replications. Plant height, number of branches plant-1, number of seeds plant-1, nodulation, seed protein contents and other growth related parameters in chickpea were examined during the investigations. The results indicate that all the enquire herbicides gave a significant variation to all recorded parameter of chick pea except nodule fresh and dray weight. Moreover the toxic effect of pre-emergence herbicide on chickpea was found higher as compared to post-emergence herbicides. Minimum chickpea plant height (50.50 cm), number of nodule plant-1 (17.83) and lowest seed protein (14.13 %) was recorded in Stomp 330 EC. Similarly the outmost seeds plant-1 (29.66) and number of nodule plant-1 (21) were found for Puma Super 75 EW. The results further showed that the highest seed protein content (21.75 and 21.15 %) was recorded for control/ untreated and Puma Super 75EW. Taking under concentration the possible negative impact of the herbicides the chemical application must be minimized up to certain extent at which the crop is mostly secure. However chemical weed control has many advantages so we should train our farmer regarding the proper use of agro chemical to minimize the loses in crops while using herbicides.

Keywords: chickpea, herbicides, protein, stomp 330 EC, weed

Procedia PDF Downloads 482
2198 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 63
2197 Differential Proteomics Expression in Purple Rice Supplemented Type 2 Diabetic Rats’ Skeletal Muscle

Authors: Ei Ei Hlaing, Narissara Lailerd, Sittiruk Roytrakul, Pichapat Piamrojanaphat

Abstract:

Type 2 diabetes is one of the most common metabolic diseases all over the world. The pathogenesis of type 2 diabetes is not the only dysfunction of pancreatic beta cells but also insulin resistance in muscle, liver and adipose tissue. High levels of circulating free fatty acids, an increased lipid content of muscle cells, impaired insulin-mediated glucose uptake and diminished mitochondrial functioning are pathophysiological hallmarks of diabetic skeletal muscles. Purple rice (Oryza sativa L. indica) has been shown to have antidiabetic effects. However, the underlying mechanism(s) of antidiabetic activity of purple rice is still unraveled. In this research, to explore in-depth cellular mechanism(s), proteomic profile of purple rice supplemented type 2 diabetic rats’ skeletal muscle were analyzed contract with non-supplemented rats. Diabetic rats were induced high-fat diet combined with streptozotocin injection. By using one- dimensional gel electrophoresis (1-DE) and LC-MS/MS quantitative proteomic method, we analyzed proteomic profiles in skeletal muscle of normal rats, normal rats with purple rice supplementation, type 2 diabetic rats, and type 2 diabetic rats with purple rice supplementation. Total 2676 polypeptide expressions were identified. Among them, 24 peptides were only expressed in type 2 diabetic rats, and 24 peptides were unique peptides in type 2 diabetic rats with purple rice supplementation. Acetyl CoA carboxylase 1 (ACACA) found as unique protein in type 2 diabetic rats which is the major enzyme in lipid synthesis and metabolism. Interestingly, DNA damage response protein, heterogeneous nuclear ribonucleoprotein K [Mus musculus] (Hnrnpk), was upregulated in type 2 diabetic rats’ skeletal muscle. Meanwhile, unique proteins of type 2 diabetic rats with purple rice supplementation (bone morphogenetic 7 protein preproprotein, BMP7; and forkhead box protein NX4, Foxn4) involved with muscle cells growth through the regulation of TGF-β/Smad signaling network. Moreover, BMP7 may effect on insulin signaling through the downstream signaling of protein kinase B (Akt) which acts in protein synthesis, glucose uptake, and glycogen synthesis. In conclusion, our study supports that type 2 diabetes impairs muscular lipid metabolism. In addition, purple rice might recover the muscle cells growth and insulin signaling.

Keywords: proteomics, purple rice bran, skeletal muscle, type 2 diabetic rats

Procedia PDF Downloads 241
2196 Effects of Varying Fermentation Periods on the Chemical Composition of African Yam Bean (Sphenostylis stenocarpa) and Acha (Digitaria exilis) Flour Blends and Sensory Properties of Their Products

Authors: P. N. Okeke, J. N. Chikwendu

Abstract:

The study evaluated the effects of varying fermentation periods on the nutrients and anti-nutrients composition of African yam bean (Sphenostylis stenocarpa) and acha (Digitaria exilis) flour blends and sensory properties of their products. The African yam bean seeds and acha grains were fermented for 24 hrs, 48 and 72 hrs, dried (sun drying) and milled into fine flour. The fermented flours were used in a ratio of 70:30 (Protein basis) to formulate composite flour for meat pie and biscuits production. Both the fermented and unfermented flours and products were analyzed for chemical composition using the standard method. The data were statistically analyzed using SPSS version 15 to determine the mean and standard deviation. The 24, 48, and 72 hrs fermentation periods increased protein (22.81, 26.15 and 24.00% respectively). The carbohydrate, ash and moisture contents of the flours were also increased as a result of fermentation (68.01-76.83, 2.26-4.88, and 8.36-13.00% respectively). The 48 hrs fermented flour blends had the highest increase in ash relative to the control (4.88%). Fermentation increased zinc, iron, magnesium and phosphorus content of the flours. Treatment drastically reduced the anti-nutrient (oxalate, saponin, tannin, phytate, and hemagglutinin) levels of the flours. Both meat pie and biscuits had increased protein relative to the control (27.36-34.28% and 23.66-25.09%). However, the protein content of the meat pie increased more than that of the biscuits. Zinc, Iron, Magnesium and phosphorus levels increased in both meat pie and biscuits. Organoleptic attributes of the products (meat pie and biscuits) were slightly lower than the control except those of the 72 hrs fermented flours.

Keywords: fermentation, African yam bean, acha, biscuits, meat-pie

Procedia PDF Downloads 262
2195 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures

Authors: Harshit Agrawal, Salman Muhammad

Abstract:

Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.

Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention

Procedia PDF Downloads 64
2194 Marker Assisted Breeding for Grain Quality Improvement in Durum Wheat

Authors: Özlem Ateş Sönmezoğlu, Begüm Terzi, Ahmet Yıldırım, Leyla Gündüz

Abstract:

Durum wheat quality is defined as its suitability for pasta processing, that is pasta making quality. Another factor that determines the quality of durum wheat is the nutritional value of wheat or its final products. Wheat is a basic source of calories, proteins and minerals for humans in many countries of the world. For this reason, improvement of wheat nutritional value is of great importance. In recent years, deficiencies in protein and micronutrients, particularly in iron and zinc, have seriously increased. Therefore, basic foods such as wheat must be improved for micronutrient content. The effects of some major genes for grain quality established. Gpc-B1 locus is one of the genes increased protein and micronutrients content, and used in improvement studies of durum wheat nutritional value. The aim of this study was to increase the protein content and the micronutrient (Fe, Zn ve Mn) contents of an advanced durum wheat line (TMB 1) that was previously improved for its protein quality. For this purpose, TMB1 advanced durum wheat line were used as the recurrent parent and also, UC1113-Gpc-B1 line containing the Gpc-B1 gene was used as the gene source. In all of the generations, backcrossed plants carrying the targeted gene region were selected by marker assisted selection (MAS). BC4F1 plants MAS method was employed in combination with embryo culture and rapid plant growth in a controlled greenhouse conditions in order to shorten the duration of the transition between generations in backcross breeding. The Gpc-B1 gene was selected specific molecular markers. Since Yr-36 gene associated with Gpc-B1 allele, it was also transferred to the Gpc-B1 transferred lines. Thus, the backcrossed plants selected by MAS are resistance to yellow rust disease. This research has been financially supported by TÜBİTAK (112T910).

Keywords: Durum wheat, Gpc-B1, MAS, Triticum durum, Yr-36

Procedia PDF Downloads 266