Search results for: brain drain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1286

Search results for: brain drain

776 Bionaut™: A Minimally Invasive Microsurgical Platform to Treat Non-Communicating Hydrocephalus in Dandy-Walker Malformation

Authors: Suehyun Cho, Darrell Harrington, Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Alex Kiselyov, Michael Shpigelmacher

Abstract:

The Dandy-Walker malformation (DWM) represents a clinical syndrome manifesting as a combination of posterior fossa cyst, hypoplasia of the cerebellar vermis, and obstructive hydrocephalus. Anatomic hallmarks include hypoplasia of the cerebellar vermis, enlargement of the posterior fossa, and cystic dilatation of the fourth ventricle. Current treatments of DWM, including shunting of the cerebral spinal fluid ventricular system and endoscopic third ventriculostomy (ETV), are frequently clinically insufficient, require additional surgical interventions, and carry risks of infections and neurological deficits. Bionaut Labs develops an alternative way to treat Dandy-Walker Malformation (DWM) associated with non-communicating hydrocephalus. We utilize our discreet microsurgical Bionaut™ particles that are controlled externally and remotely to perform safe, accurate, effective fenestration of the Dandy-Walker cyst, specifically in the posterior fossa of the brain, to directly normalize intracranial pressure. Bionaut™ allows for complex non-linear trajectories not feasible by any conventional surgical techniques. The microsurgical particle safely reaches targets in the lower occipital section of the brain. Bionaut™ offers a minimally invasive surgical alternative to highly involved posterior craniotomy or shunts via direct fenestration of the fourth ventricular cyst at the locus defined by the individual anatomy. Our approach offers significant advantages over the current standards of care in patients exhibiting anatomical challenge(s) as a manifestation of DWM, and therefore, is intended to replace conventional therapeutic strategies. Current progress, including platform optimization, Bionaut™ control, and real-time imaging and in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of ovine models, will be discussed.

Keywords: Bionaut™, cerebral spinal fluid, CSF, cyst, Dandy-Walker, fenestration, hydrocephalus, micro-robot

Procedia PDF Downloads 221
775 Assessment of Highly Sensitive Dielectric Modulated GaN-FinFET for Label-Free Biosensing Applications

Authors: Ajay Kumar, Neha Gupta

Abstract:

This work presents the sensitivity assessment of Gallium Nitride (GaN) material-based FinFET by dielectric modulation in the nanocavity gap for label-free biosensing applications. The significant deflection is observed in the electrical characteristics such as drain current (ID), transconductance (gm), surface potential, energy band profile, electric field, sub-threshold slope (SS), and threshold voltage (Vth) in the presence of biomolecules owing to GaN material. Further, the device sensitivity is evaluated to identify the effectiveness of the proposed biosensor and its capability to detect the biomolecules with high precision or accuracy. Higher sensitivity is observed for Gelatin (k=12) in terms of on-current (SION), threshold voltage (SVth), and switching ratio (SSR) by 104.88%, 82.12%, and 119.73%, respectively. This work is performed using a powerful tool 3D Sentaurus TCAD using a well-calibrated structure. All the results pave the way for GaN-FinFET as a viable candidate for label-free dielectric modulated biosensor applications.

Keywords: biosensor, biomolecules, FinFET, sensitivity

Procedia PDF Downloads 204
774 Administration of Lactobacillus plantarum PS128 Improves Animal Behavior and Monoamine Neurotransmission in Germ-Free Mice

Authors: Liu Wei-Hsien, Chuang Hsiao-Li, Huang Yen-Te, Wu Chien-Chen, Chou Geng-Ting, Tsai Ying-Chieh

Abstract:

Intestinal microflora play an important role in communication along the gut-brain axis. Probiotics, defined as live bacteria or bacterial products, confer a significant health benefit to the host. Here we administered Lactobacillus plantarum PS128 (PS128) to the germ-free (GF) mouse to investigate the impact of the gut-brain axis on emotional behavior. Administration of live PS128 significantly increased the total distance traveled in the open field test; it decreased the time spent in the closed arm and increased the time spent and total entries into the open arm in the elevated plus maze. In contrast, heat-killed PS128 caused no significant changes in the GF mice. Treatment with live PS128 significantly increased levels of both serotonin and dopamine in the striatum, but not in the prefrontal cortex or hippocampus. However, live PS128 did not alter pro- or anti-inflammatory cytokine production by mitogen-stimulated splenocytes. The above data indicate that the normalization of emotional behavior correlated with monoamine neurotransmission, but not with immune activity. Our findings suggest that daily intake of the probiotic PS128 could ameliorate neuropsychiatric disorders such as anxiety and excessive psychological stress.

Keywords: dopamine, hypothalamic-pituitary-adrenal axis, intestinal microflora, serotonin

Procedia PDF Downloads 415
773 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications

Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut

Abstract:

The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.

Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy

Procedia PDF Downloads 156
772 Dementia, Its Associated Struggles, and the Supportive Technologies Classified

Authors: Eashwari Dahoe, Jody Scheuer, Harm-Jan Vink

Abstract:

Alzheimer's disease is a progressive brain condition and is the most common form of dementia. Dementia is a global concern. It is an increasing crisis due to the worldwide aging population. The disease alters the body in different stages leading to several issues. The most common issues result in memory loss, responsive decline, and social decline. During the various stages, the dementia patient must be supported more in performing daily tasks. Eventually, the patient will have to be cared for entirely. There are many efforts in various domains to support this brain condition. This study focuses on the connection between three generations of solutions in the domain of technology and the struggles they tackle. To gather information regarding the struggles seniors with dementia face data has been acknowledged through reading scientific articles. The struggles are extracted from these articles and classified into various category struggles. To gather information regarding the three generations of technology data has been acknowledged through reading scientific articles regarding the generations. After understanding the difference between the three generations, international technological solutions from the past 20 years are connected to the generation they fit. This info is mainly collected through research on companies that aim to improve the lives of senior citizens with early stages of dementia. Eventually, the technological solutions (divided by generations) are linked to the struggles they tackle. By connecting the struggles and the solutions , it is hoped that this paper contributes to an informative overview of the currently available technological solutions and the struggles they tackle.

Keywords: Alzheimer’s disease, technological solutions to support dementia, struggles of seniors with dementia, struggles of dementia

Procedia PDF Downloads 109
771 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives

Authors: Mohammadjavad Sotoudeheian

Abstract:

COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.

Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration

Procedia PDF Downloads 86
770 Tip60 Histone Acetyltransferase Activators as Neuroepigenetic Therapeutic Modulators for Alzheimer’s Disease

Authors: Akanksha Bhatnagar, Sandhya Kortegare, Felice Elefant

Abstract:

Context: Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive cognitive decline and memory loss. The cause of AD is not fully understood, but it is thought to be caused by a combination of genetic, environmental, and lifestyle factors. One of the hallmarks of AD is the loss of neurons in the hippocampus, a brain region that is important for memory and learning. This loss of neurons is thought to be caused by a decrease in histone acetylation, which is a process that regulates gene expression. Research Aim: The research aim of the study was to develop mall molecule compounds that can enhance the activity of Tip60, a histone acetyltransferase that is important for memory and learning. Methodology/Analysis: The researchers used in silico structural modeling and a pharmacophore-based virtual screening approach to design and synthesize small molecule compounds strongly predicted to target and enhance Tip60’s HAT activity. The compounds were then tested in vitro and in vivo to assess their ability to enhance Tip60 activity and rescue cognitive deficits in AD models. Findings: The researchers found that several of the compounds were able to enhance Tip60 activity and rescue cognitive deficits in AD models. The compounds were also developed to cross the blood-brain barrier, which is an important factor for the development of potential AD therapeutics. Theoretical Importance: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Data Collection: The study collected data from a variety of sources, including in vitro assays and animal models. The in vitro assays assessed the ability of compounds to enhance Tip60 activity using histone acetyltransferase (HAT) enzyme assays and chromatin immunoprecipitation assays. Animal models were used to assess the ability of the compounds to rescue cognitive deficits in AD models using a variety of behavioral tests, including locomotor ability, sensory learning, and recognition tasks. The human clinical trials will be used to assess the safety and efficacy of the compounds in humans. Questions: The question addressed by this study was whether Tip60 HAT activators could be developed as therapeutic agents for AD. Conclusions: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Further research is needed to confirm the safety and efficacy of these compounds in humans.

Keywords: Alzheimer's disease, cognition, neuroepigenetics, drug discovery

Procedia PDF Downloads 75
769 Short Association Bundle Atlas for Lateralization Studies from dMRI Data

Authors: C. Román, M. Guevara, P. Salas, D. Duclap, J. Houenou, C. Poupon, J. F. Mangin, P. Guevara

Abstract:

Diffusion Magnetic Resonance Imaging (dMRI) allows the non-invasive study of human brain white matter. From diffusion data, it is possible to reconstruct fiber trajectories using tractography algorithms. Our previous work consists in an automatic method for the identification of short association bundles of the superficial white matter (SWM), based on a whole brain inter-subject hierarchical clustering applied to a HARDI database. The method finds representative clusters of similar fibers, belonging to a group of subjects, according to a distance measure between fibers, using a non-linear registration (DTI-TK). The algorithm performs an automatic labeling based on the anatomy, defined by a cortex mesh parcelated with FreeSurfer software. The clustering was applied to two independent groups of 37 subjects. The clusters resulting from both groups were compared using a restrictive threshold of mean distance between each pair of bundles from different groups, in order to keep reproducible connections. In the left hemisphere, 48 reproducible bundles were found, while 43 bundles where found in the right hemisphere. An inter-hemispheric bundle correspondence was then applied. The symmetric horizontal reflection of the right bundles was calculated, in order to obtain the position of them in the left hemisphere. Next, the intersection between similar bundles was calculated. The pairs of bundles with a fiber intersection percentage higher than 50% were considered similar. The similar bundles between both hemispheres were fused and symmetrized. We obtained 30 common bundles between hemispheres. An atlas was created with the resulting bundles and used to segment 78 new subjects from another HARDI database, using a distance threshold between 6-8 mm according to the bundle length. Finally, a laterality index was calculated based on the bundle volume. Seven bundles of the atlas presented right laterality (IP_SP_1i, LO_LO_1i, Op_Tr_0i, PoC_PoC_0i, PoC_PreC_2i, PreC_SM_0i, y RoMF_RoMF_0i) and one presented left laterality (IP_SP_2i), there is no tendency of lateralization according to the brain region. Many factors can affect the results, like tractography artifacts, subject registration, and bundle segmentation. Further studies are necessary in order to establish the influence of these factors and evaluate SWM laterality.

Keywords: dMRI, hierarchical clustering, lateralization index, tractography

Procedia PDF Downloads 331
768 Relationship between Right Brain and Left Brain Dominance and Intonation Learning

Authors: Mohammad Hadi Mahmoodi, Soroor Zekrati

Abstract:

The aim of this study was to investigate the relationship between hemispheric dominance and intonation learning of Iranian EFL students. In order to gain this goal, 52 female students from three levels of beginner, elementary and intermediate in Paradise Institute, and 18 male university students at Bu-Ali Sina University constituted the sample. In order to assist students learn the correct way of applying intonation to their everyday speech, the study proposed an interactive approach and provided students with visual aid through which they were able to see the intonation pattern on computer screen using 'Speech Analyzer' software. This software was also used to record subjects’ voice and compare them with the original intonation pattern. Edinburg Handedness Questionnaire (EHD), which ranges from –100 for strong left-handedness to +100 for strong right-handedness was used to indicate the hemispheric dominance of each student. The result of an independent sample t-test indicated that girls learned intonation pattern better than boys, and that right brained students significantly outperformed the left brained ones. Using one-way ANOVA, a significant difference between three proficiency levels was also found. The posthoc Scheffer test showed that the exact difference was between intermediate and elementary, and intermediate and beginner levels, but no significant difference was observed between elementary and beginner levels. The findings of the study might provide researchers with some helpful implications and useful directions for future investigation into the domain of the relationship between mind and second language learning.

Keywords: intonation, hemispheric dominance, visual aid, language learning, second language learning

Procedia PDF Downloads 519
767 Numerical Modelling of a Vacuum Consolidation Project in Vietnam

Authors: Nguyen Trong Nghia, Nguyen Huu Uy Vu, Dang Huu Phuoc, Sanjay Kumar Shukla, Le Gia Lam, Nguyen Van Cuong

Abstract:

This paper introduces a matching scheme for selection of soil/drain properties in analytical solution and numerical modelling (axisymmetric and plane strain conditions) of a ground improvement project by using Prefabricated Vertical Drains (PVD) in combination with vacuum and surcharge preloading. In-situ monitoring data from a case history of a road construction project in Vietnam was adopted in the back-analysis. Analytical solution and axisymmetric analysis can approximate well the field data meanwhile the horizontal permeability need to be adjusted in plane strain scenario to achieve good agreement. In addition, the influence zone of the ground treatment was examined. The residual settlement was investigated to justify the long-term settlement in compliance with the design code. Moreover, the degree of consolidation of non-PVD sub-layers was also studied by means of two different approaches.

Keywords: numerical modelling, prefabricated vertical drains, vacuum consolidation, soft soil

Procedia PDF Downloads 230
766 Assessment of Neurodevelopmental Needs in Duchenne Muscular Dystrophy

Authors: Mathula Thangarajh

Abstract:

Duchenne muscular dystrophy (DMD) is a severe form of X-linked muscular dystrophy caused by mutations in the dystrophin gene resulting in progressive skeletal muscle weakness. Boys with DMD also have significant cognitive disabilities. The intelligence quotient of boys with DMD, compared to peers, is approximately one standard deviation below average. Detailed neuropsychological testing has demonstrated that boys with DMD have a global developmental impairment, with verbal memory and visuospatial skills most significantly affected. Furthermore, the total brain volume and gray matter volume are lower in children with DMD compared to age-matched controls. These results are suggestive of a significant structural and functional compromise to the developing brain as a result of absent dystrophin protein expression. There is also some genetic evidence to suggest that mutations in the 3’ end of the DMD gene are associated with more severe neurocognitive problems. Our working hypothesis is that (i) boys with DMD do not make gains in neurodevelopmental skills compared to typically developing children and (ii) women carriers of DMD mutations may have subclinical cognitive deficits. We also hypothesize that there may be an intergenerational vulnerability of cognition, with boys of DMD-carrier mothers being more affected cognitively than boys of non-DMD-carrier mothers. The objectives of this study are: 1. Assess the neurodevelopment in boys with DMD at 4-time points and perform baseline neuroradiological assessment, 2. Assess cognition in biological mothers of DMD participants at baseline, 3. Assess possible correlation between DMD mutation and cognitive measures. This study also explores functional brain abnormalities in people with DMD by exploring how regional and global connectivity of the brain underlies executive function deficits in DMD. Such research can contribute to a better holistic understanding of the cognition alterations due to DMD and could potentially allow clinicians to create better-tailored treatment plans for the DMD population. There are four study visits for each participant (baseline, 2-4 weeks, 1 year, 18 months). At each visit, the participant completes the NIH Toolbox Cognition Battery, a validated psychometric measure that is recommended by NIH Common Data Elements for use in DMD. Visits 1, 3, and 4 also involve the administration of the BRIEF-2, ABAS-3, PROMIS/NeuroQoL, PedsQL Neuromuscular module 3.0, Draw a Clock Test, and an optional fMRI scan with the N-back matching task. We expect to enroll 52 children with DMD, 52 mothers of children with DMD, and 30 healthy control boys. This study began in 2020 during the height of the COVID-19 pandemic. Due to this, there were subsequent delays in recruitment because of travel restrictions. However, we have persevered and continued to recruit new participants for the study. We partnered with the Muscular Dystrophy Association (MDA) and helped advertise the study to interested families. Since then, we have had families from across the country contact us about their interest in the study. We plan to continue to enroll a diverse population of DMD participants to contribute toward a better understanding of Duchenne Muscular Dystrophy.

Keywords: neurology, Duchenne muscular dystrophy, muscular dystrophy, cognition, neurodevelopment, x-linked disorder, DMD, DMD gene

Procedia PDF Downloads 99
765 Numerical Assessment on the Unsaturated Behavior of Silty Sand

Authors: Seyed Abolhassan Naeini, Ali Namaei

Abstract:

This investigation presents the behavior of the unsaturated silty sand by calculating the shear resistance of the specimens by numerical method. In order to investigate this behavior, a series of triaxial tests have been simulated in constant water condition. The finite difference software FLAC3D has been carried out for analyzing the shear resistance and the results are compared with findings from a previous laboratory tests. Constant water tests correspond to a field condition where the rate of the loading is much quicker than the rate at which the pore water is able to drain out of the soil. Tests were simulated on two groups of the silty sands. The obtained results show that the FLAC software may be able to simulate the behavior of specimens with the low suction value magnitude. As the initial suction increased, the differences between numerical and experimental results increased, especially in loose sand. Since some assumptions were used for input parameters, a conclusive result needs more investigations.

Keywords: finite difference, shear resistance, unsaturated silty sand, constant water test

Procedia PDF Downloads 119
764 Time Lag Analysis for Readiness Potential by a Firing Pattern Controller Model of a Motor Nerve System Considered Innervation and Jitter

Authors: Yuko Ishiwaka, Tomohiro Yoshida, Tadateru Itoh

Abstract:

Human makes preparation called readiness potential unconsciously (RP) before awareness of their own decision. For example, when recognizing a button and pressing the button, the RP peaks are observed 200 ms before the initiation of the movement. It has been known that the preparatory movements are acquired before actual movements, but it has not been still well understood how humans can obtain the RP during their growth. On the proposition of why the brain must respond earlier, we assume that humans have to adopt the dangerous environment to survive and then obtain the behavior to cover the various time lags distributed in the body. Without RP, humans cannot take action quickly to avoid dangerous situations. In taking action, the brain makes decisions, and signals are transmitted through the Spinal Cord to the muscles to the body moves according to the laws of physics. Our research focuses on the time lag of the neuron signal transmitting from a brain to muscle via a spinal cord. This time lag is one of the essential factors for readiness potential. We propose a firing pattern controller model of a motor nerve system considered innervation and jitter, which produces time lag. In our simulation, we adopt innervation and jitter in our proposed muscle-skeleton model, because these two factors can create infinitesimal time lag. Q10 Hodgkin Huxley model to calculate action potentials is also adopted because the refractory period produces a more significant time lag for continuous firing. Keeping constant power of muscle requires cooperation firing of motor neurons because a refractory period stifles the continuous firing of a neuron. One more factor in producing time lag is slow or fast-twitch. The Expanded Hill Type model is adopted to calculate power and time lag. We will simulate our model of muscle skeleton model by controlling the firing pattern and discuss the relationship between the time lag of physics and neurons. For our discussion, we analyze the time lag with our simulation for knee bending. The law of inertia caused the most influential time lag. The next most crucial time lag was the time to generate the action potential induced by innervation and jitter. In our simulation, the time lag at the beginning of the knee movement is 202ms to 203.5ms. It means that readiness potential should be prepared more than 200ms before decision making.

Keywords: firing patterns, innervation, jitter, motor nerve system, readiness potential

Procedia PDF Downloads 829
763 Physical Activity Based on Daily Step-Count in Inpatient Setting in Stroke and Traumatic Brain Injury Patients in Subacute Stage Follow Up: A Cross-Sectional Observational Study

Authors: Brigitte Mischler, Marget Hund, Hilfiker Roger, Clare Maguire

Abstract:

Background: Brain injury is one of the main causes of permanent physical disability, and improving walking ability is one of the most important goals for patients. After inpatient rehabilitation, most do not receive long-term rehabilitation services. Physical activity is important for the health prevention of the musculoskeletal system, circulatory system and the psyche. Objective: This follow-up study measured physical activity in subacute patients after traumatic brain injury and stroke. The difference in the number of steps in the inpatient setting was compared to the number of steps 1 year after the event in the outpatient setting. Methods: This follow-up study is a cross-sectional observational study with 29 participants. The measurement of daily step count over a seven-day period one year after the event was evaluated with the StepWatch™ ankle sensor. The number of steps taken one year after the event in the outpatient setting was compared with the number of steps taken during the inpatient stay and evaluated if they reached the recommended target value. Correlations between steps-count and exit domain, FAC level, walking speed, light touch, joint position sense, cognition, and fear of falling were calculated. Results: The median (IQR) daily step count of all patients was 2512 (568.5, 4070.5). During follow-up, the number of steps improved to 3656(1710,5900). The average difference was 1159(-2825, 6840) steps per day. Participants who were unable to walk independently (FAC 1) improved from 336(5-705) to 1808(92, 5354) steps per day. Participants able to walk with assistance (FAC 2-3) walked 700(31-3080) and at follow-up 3528(243,6871). Independent walkers (FAC 4-5) walked 4093(2327-5868) and achieved 3878(777,7418) daily steps at follow-up. This value is significantly below the recommended guideline. Step-count at follow-up showed moderate to high and statistically significant correlations: positive for FAC score, positive for FIM total score, positive for walking speed, and negative for fear of falling. Conclusions: Only 17% of all participants achieved the recommended daily step count one year after the event. We need better inpatient and outpatient strategies to improve physical activity. In everyday clinical practice, pedometers and diaries with objectives should be used. A concrete weekly schedule should be drawn up together with the patient, relatives, or nursing staff after discharge. This should include daily self-training, which was instructed during the inpatient stay. A good connection to social life (professional connection or a daily task/activity) can be an important part of improving daily activity. Further research should evaluate strategies to increase daily step counts in inpatient settings as well as in outpatient settings.

Keywords: neurorehabilitation, stroke, traumatic brain injury, steps, stepcount

Procedia PDF Downloads 15
762 A Comparison of Generation Dependent Brain Targeting Potential of(Poly Propylene Mine) Dendrimers

Authors: Nitin Dwivedi, Jigna Shah

Abstract:

Aim and objective of study: This article indicates a comparison among various generations of dendrimers, a dendrimer is a bioactive material has repetitively branched molecule and used for delivery of various therapeutic active agents. This debut report compares the effect various generations of PPI dendrimers for brain targeting and management of neurodegenerative disorders potential on single platform. This report involves the study of the various mechanism of synthesis ligand anchored various generations PPI dendrimers deliver the drug directly to the CNS, prove their effectiveness in the management of the various neurodegenerative disease. Material and Methods: The Memantine an anti-Alzheimer drug loaded in different generations (3.0G, 4.0G, and 5.0G) of PPI dendrimers which were synthesized were synthesized. The various studies investigate the effect of PPI dendrimers generation on different characteristic parameters i.e. synthesis procedure, drug loading, release behavior, hemolysis profile at different concentration, MRI study for determine the route drug from olfactory transfer, animal model study in vitro, as well as in vivo performance. The outcomes of the investigation indicate drug delivery benefit as well as superior biocompatibility of 4.0G PPI dendrimer over 3.0G and 5.0G dendrimer, respectively. Results and Conclusion: The above study indicate the superiority of in drug delivery system with maximum drug utilization and minimize the drug dose for neurodegenerative disorder over 5.0G PPI dendrimers. So, 4.0G PPI dendrimers are the safe formulations for the symptomatic treatment of the neurodegenerative disorder. The fifth-generation poly(propyleneimine) (PPI) dendrimers, inherent toxicity due to the presence of many peripheral cationic groups is the major issue that limits their applicability.

Keywords: Alzheimer disease, generation, memantine, PPI

Procedia PDF Downloads 667
761 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 128
760 Smartphone Addiction and Reaction Time in Geriatric Population

Authors: Anjali N. Shete, G. D. Mahajan, Nanda Somwanshi

Abstract:

Context: Smartphones are the new generation of mobile phones; they have emerged over the last few years. Technology has developed so much that it has become part of our life and mobile phones are one of them. These smartphones are equipped with the capabilities to display photos, play games, watch videos and navigation, etc. The advances have a huge impact on many walks of life. The adoption of new technology has been challenging for the elderly. But, the elder population is also moving towards digitally connected lives. As age advances, there is a decline in the motor and cognitive functions of the brain, and hence the reaction time is affected. The study was undertaken to assess the usefulness of smartphones in improving cognitive functions. Aims and Objectives: The aim of the study was to observe the effects of smartphone addiction on reaction time in elderly population Material and Methods: This is an experimental study. 100 elderly subjects were enrolled in this study randomly from urban areas. They all were using smartphones for several hours a day. They were divided into two groups according to the scores of the mobile phone addiction scale (MPAS). Simple reaction time was estimated by the Ruler drop method. The reaction time was then calculated for each subject in both groups. The data were analyzed using mean, standard deviation, and Pearson correlation test. Results: The mean reaction time in Group A is 0.27+ 0.040 and in Group B is 0.20 + 0.032. The values show a statistically significant change in reaction time. Conclusion: Group A with a high MPAS score has a low reaction time compared to Group B with a low MPAS score. Hence, it can be concluded that the use of smartphones in the elderly is useful, delaying the neurological decline, and smarten the brain.

Keywords: smartphones, MPAS, reaction time, elderly population

Procedia PDF Downloads 177
759 Traumatic Brain Injury in Cameroon: A Prospective Observational Study in a Level 1 Trauma Centre

Authors: Franklin Chu Buh, Irene Ule Ngole Sumbele, Andrew I. R. Maas, Mathieu Motah, Jogi V. Pattisapu, Eric Youm, Basil Kum Meh, Firas H. Kobeissy, Kevin W. Wang, Peter J. A. Hutchinson, Germain Sotoing Taiwe

Abstract:

Introduction: Studying TBI characteristics and their relation to outcomes can identify initiatives to improve TBI prevention and care. The objective of this study was to define the features and outcomes of TBI patients seen over a 1-year period in a level-I trauma center in Cameroon. Methods: Data on demographics, causes, injury mechanisms, clinical aspects, and discharge status were prospectively collected over a period of 12 months. The Glasgow Outcome Scale-Extended (GOSE) and the Quality of Life Questionnaire after Brain Injury (QoLIBRI) were used to evaluate outcomes 6-months after TBI. Categorical variables were described as frequencies and percentages. Comparisons between 2 categorical variables were done using Pearson's Chi-square test or Fisher's exact test. Results: A total of 160 TBI patients participated in the study. The age group 15-45 years (78%; 125) was most represented. Males were more affected (90%; 144). Low educational level was recorded in 122 (76%) cases. Road traffic incidents (RTI) were the main cause of TBI (85%), with professional bike riders being frequently involved (27%, 43/160). Assaults (7.5%) and falls (2.5%) represent the second and third most common causes of TBI in Cameroon, respectively. Only 15 patients were transported to the hospital by ambulance, and 14 of these were from a referring hospital. CT-imaging was performed in 78% (125/160) of cases intracranial traumatic abnormality was identified in 77/125 (64%) cases. Financial constraints were the main reason for not performing a CT scan on 35 patients. A total of 46 (33%) patients were discharged against medical advice (DAMA) due to financial constraints. Mortality was 14% (22/160) but disproportionately high in patients with severe TBI (46%). DAMA had poor outcomes with QoLIBRI. Only 4 patients received post-injury physiotherapy services. Conclusion: TBI in Cameroon mainly results from RTIs and commonly affects young adult males, and low educational or socioeconomic status and commercial bike riding appear to be predisposing factors. Lack of pre-hospital care, financial constraints limiting both CT-scanning and medical care, and lack of acute physiotherapy services likely influenced care and outcomes adversely.

Keywords: characteristics, traumatic brain injury, outcome, disparities in care, prospective study

Procedia PDF Downloads 123
758 Neuropharmacological and Neurochemical Evaluation of Methanolic Extract of Elaeocarpus sphaericus (Gaertn.) Stem Bark by Using Multiple Behaviour Models of Mice

Authors: Jaspreet Kaur, Parminder Nain, Vipin Saini, Sumitra Dahiya

Abstract:

Elaeocarpus sphaericus has been traditionally used in the Indian traditional medicine system for the treatment of stress, anxiety, depression, palpitation, epilepsy, migraine and lack of concentration. The study was investigated to evaluate the neurological potential such as anxiolytic, muscle relaxant and sedative activity of methanolic extract of Elaeocarpus sphaericus stem bark (MEESSB) in mice. Preliminary phytochemical screening and acute oral toxicity of MEESSB was carried out by using standard methods. The anxiety was induced by employing Elevated Plus-Maze (EPM), Light and Dark Test (LDT), Open Field Test (OFT) and Social Interaction test (SIT). The motor coordination and sedative effect was also observed by using actophotometer, rota-rod apparatus and ketamine-induced sleeping time, respectively. Animals were treated with different doses of MEESSB (i.e.100, 200, 400 and 800 mg/kg orally) and diazepam (2 mg/kg i.p) for 21 days. Brain neurotransmitters like dopamine, serotonin and nor-epinephrine level were estimated by validated methods. Preliminary phytochemical analysis of the extract revealed the presence of tannins, phytosterols, steroids and alkaloids. In the acute toxicity studies, MEESSB was found to be non-toxic and with no mortality. In anxiolytic studies, the different doses of MEESSB showed a significant (p<0.05) effect on EPM and LDT. In OFT and SIT, a significant (p<0.05) increase in ambulation, rearing and social interaction time was observed. In the case of motor coordination activity, the MEESSB does not cause any significant effect on the latency to fall off from the rotarod bar as compared to the control group. Moreover, no significant effects on ketamine-induced sleep latency and total sleeping time induced by ketamine were observed. Results of neurotransmitter estimation revealed the increased concentration of dopamine, whereas the level of serotonin and nor-epinephrine was found to be decreased in the mice brain, with MEESSB at dose 800 mg/kg only. The study has validated the folkloric use of the plant as an anxiolytic in Indian traditional medicine while also suggesting potential usefulness in the treatment of stress and anxiety without causing sedation.

Keywords: anxiolytic, behavior experiments, brain neurotransmitters, elaeocarpus sphaericus

Procedia PDF Downloads 177
757 Seismic Performance of RC Frames Equipped with Friction Panels Under Different Slip Load Distributions

Authors: Neda Nabid, Iman Hajirasouliha, Sanaz Shirinbar

Abstract:

One of the most challenging issues in earthquake engineering is to find effective ways to reduce earthquake forces and damage to structural and non-structural elements under strong earthquakes. While friction dampers are the most efficient systems to improve the seismic performance of substandard structures, their optimum design is a challenging task. This research aims to find more appropriate slip load distribution pattern for efficient design of friction panels. Non-linear dynamic analyses are performed on 3, 5, 10, 15, and 20-story RC frame using Drain-2dx software to find the appropriate range of slip loads and investigate the effects of different distribution patterns (cantilever, uniform, triangle, and reverse triangle) under six different earthquake records. The results indicate that using triangle load distribution can significantly increase the energy dissipation capacity of the frame and reduce the maximum inter-storey drift, and roof displacement.

Keywords: friction panels, slip load, distribution patterns, RC frames, energy dissipation

Procedia PDF Downloads 432
756 An Inspection of Two Layer Model of Agency: An fMRI Study

Authors: Keyvan Kashkouli Nejad, Motoaki Sugiura, Atsushi Sato, Takayuki Nozawa, Hyeonjeong Jeong, Sugiko Hanawa , Yuka Kotozaki, Ryuta Kawashima

Abstract:

The perception of agency/control is altered with presence of discrepancies in the environment or mismatch of predictions (of possible results) and actual results the sense of agency might become altered. Synofzik et al. proposed a two layer model of agency: In the first layer, the Feeling of Agency (FoA) is not directly available to awareness; a slight mismatch in the environment/outcome might cause alterations in FoA, while the agent still feels in control. If the discrepancy passes a threshold, it becomes available to consciousness and alters Judgment of Agency (JoA), which is directly available in the person’s awareness. Most experiments so far only investigate subjects rather conscious JoA, while FoA has been neglected. In this experiment we target FoA by using subliminal discrepancies that can not be consciously detectable by the subjects. Here, we explore whether we can detect this two level model in the subjects behavior and then try to map this in their brain activity. To do this, in a fMRI study, we incorporated both consciously detectable mismatching between action and result and also subliminal discrepancies in the environment. Also, unlike previous experiments where subjective questions from the participants mainly trigger the rather conscious JoA, we also tried to measure the rather implicit FoA by asking participants to rate their performance. We compared behavioral results and also brain activation when there were conscious discrepancies and when there were subliminal discrepancies against trials with no discrepancies and against each other. In line with our expectations, conditions with consciously detectable incongruencies triggered lower JoA ratings than conditions without. Also, conditions with any type of discrepancies had lower FoA ratings compared to conditions without. Additionally, we found out that TPJ and angular gyrus in particular to have a role in coding of JoA and also FoA.

Keywords: agency, fMRI, TPJ, two layer model

Procedia PDF Downloads 470
755 Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese

Authors: Tamar Bikashvili, Tamar Lordkipanidze, Ilia Lazrishvili

Abstract:

Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings.

Keywords: arsenic, manganese, behavior, learning, neuron

Procedia PDF Downloads 359
754 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury

Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp

Abstract:

Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.

Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation

Procedia PDF Downloads 120
753 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies

Authors: Salina Budin, Shaira Ismail

Abstract:

Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.

Keywords: learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science

Procedia PDF Downloads 244
752 Analysis of the Treatment Hemorrhagic Stroke in Multidisciplinary City Hospital №1 Nur-Sultan

Authors: M. G. Talasbayen, N. N. Dyussenbayev, Y. D. Kali, R. A. Zholbarysov, Y. N. Duissenbayev, I. Z. Mammadinova, S. M. Nuradilov

Abstract:

Background. Hemorrhagic stroke is an acute cerebrovascular accident resulting from rupture of a cerebral vessel or increased permeability of the wall and imbibition of blood into the brain parenchyma. Arterial hypertension is a common cause of hemorrhagic stroke. Male gender and age over 55 years is a risk factor for intracerebral hemorrhage. Treatment of intracerebral hemorrhage is aimed at the primary pathophysiological link: the relief of coagulopathy and the control of arterial hypertension. Early surgical treatment can limit cerebral compression; prevent toxic effects of blood to the brain parenchyma. Despite progress in the development of neuroimaging data, the use of minimally invasive techniques, and navigation system, mortality from intracerebral hemorrhage remains high. Materials and methods. The study included 78 patients (62.82% male and 37.18% female) with a verified diagnosis of hemorrhagic stroke in the period from 2019 to 2021. The age of patients ranged from 25 to 80 years, the average age was 54.66±11.9 years. Demographic, brain CT data (localization, volume of hematomas), methods of treatment, and disease outcome were analyzed. Results. The retrospective analyze demonstrate that 78.2% of all patients underwent surgical treatment: decompressive craniectomy in 37.7%, craniotomy with hematoma evacuation in 29.5%, and hematoma draining in 24.59% cases. The study of the proportion of deaths, depending on the volume of intracerebral hemorrhage, shows that the number of deaths was higher in the group with a hematoma volume of more than 60 ml. Evaluation of the relationship between the time before surgery and mortality demonstrates that the most favorable outcome is observed during surgical treatment in the interval from 3 to 24 hours. Mortality depending on age did not reveal a significant difference between age groups. An analysis of the impact of the surgery type on mortality reveals that decompressive craniectomy with or without hematoma evacuation led to an unfavorable outcome in 73.9% of cases, while craniotomy with hematoma evacuation and drainage led to mortality only in 28.82% cases. Conclusion. Even though the multimodal approaches, the development of surgical techniques and equipment, and the selection of optimal conservative therapy, the question of determining the tactics of managing and treating hemorrhagic strokes is still controversial. Nevertheless, our experience shows that surgical intervention within 24 hours from the moment of admission and craniotomy with hematoma evacuation improves the prognosis of treatment outcomes.

Keywords: hemorragic stroke, Intracerebral hemorrhage, surgical treatment, stroke mortality

Procedia PDF Downloads 106
751 Phyllantus nuriri Protect against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Rich Fractions of Rats Brain

Authors: Olusola Olalekan Elekofehinti, Isaac Gbadura Adanlawo, Joao Batista Teixeira Rocha

Abstract:

We evaluated the potential neuroprotective effect of Phyllantus nuriri against Fe2+ and SNP induced oxidative stress in mitochondria of rats brain. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10µM) and SNP (5µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-100 µg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.54±0.01), caffeic acid (7.93±0.02), rutin (25.31±0.05), quercetin (31.28±0.03) and kaemferol (14.36±0.01). This result suggests that these phytochemicals account for the protective actions of Phyllantus nuriri against Fe2+ and SNP -induced oxidative stress. Our results show that Phyllantus nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration.

Keywords: Phyllantus niruri, neuroprotection, oxidative stress, mitochondria, synaptosome

Procedia PDF Downloads 359
750 Defining Death and Dying in Relation to Information Technology and Advances in Biomedicine

Authors: Evangelos Koumparoudis

Abstract:

The definition of death is a deep philosophical question, and no single meaning can be ascribed to it. This essay focuses on the ontological, epistemological, and ethical aspects of death and dying in view of technological progress in information technology and biomedicine. It starts with the ad hoc 1968 Harvard committee that proposed that the criterion for the definition of death be irreversible coma and then refers to the debate over the whole brain death formula, emphasizing the integrated function of the organism and higher brain formula, taking consciousness and personality as essential human characteristics. It follows with the contribution of information technology in personalized and precision medicine and anti-aging measures aimed at life prolongation. It also touches on the possibility of the creation of human-machine hybrids and how this raises ontological and ethical issues that concern the “cyborgization” of human beings and the conception of the organism and personhood based on a post/transhumanist essence, and, furthermore, if sentient AI capable of autonomous decision-making that might even surpass human intelligence (singularity, superintelligence) deserves moral or legal personhood. Finally, there is the question as to whether death and dying should be redefined at a transcendent level, which is reinforced by already-existing technologies of “virtual after-” life and the possibility of uploading human minds. In the last section, I refer to the current (and future) applications of nanomedicine in diagnostics, therapeutics, implants, and tissue engineering as well as the aspiration to “immortality” by cryonics. The definition of death is reformulated since age and disease elimination may be realized, and the criterion of irreversibility may be challenged.

Keywords: death, posthumanism, infomedicine, nanomedicine, cryonics

Procedia PDF Downloads 70
749 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume

Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto

Abstract:

Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.

Keywords: frontal lobe, functional near-infrared spectroscopy, state-trait anxiety inventory score, stress

Procedia PDF Downloads 250
748 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit

Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam

Abstract:

According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.

Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling

Procedia PDF Downloads 526
747 Design and Development of Ssvep-Based Brain-Computer Interface for Limb Disabled Patients

Authors: Zerihun Ketema Tadesse, Dabbu Suman Reddy

Abstract:

Brain-Computer Interfaces (BCIs) give the possibility for disabled people to communicate and control devices. This work aims at developing steady-state visual evoked potential (SSVEP)-based BCI for patients with limb disabilities. In hospitals, devices like nurse emergency call devices, lights, and TV sets are what patients use most frequently, but these devices are operated manually or using the remote control. Thus, disabled patients are not able to operate these devices by themselves. Hence, SSVEP-based BCI system that can allow disabled patients to control nurse calling device and other devices is proposed in this work. Portable LED visual stimulator that flickers at specific frequencies of 7Hz, 8Hz, 9Hz and 10Hz were developed as part of this project. Disabled patients can stare at specific flickering LED of visual stimulator and Emotiv EPOC used to acquire EEG signal in a non-invasive way. The acquired EEG signal can be processed to generate various control signals depending upon the amplitude and duration of signal components. MATLAB software is used for signal processing and analysis and also for command generation. Arduino is used as a hardware interface device to receive and transmit command signals to the experimental setup. Therefore, this study is focused on the design and development of Steady-state visually evoked potential (SSVEP)-based BCI for limb disabled patients, which helps them to operate and control devices in the hospital room/wards.

Keywords: SSVEP-BCI, Limb Disabled Patients, LED Visual Stimulator, EEG signal, control devices, hospital room/wards

Procedia PDF Downloads 221