Search results for: forest ecosystem
1266 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model
Authors: Jian Yang, Atsushi Yagi
Abstract:
Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems
Procedia PDF Downloads 1591265 Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria
Authors: J. Julius Adebayo
Abstract:
The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed.Keywords: climate change, rainfall pattern, temperature, time series analysis, food and nutrition security
Procedia PDF Downloads 1441264 Ingini Seeds: A Qualitative Study on Its Use in Water Purification in the Dry Zone of Sri Lanka
Authors: Iranga Weerakkody, Palitha Sri Geegana Arachchige, Dasith Tilakaratna
Abstract:
The aim of this research is to study how folk wisdom can be applied to assist in the process of purification of water. This is qualitative research, and by random sampling, it is focused on to the dry zone of Sri Lanka. The research limitation has been set to the use of Ingini seeds (Strychnos potatorum) to purify water. Here the research is based on connecting traditional knowledge regarding water purification using Ingini seeds to modern times and the advantages and disadvantages of using Ingini seeds to purify water sources. Ingini seeds have been used among villagers of the dry zone to purify water for a long time by methods such as planting Ingini plants around water sources and depositing seeds covered with a cotton cloth inside wells. Crushed Ingini seeds have been put into clay water pots to reduce the hardness of water, as well as the number of impurities present in the water. This shows that Ingini seeds have a property that is successful in precipitating dissolved impurities in water. Ingini seeds are also used to precipitate solid impurities in herbal wine. The advantages of using Ingini seeds are that it can be obtained naturally from the ecology without an additional cost and that it is completely organic forest produce. Another specialty is that in practices, it is used to treat kidney stones and other water-related diseases affecting the kidneys.Keywords: folklife, Ingini seeds, Strychnos potatorum, organic forest produce, water purification
Procedia PDF Downloads 1931263 Understanding the Diversity of Antimicrobial Resistance among Wild Animals, Livestock and Associated Environment in a Rural Ecosystem in Sri Lanka
Authors: B. M. Y. I. Basnayake, G. G. T. Nisansala, P. I. J. B. Wijewickrama, U. S. Weerathunga, K. W. M. Y. D. Gunasekara, N. K. Jayasekera, A. W. Kalupahana, R. S. Kalupahana, A. Silva- Fletcher, K. S. A. Kottawatta
Abstract:
Antimicrobial resistance (AMR) has attracted significant attention worldwide as an emerging threat to public health. Understanding the role of livestock and wildlife with the shared environment in the maintenance and transmission of AMR is of utmost importance due to its interactions with humans for combating the issue in one health approach. This study aims to investigate the extent of AMR distribution among wild animals, livestock, and environment cohabiting in a rural ecosystem in Sri Lanka: Hambegamuwa. One square km area at Hambegamuwa was mapped using GPS as the sampling area. The study was conducted for a period of five months from November 2020. Voided fecal samples were collected from 130 wild animals, 123 livestock: buffalo, cattle, chicken, and turkey, with 36 soil and 30 water samples associated with livestock and wildlife. From the samples, Escherichia coli (E. coli) was isolated, and their AMR profiles were investigated for 12 antimicrobials using the disk diffusion method following the CLSI standard. Seventy percent (91/130) of wild animals, 93% (115/123) of livestock, 89% (32/36) of soil, and 63% (19/30) of water samples were positive for E. coli. Maximum of two E. coli from each sample to a total of 467 were tested for the sensitivity of which 157, 208, 62, and 40 were from wild animals, livestock, soil, and water, respectively. The highest resistance in E. coli from livestock (13.9%) and wild animals (13.3%) was for ampicillin, followed by streptomycin. Apart from that, E. coli from livestock and wild animals revealed resistance mainly against tetracycline, cefotaxime, trimethoprim/ sulfamethoxazole, and nalidixic acid at levels less than 10%. Ten cefotaxime resistant E. coli were reported from wild animals, including four elephants, two land monitors, a pigeon, a spotted dove, and a monkey which was a significant finding. E. coli from soil samples reflected resistance primarily against ampicillin, streptomycin, and tetracycline at levels less than in livestock/wildlife. Two water samples had cefotaxime resistant E. coli as the only resistant isolates out of 30 water samples tested. Of the total E. coli isolates, 6.4% (30/467) was multi-drug resistant (MDR) which included 18, 9, and 3 isolates from livestock, wild animals, and soil, respectively. Among 18 livestock MDRs, the highest (13/ 18) was from poultry. Nine wild animal MDRs were from spotted dove, pigeon, land monitor, and elephant. Based on CLSI standard criteria, 60 E. coli isolates, of which 40, 16, and 4 from livestock, wild animal, and environment, respectively, were screened for Extended Spectrum β-Lactamase (ESBL) producers. Despite being a rural ecosystem, AMR and MDR are prevalent even at low levels. E. coli from livestock, wild animals, and the environment reflected a similar spectrum of AMR where ampicillin, streptomycin, tetracycline, and cefotaxime being the predominant antimicrobials of resistance. Wild animals may have acquired AMR via direct contact with livestock or via the environment, as antimicrobials are rarely used in wild animals. A source attribution study including the effects of the natural environment to study AMR can be proposed as this less contaminated rural ecosystem alarms the presence of AMR.Keywords: AMR, Escherichia coli, livestock, wildlife
Procedia PDF Downloads 2161262 Gaia (Earth) Education Philosophy – A Journey Back to the Future
Authors: Darius Singh
Abstract:
This study adopts a research, develop, and deploy methodology to create a state-of-the-art forest preschool environment using technology and the Gaia (Earth) Education Philosophy as design support. The new philosophy adopts an ancient Greek terminology, “Gaia,” meaning “Mother Earth”, and it take its principle to model everything with the oldest living and breathing entity that it know – Earth. This includes using nature and biomimicry-based principles in building design, environments, curricula, teaching, learning, values and outcomes for children. The study highlights the potential effectiveness of the Gaia (Earth) Education Philosophy as a means of designing Earth-inspired environments for children’s learning. The discuss the strengths of biomimicry-based design principles and propose a curriculum that emphasizes natural outcomes for early childhood learning. Theoretical implications of the study are that the Gaia (Earth) Education Philosophy could serve as a strong foundation for educating young learners.it present a unique approach that promotes connections with Earth-principles and lessons that can contribute to the development of social and environmental consciousness among children and help educate generations to come into a stable and balanced future.Keywords: earth science, nature education, sustainability, gaia, forest school, nature, inspirational teaching and learning
Procedia PDF Downloads 651261 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho
Abstract:
We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation
Procedia PDF Downloads 2081260 The Importance of Value Added Services Provided by Science and Technology Parks to Boost Entrepreneurship Ecosystem in Turkey
Authors: Faruk Inaltekin, Imran Gurakan
Abstract:
This paper will aim to discuss the importance of value-added services provided by Science and Technology Parks for entrepreneurship development in Turkey. Entrepreneurship is vital subject for all countries. It has not only fostered economic development but also promoted innovation at local and international levels. To foster high tech entrepreneurship ecosystem, Technopark (Science and Technology Park/STP) concept was initiated with the establishment of Silicon Valley in the 1950s. The success and rise of Silicon Valley led to the spread of technopark activities. Developed economies have been setting up projects to plan and build STPs since the 1960s and 1970s. To promote the establishment of STPs, necessary legislations were made by Ministry of Science, Industry, and Technology in 2001, Technology Development Zones Law (No. 4691) and it has been revised in 2016 to provide more supports. STPs’ basic aim is to provide customers high-quality office spaces with various 'value added services' such as business development, network connections, cooperation programs, investor/customers meetings and internationalization services. For this aim, STPs should help startups deal with difficulties in the early stages and to support mature companies’ export activities in the foreign market. STPs should support the production, commercialization and more significantly internationalization of technology-intensive business and foster growth of companies. Nowadays within this value-added services, internationalization is very popular subject in the world. Most of STPs design clusters or accelerator programs in order to support their companies in the foreign market penetration. If startups are not ready for international competition, STPs should help them to get ready for foreign market with training and mentoring sessions. These training and mentoring sessions should take a goal based approach to working with companies. Each company has different needs and goals. Therefore the definition of ‘success' varies for each company. For this reason, it is very important to create customized value added services to meet the needs of startups. After local supports, STPs should also be able to support their startups in foreign market. Organizing well defined international accelerator program plays an important role in this mission. Turkey is strategically placed between key markets in Europe, Russia, Central Asia and the Middle East. Its population is young and well educated. So both government agencies and the private sectors endeavor to foster and encourage entrepreneurship ecosystem with many supports. In sum, the task of technoparks with these and similar value added services is very important for developing entrepreneurship ecosystem. The priorities of all value added services are to identify the commercialization and growth obstacles faced by entrepreneurs and get rid of them with the one-to-one customized services. Also, in order to have a healthy startup ecosystem and create sustainable entrepreneurship, stakeholders (technoparks, incubators, accelerators, investors, universities, governmental organizations etc.) should fulfill their roles and/or duties and collaborate with each other. STPs play an important role as bridge for these stakeholders & entrepreneurs. STPs always should benchmark and renew services offered to how to help the start-ups to survive, develop their business and benefit from these stakeholders.Keywords: accelerator, cluster, entrepreneurship, startup, technopark, value added services
Procedia PDF Downloads 1431259 The Quantitative Analysis of Tourism Carrying Capacity with the Approach of Sustainable Development Case Study: Siahsard Fountain
Authors: Masoumeh Tadayoni, Saeed Kamyabi, Alireza Entezari
Abstract:
Background and goal of the research: In planning and management system, the tourism carrying capacity is used as a holistic approach and supportive instrument. Evaluating the carrying capacity is used in quantitative the resource exploitation in line with sustainable development and as a foundation for identifying the changes in natural ecosystem and for the final evaluation and monitoring the tensions and decays in regressed ecosystem. Therefore, the present research tries to determine the carrying capacity of effective, physical and real range of Siahsard tourism region. Method: In the present research, the quantitative analysis of tourism carrying capacity is studied by used of effective or permissible carrying capacity (EPCC), real carrying capacity (PCC) and physical carrying capacity (RCC) in Siahsard fountain. It is analyzed based on the field survey and various resources were used for collecting information. Findings: The results of the analysis shows that, 3700 people use the Siahsard tourism region every day and 1350500 people use it annually. However, the evaluation of carrying capacity can be annually 1390650 people in this place. It can be an important tourism place along with other places in the region. Results: Siahsard’s tourism region has a little way to reach to its carrying capacity that needs to be analyzed. However, based on the results, some suggestions were offered for sustainable development of this region and as the most logical alternations for tourism management.Keywords: carrying capacity, evaluation, Siahsard, tourism
Procedia PDF Downloads 2711258 A Critical Geography of Reforestation Program in Ghana
Authors: John Narh
Abstract:
There is high rate of deforestation in Ghana due to agricultural expansion, illegal mining and illegal logging. While it is attempting to address the illegalities, Ghana has also initiated a reforestation program known as the Modified Taungya System (MTS). Within the MTS framework, farmers are allocated degraded forestland and provided with tree seedlings to practice agroforestry until the trees form canopy. Yet, the political, ecological and economic models that inform the selection of tree species, the motivations of participating farmers as well as the factors that accounts for differential access to the land and performance of farmers engaged in the program lie underexplored. Using a sequential explanatory mixed methods approach in five forest-fringe communities in the Eastern Region of Ghana, the study reveals that economic factors and Ghana’s commitment to international conventions on the environment underpin the selection of tree species for the MTS program. Social network and access to remittances play critical roles in having access to, and enhances poor farmers’ chances in the program respectively. Farmers are more motivated by the access to degraded forestland to cultivate food crops than having a share in the trees that they plant. As such, in communities where participating farmers are not informed about their benefit in the tree that they plant, the program is largely unsuccessful.Keywords: translocality, deforestation, forest management, social network
Procedia PDF Downloads 971257 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 361256 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1431255 Ecosystem Modeling along the Western Bay of Bengal
Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao
Abstract:
Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity
Procedia PDF Downloads 1411254 Identification of Candidate Congenital Heart Defects Biomarkers by Applying a Random Forest Approach on DNA Methylation Data
Authors: Kan Yu, Khui Hung Lee, Eben Afrifa-Yamoah, Jing Guo, Katrina Harrison, Jack Goldblatt, Nicholas Pachter, Jitian Xiao, Guicheng Brad Zhang
Abstract:
Background and Significance of the Study: Congenital Heart Defects (CHDs) are the most common malformation at birth and one of the leading causes of infant death. Although the exact etiology remains a significant challenge, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of congenital heart defects. At present, no existing DNA methylation biomarkers are used for early detection of CHDs. The existing CHD diagnostic techniques are time-consuming and costly and can only be used to diagnose CHDs after an infant was born. The present study employed a machine learning technique to analyse genome-wide methylation data in children with and without CHDs with the aim to find methylation biomarkers for CHDs. Methods: The Illumina Human Methylation EPIC BeadChip was used to screen the genome‐wide DNA methylation profiles of 24 infants diagnosed with congenital heart defects and 24 healthy infants without congenital heart defects. Primary pre-processing was conducted by using RnBeads and limma packages. The methylation levels of top 600 genes with the lowest p-value were selected and further investigated by using a random forest approach. ROC curves were used to analyse the sensitivity and specificity of each biomarker in both training and test sample sets. The functionalities of selected genes with high sensitivity and specificity were then assessed in molecular processes. Major Findings of the Study: Three genes (MIR663, FGF3, and FAM64A) were identified from both training and validating data by random forests with an average sensitivity and specificity of 85% and 95%. GO analyses for the top 600 genes showed that these putative differentially methylated genes were primarily associated with regulation of lipid metabolic process, protein-containing complex localization, and Notch signalling pathway. The present findings highlight that aberrant DNA methylation may play a significant role in the pathogenesis of congenital heart defects.Keywords: biomarker, congenital heart defects, DNA methylation, random forest
Procedia PDF Downloads 1581253 Impact Factor Analysis for Spatially Varying Aerosol Optical Depth in Wuhan Agglomeration
Authors: Wenting Zhang, Shishi Liu, Peihong Fu
Abstract:
As an indicator of air quality and directly related to concentration of ground PM2.5, the spatial-temporal variation and impact factor analysis of Aerosol Optical Depth (AOD) have been a hot spot in air pollution. This paper concerns the non-stationarity and the autocorrelation (with Moran’s I index of 0.75) of the AOD in Wuhan agglomeration (WHA), in central China, uses the geographically weighted regression (GRW) to identify the spatial relationship of AOD and its impact factors. The 3 km AOD product of Moderate Resolution Imaging Spectrometer (MODIS) is used in this study. Beyond the economic-social factor, land use density factors, vegetable cover, and elevation, the landscape metric is also considered as one factor. The results suggest that the GWR model is capable of dealing with spatial varying relationship, with R square, corrected Akaike Information Criterion (AICc) and standard residual better than that of ordinary least square (OLS) model. The results of GWR suggest that the urban developing, forest, landscape metric, and elevation are the major driving factors of AOD. Generally, the higher AOD trends to located in the place with higher urban developing, less forest, and flat area.Keywords: aerosol optical depth, geographically weighted regression, land use change, Wuhan agglomeration
Procedia PDF Downloads 3571252 A Case Study of Wildlife Crime in Bangladesh
Authors: M. Golam Rabbi
Abstract:
Theme of wildlife crime is unique in Bangladesh. In earlier of 2010, wildlife crime was not designated as a crime, unlike other offenses. Forest Department and other enforcement agencies were not in full swing to find out the organized crime scene at that time and recorded few cases along with forest crime. However, after the establishment of Wildlife Crime Control Unitin 2012a, total of 374 offenses have been detected with 566 offenders and 37,039 wildlife and trophies were seized till November 2016. Most offenses seem to be committed outside the forests where the presence of the forest staff is minimal. Total detection percentage of offenses is not known, but offenders are not identified in 60% of detected cases (UDOR). Only 20% cases are decided by the courts even after eight years, conviction rate of the total disposal is 70.65%. Mostly six months imprisonment and BDT 5000 fine seems to be the modal penalty. The monetary value of wildlife crime in the country is approximate $0.72M per year and the maximum value counted for reptiles around $0.45M especially for high-level trafficking of geckos and turtles. The most common seizures of wildlife are birds (mynas, munias, parakeets, lorikeets, water birds, etc.) which have domestic demand for pet. Some other wildlife like turtles, lizards and small mammals are also on the list. Venison and migratory waterbirds often seized which has a large quantity demand for consuming at aristocratic level.Due to porous border and weak enforcement in border region poachers use the way for trafficking of geckos, turtles, and tortoises, snakes, venom, tiger and body parts, spotted deerskin, pangolinetc. Those have very high demand in East Asian countries for so-called medicinal purposes. The recent survey also demonstrates new route for illegal trade and trafficking for instance, after poaching of tiger and deer from the Sundarbans, the largest mangrove track of the planet to Thailand through the Bay of Bengal, sharks fins and ray fish through Chittagong seaport and directly by sea routes to Myanmar and Thailand. However, a good number of records of offense demonstrate the transition route from India to South and South East Asian countries. Star tortoises and Hamilton’s turtles are smuggled in from India which mostly seized at Benapole border of Jessore and Hazrat Shah Jajal International Airport of Dhaka, in very large numbers for transmission to East Asian countries. Most of the cases of wildlife trade routes leading to China, Thailand, Malaysia, and Myanmar. Most surprisingly African ivory was seized in Bangladesh recently, which was meant to be trafficked to the South-East Asia. However; forest department is working to fight against wildlife poaching, illegal trade and trafficking in collaboration with other law enforcement agencies. The department needs a clear mandate and to build technical capabilities for identifying, seizing and holding specimens. The department also needs to step out of the forests and must develop the capacity to surveillance and patrol all sensitive locations across the country.Keywords: Bangladesh forest department, Sundarban, tiger, wildlife crime, wildlife trafficking
Procedia PDF Downloads 3061251 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island
Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari
Abstract:
Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area
Procedia PDF Downloads 4071250 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 111249 What Happens When We Try to Bridge the Science-Practice Gap? An Example from the Brazilian Native Vegetation Protection Law
Authors: Alice Brites, Gerd Sparovek, Jean Paul Metzger, Ricardo Rodrigues
Abstract:
The segregation between science and policy in decision making process hinders nature conservation efforts worldwide. Scientists have been criticized for not producing information that leads to effective solutions for environmental problems. In an attempt to bridge this gap between science and practice, we conducted a project aimed at supporting the implementation of the Brazilian Native Vegetation Protection Law (NVPL) implementation in São Paulo State (SP), Brazil. To do so, we conducted multiple open meetings with the stakeholders involved in this discussion. Throughout this process, we raised stakeholders' demands for scientific information and brought feedbacks about our findings. However, our main scientific advice was not taken into account during the NVPL implementation in SP. The NVPL has a mechanism that exempts landholders who converted native vegetation without offending the legislation in place at the time of the conversion from restoration requirements. We found out that there were no accurate spatialized data for native vegetation cover before the 1960s. Thus, the initial benchmark for the mechanism application should be the 1965 Brazilian Forest Act. Even so, SP kept the 1934 Brazilian Forest Act as the initial legal benchmark for the law application. This decision implies the use of a probabilistic native vegetation map that has uncertainty and subjectivity as its intrinsic characteristics, thus its use can lead to legal queries, corruption, and an unfair benefit application. But why this decision was made even after the scientific advice was vastly divulgated? We raised some possible reasons to explain it. First, the decision was made during a government transition, showing that circumstantial political events can overshadow scientific arguments. Second, the debate about the NVPL in SP was not pacified and powerful stakeholders could benefit from the confusion created by this decision. Finally, the native vegetation protection mechanism is a complex issue, with many technical aspects that can be hard to understand for a non-specialized courtroom, such as the one that made the final decision at SP. This example shows that science and decision-makers still have a long way ahead to improve their way to interact and that science needs to find its way to be heard above the political buzz.Keywords: Brazil, forest act, science-based dialogue, science-policy interface
Procedia PDF Downloads 1221248 Characteristics of Business Models of Industrial-Internet-of-Things Platforms
Authors: Peter Kress, Alexander Pflaum, Ulrich Loewen
Abstract:
The number of Internet-of-Things (IoT) platforms is steadily increasing across various industries, especially for smart factories, smart homes and smart mobility. Also in the manufacturing industry, the number of Industrial-IoT platforms is growing. Both IT players, start-ups and increasingly also established industry players and small-and-medium-enterprises introduce offerings for the connection of industrial equipment on platforms, enabled by advanced information and communication technology. Beside the offered functionalities, the established ecosystem of partners around a platform is one of the key differentiators to generate a competitive advantage. The key question is how platform operators design the business model around their platform to attract a high number of customers and partners to co-create value for the entire ecosystem. The present research tries to answer this question by determining the key characteristics of business models of successful platforms in the manufacturing industry. To achieve that, the authors selected an explorative qualitative research approach and created an inductive comparative case study. The authors generated valuable descriptive insights of the business model elements (e.g., value proposition, pricing model or partnering model) of various established platforms. Furthermore, patterns across the various cases were identified to derive propositions for the successful design of business models of platforms in the manufacturing industry.Keywords: industrial-internet-of-things, business models, platforms, ecosystems, case study
Procedia PDF Downloads 2431247 Assessment of Tourist and Community Perception with Regard to Tourism Sustainability Indicators: A Case Study of Sinharaja World Heritage Rainforest, Sri Lanka
Authors: L. P. K. Liyanage, N. R. P. Withana, A. L. Sandika
Abstract:
The purpose of this study was to determine tourist and community perception-based sustainable tourism indicators as well as Human Pressure Index (HPI) and Tourist Activity Index (TAI). Study was carried out in Sinharaja forest which is considered as one of the major eco-tourism destination in Sri Lanka. Data were gathered using a pre-tested semi-structured questionnaire as well as records from Forest department. Convenient sampling technique was applied. For the majority of issues, the responses were obtained on multi-point Likert-type scales. Visual portrayal was used for display analyzed data. The study revealed that the host community of the Kudawa gets many benefits from tourism. Also, tourism has caused negative impacts upon the environment and community. The study further revealed the need of proper waste management and involvement of local cultural events for the tourism business in the Kudawa conservation center. The TAI, which accounted to be 1.27 and monthly evolution of HPI revealed that congestion can be occurred in the Sinharaja rainforest during peak season. The results provide useful information to any party involved with tourism planning anywhere, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.Keywords: Kudawa Conservation Center, Sinharaja World Heritage Rainforest, sustainability indicators, community perception
Procedia PDF Downloads 1511246 Genetic Parameters as Indicators of Sustainability and Diversity of Schinus terebinthifolius Populations in the Riparian Area of the São Francisco River
Authors: Renata Silva-Mann, Sheila Valéria Álvares Carvalho, Robério Anastácio Ferreira, Laura Jane Gomes
Abstract:
There is growing interest in defining indicators of sustainability, which are important for monitoring the conservation of native forests, particularly in areas of permanent protection. These indicators are references for assessing the state of the forest and the status of the depredated area and its ability to maintain species populations. The aim of the present study was to select genetic parameters as indicators of sustainability for Schinus terebinthifolius Raddi. Fragments located in riparian areas between the Sergipe and Alagoas States in Brazil. This species has been exploited for traditional communities, which represent 20% of the incoming. This study was carried out using the indicators suggested by the Organization for Economic Cooperation and Development, which were identified as Driving-Pressure-State-Impact-Response (DPSIR) factors. The genetic parameters were obtained in five populations located on the shores and islands of the São Francisco River, one of the most important rivers in Brazil. The framework for Schinus conservation suggests seventeen indicators of sustainability. In accordance with genetic parameters, the populations are isolated, and these genetic parameters can be used to monitor the sustainability of those populations in riparian area with the aim of defining strategies for forest restoration.Keywords: alleles, molecular markers, genetic diversity, biodiversity
Procedia PDF Downloads 3031245 Wildfires Assessed By Remote Sensed Images And Burned Land Monitoring
Authors: Maria da Conceição Proença
Abstract:
This case study implements the evaluation of burned areas that suffered successive wildfires in Portugal mainland during the summer of 2017, killing more than 60 people. It’s intended to show that this evaluation can be done with remote sensing data free of charges in a simple laptop, with open-source software, describing the not-so-simple methodology step by step, to make it available for county workers in city halls of the areas attained, where the availability of information is essential for the immediate planning of mitigation measures, such as restoring road access, allocate funds for the recovery of human dwellings and assess further restoration of the ecological system. Wildfires also devastate forest ecosystems having a direct impact on vegetation cover and killing or driving away from the animal population. The economic interest is also attained, as the pinewood burned becomes useless for the noblest applications, so its value decreases, and resin extraction ends for several years. The tools described in this paper enable the location of the areas where took place the annihilation of natural habitats and establish a baseline for major changes in forest ecosystems recovery. Moreover, the result allows the follow up of the surface fuel loading, enabling the targeting and evaluation of restoration measures in a time basis planning.Keywords: image processing, remote sensing, wildfires, burned areas evaluation, sentinel-2
Procedia PDF Downloads 2111244 Grouping Pattern, Habitat Assessment and Overlap Analysis of Five Ungulates Species in Different Altitudinal Gradients of Western Himalaya, Uttarakhand, India
Authors: Kaleem Ahmed, Jamal A. Khan
Abstract:
Grouping patterns, habitat use, and overlap studies were conducted on five sympatric ungulate species sambar (Cervus unicolor), chital (Axis axis), muntjac (Muntiacus muntjac), goral (Nemorhaedus goral), and serow (Capricornis sumatraensis) in the Dabka watershed area within Indian West Himalayan range. Data on age, sex composition, group size, and various ecological and topographical factors governing the presence/absence of species within the study area were collected using a 250 km of a trail walk, 95 permanent circular plots of 10 m radius, and 3 vantage points with 58 scannings. The highest mean group size was recorded for chital (6.35 ± 0.50), followed by sambar (1.35 ± 0.10), goral (1.25 ±0.63), muntjac (1.12 ± 0.05), and serow (1.00 ± 0.00). Grouping pattern significantly varied among sympatric species (F = 85.10, df. = 6, P = 0.000). The highest mean pellet group density (/ha ± SE) was recorded for sambar (41.56 ± 3.51), followed by goral (23.31 ± 3.45), chital (19.21 ± 3.51), muntjac (7.43 ± 1.21), and serow (1.02 ± 0.10). Two-way variance analysis showed a significant difference in the density of the pellet group of all ungulate species across different study area habitats (F = 6.38, df = 4, P = 0.027). The availability-utilization (AU) analysis reveals that goral was mostly sighted in steep slopes, preferred > 2100 m altitudinal range with low shrub understory, avoided dense forest, and relatively more southern aspects were used. Chital had used a wide range of tree and shrub coverings with a preference towards moderate cover range (26-50%), preferred areas with low slope category ( < 25), avoided areas of high altitude > 900 m. Sambar avoided less tree cover (0-25), preferred slope category (26-500), altitudes between 1600-2100 m, and preferred dense forest with northern aspects. Muntjac used all elevation ranges in the study area with a preference towards the dense forest and northern aspects. Serow preferred high tree cover > 75%, avoided low shrub cover (0-25%), preferred high shrub cover 51-75%, utilized higher elevation > 2100 m, avoided low elevation range and northern aspects. All species occupied similar habitat types, forest or scrub, except for the goral, which preferred open spaces. Between muntjac and sambar, the highest overlap was found (65%), and there was no overlap between chital and serow, chital and goral. Aspect, slope, altitude, and vegetation characteristics were found to be important factors for the overlap of ungulate sympatric species. One major reason for their ecological separation at the fine-scale level is the differential use of altitude by ungulates in the present study. This is confirmed by the avoidance by chital of altitudes > 900 m and serow of < 2100 m.Keywords: altitude, grouping pattern, Himalayas, overlap, ungulates
Procedia PDF Downloads 1411243 An Examination of Changes on Natural Vegetation due to Charcoal Production Using Multi Temporal Land SAT Data
Authors: T. Garba, Y. Y. Babanyara, M. Isah, A. K. Muktari, R. Y. Abdullahi
Abstract:
The increased in demand of fuel wood for heating, cooking and sometimes bakery has continued to exert appreciable impact on natural vegetation. This study focus on the use of multi-temporal data from land sat TM of 1986, land sat EMT of 1999 and lands sat ETM of 2006 to investigate the changes of Natural Vegetation resulting from charcoal production activities. The three images were classified based on bare soil, built up areas, cultivated land, and natural vegetation, Rock out crop and water bodies. From the classified images Land sat TM of 1986 it shows natural vegetation of the study area to be 308,941.48 hectares equivalent to 50% of the area it then reduces to 278,061.21 which is 42.92% in 1999 it again depreciated to 199,647.81 in 2006 equivalent to 30.83% of the area. Consequently cultivated continue increasing from 259,346.80 hectares (42%) in 1986 to 312,966.27 hectares (48.3%) in 1999 and then to 341.719.92 hectares (52.78%). These show that within the span of 20 years (1986 to 2006) the natural vegetation is depreciated by 119,293.81 hectares. This implies that if the menace is not control the natural might likely be lost in another twenty years. This is because forest cleared for charcoal production is normally converted to farmland. The study therefore concluded that there is the need for alternatives source of domestic energy such as the use of biomass which can easily be accessible and affordable to people. In addition, the study recommended that there should be strong policies enforcement for the protection forest reserved.Keywords: charcoal, classification, data, images, land use, natural vegetation
Procedia PDF Downloads 3631242 Linking the Genetic Signature of Free-Living Soil Diazotrophs with Process Rates under Land Use Conversion in the Amazon Rainforest
Authors: Rachel Danielson, Brendan Bohannan, S.M. Tsai, Kyle Meyer, Jorge L.M. Rodrigues
Abstract:
The Amazon Rainforest is a global diversity hotspot and crucial carbon sink, but approximately 20% of its total extent has been deforested- primarily for the establishment of cattle pasture. Understanding the impact of this large-scale disturbance on soil microbial community composition and activity is crucial in understanding potentially consequential shifts in nutrient or greenhouse gas cycling, as well as adding to the body of knowledge concerning how these complex communities respond to human disturbance. In this study, surface soils (0-10cm) were collected from three forests and three 45-year-old pastures in Rondonia, Brazil (the Amazon state with the greatest rate of forest destruction) in order to determine the impact of forest conversion on microbial communities involved in nitrogen fixation. Soil chemical and physical parameters were paired with measurements of microbial activity and genetic profiles to determine how community composition and process rates relate to environmental conditions. Measuring both the natural abundance of 15N in total soil N, as well as incorporation of enriched 15N2 under incubation has revealed that conversion of primary forest to cattle pasture results in a significant increase in the rate of nitrogen fixation by free-living diazotrophs. Quantification of nifH gene copy numbers (an essential subunit encoding the nitrogenase enzyme) correspondingly reveals a significant increase of genes in pasture compared to forest soils. Additionally, genetic sequencing of both nifH genes and transcripts shows a significant increase in the diversity of the present and metabolically active diazotrophs within the soil community. Levels of both organic and inorganic nitrogen tend to be lower in pastures compared to forests, with ammonium rather than nitrate as the dominant inorganic form. However, no significant or consistent differences in total, extractable, permanganate-oxidizable, or loss-on-ignition carbon are present between the two land-use types. Forest conversion is associated with a 0.5- 1.0 unit pH increase, but concentrations of many biologically relevant nutrients such as phosphorus do not increase consistently. Increases in free-living diazotrophic community abundance and activity appear to be related to shifts in carbon to nitrogen pool ratios. Furthermore, there may be an important impact of transient, low molecular weight plant-root-derived organic carbon on free-living diazotroph communities not captured in this study. Preliminary analysis of nitrogenase gene variant composition using NovoSeq metagenomic sequencing indicates that conversion of forest to pasture may significantly enrich vanadium-based nitrogenases. This indication is complemented by a significant decrease in available soil molybdenum. Very little is known about the ecology of diazotrophs utilizing vanadium-based nitrogenases, so further analysis may reveal important environmental conditions favoring their abundance and diversity in soil systems. Taken together, the results of this study indicate a significant change in nitrogen cycling and diazotroph community composition with the conversion of the Amazon Rainforest. This may have important implications for the sustainability of cattle pastures once established since nitrogen is a crucial nutrient for forage grass productivity.Keywords: free-living diazotrophs, land use change, metagenomic sequencing, nitrogen fixation
Procedia PDF Downloads 1941241 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1061240 Economic Valuation of Environmental Services Sustained by Flamboyant Park in Goiania-Go, Brazil
Authors: Brenda R. Berca, Jessica S. Vieira, Lucas G. Candido, Matheus C. Ferreira, Paulo S. A. Lopes Filho, Rafaella O. Baracho
Abstract:
This study aims to estimate the economic value environmental services sustained by Flamboyant Lourival Louza Municipal Park in Goiânia, Goiás, Brazil. The Flamboyant Park is one of the most relevant urban parks, and it is located near a stadium, a shopping center, and two supercenters. In order to define the methods used for the valuation of Flamboyant Park, the first step was carrying out bibliographical research with the view to better understand which method is most feasible to valuate the Park. Thus, the following direct methods were selected: travel cost, hedonic pricing, and contingent valuation. In addition, an indirect method (replacement cost) was applied at Flamboyant Park. The second step was creating and applying two surveys. The first survey aimed at the visitors of the park, addressing socio-economic issues, the use of the Park, as well as its importance and the willingness the visitors, had to pay for its existence. The second survey was destined to the existing trade in the Park, in order to collect data regarding the profits obtained by them. In the end, the characterization of the profile of the visitors and the application of the methods of contingent valuation, travel cost, replacement cost and hedonic pricing were obtained, thus monetarily valuing the various ecosystem services sustained by the park. Some services were not valued due to difficulties encountered during the process.Keywords: contingent valuation, ecosystem services, economic environmental valuation, hedonic pricing, travel cost
Procedia PDF Downloads 2261239 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1751238 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region
Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar
Abstract:
Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification
Procedia PDF Downloads 1831237 Vegetation Assessment Under the Influence of Environmental Variables; A Case Study from the Yakhtangay Hill of Himalayan Range, Pakistan
Authors: Hameed Ullah, Shujaul Mulk Khan, Zahid Ullah, Zeeshan Ahmad Sadia Jahangir, Abdullah, Amin Ur Rahman, Muhammad Suliman, Dost Muhammad
Abstract:
The interrelationship between vegetation and abiotic variables inside an ecosystem is one of the main jobs of plant scientists. This study was designed to investigate the vegetation structure and species diversity along with the environmental variables in the Yakhtangay hill district Shangla of the Himalayan Mountain series Pakistan by using multivariate statistical analysis. Quadrat’s method was used and a total of 171 Quadrats were laid down 57 for Tree, Shrubs and Herbs, respectively, to analyze the phytosociological attributes of the vegetation. The vegetation of the selected area was classified into different Life and leaf-forms according to Raunkiaer classification, while PCORD software version 5 was used to classify the vegetation into different plants communities by Two-way indicator species Analysis (TWINSPAN). The CANOCCO version 4.5 was used for DCA and CCA analysis to find out variation directories of vegetation with different environmental variables. A total of 114 plants species belonging to 45 different families was investigated inside the area. The Rosaceae (12 species) was the dominant family followed by Poaceae (10 species) and then Asteraceae (7 species). Monocots were more dominant than Dicots and Angiosperms were more dominant than Gymnosperms. Among the life forms the Hemicryptophytes and Nanophanerophytes were dominant, followed by Therophytes, while among the leaf forms Microphylls were dominant, followed by Leptophylls. It is concluded that among the edaphic factors such as soil pH, the concentration of soil organic matter, Calcium Carbonates concentration in soil, soil EC, soil TDS, and physiographic factors such as Altitude and slope are affecting the structure of vegetation, species composition and species diversity at the significant level with p-value ≤0.05. The Vegetation of the selected area was classified into four major plants communities and the indicator species for each community was recorded. Classification of plants into 4 different communities based upon edaphic gradients favors the individualistic hypothesis. Indicator Species Analysis (ISA) shows the indicators of the study area are mostly indicators to the Himalayan or moist temperate ecosystem, furthermore, these indicators could be considered for micro-habitat conservation and respective ecosystem management plans.Keywords: species richness, edaphic gradients, canonical correspondence analysis (CCA), TWCA
Procedia PDF Downloads 152