Search results for: Green's function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6826

Search results for: Green's function

1486 Application of Remote Sensing and In-Situ Measurements for Discharge Monitoring in Large Rivers: Case of Pool Malebo in the Congo River Basin

Authors: Kechnit Djamel, Ammarri Abdelhadi, Raphael Tshimang, Mark Trrig

Abstract:

One of the most important aspects of monitoring rivers is navigation. The variation of discharge in the river generally produces a change in available draft for a vessel, particularly in the low flow season, which can impact the navigable water path, especially when the water depth is less than the normal one, which allows safe navigation for boats. The water depth is related to the bathymetry of the channel as well as the discharge. For a seasonal update of the navigation maps, a daily discharge value is required. Many novel approaches based on earth observation and remote sensing have been investigated for large rivers. However, it should be noted that most of these approaches are not currently able to directly estimate river discharge. This paper discusses the application of remote sensing tools using the analysis of the reflectance value of MODIS imagery and is combined with field measurements for the estimation of discharge. This approach is applied in the lower reach of the Congo River (Pool Malebo) for the period between 2019 and 2021. The correlation obtained between the observed discharge observed in the gauging station and the reflectance ratio time series is 0.81. In this context, a Discharge Reflectance Model (DRM) was developed to express discharge as a function of reflectance. This model introduces a non-contact method that allows discharge monitoring using earth observation. DRM was validated by field measurements using ADCP, in different sections on the Pool Malebo, over two different periods (dry and wet seasons), as well as by the observed discharge in the gauging station. The observed error between the estimated and measured discharge values ranges from 1 to 8% for the ADCP and from (1% to 11%) for the gauging station. The study of the uncertainties will give us the possibility to judge the robustness of the DRM.

Keywords: discharge monitoring, navigation, MODIS, empiric, ADCP, Congo River

Procedia PDF Downloads 76
1485 A Comprehensive Theory of Communication with Biological and Non-Biological Intelligence for a 21st Century Curriculum

Authors: Thomas Schalow

Abstract:

It is commonly recognized that our present curriculum is not preparing students to function in the 21st century. This is particularly true in regard to communication needs across cultures - both human and non-human. In this paper, a comprehensive theory of communication-based on communication with non-human cultures and intelligences is presented to meet the following three imminent contingencies: communicating with sentient biological intelligences, communicating with extraterrestrial intelligences, and communicating with artificial super-intelligences. The paper begins with the argument that we need to become much more serious about communicating with the non-human, intelligent life forms that already exists around us here on Earth. We need to broaden our definition of communication and reach out to other sentient life forms in order to provide humanity with a better perspective of its place within our ecosystem. The paper next examines the science and philosophy behind CETI (communication with extraterrestrial intelligences) and how it could prove useful even in the absence of contact with alien life. However, CETI’s assumptions and methodology need to be revised in accordance with the communication theory being proposed in this paper if we are truly serious about finding and communicating with life beyond Earth. The final theme explored in this paper is communication with non-biological super-intelligences. Humanity has never been truly compelled to converse with other species, and our failure to seriously consider such intercourse has left us largely unprepared to deal with communication in a future that will be mediated and controlled by computer algorithms. Fortunately, our experience dealing with other cultures can provide us with a framework for this communication. The basic concepts behind intercultural communication can be applied to the three types of communication envisioned in this paper if we are willing to recognize that we are in fact dealing with other cultures when we interact with other species, alien life, and artificial super-intelligence. The ideas considered in this paper will require a new mindset for humanity, but a new disposition will yield substantial gains. A curriculum that is truly ready for the 21st century needs to be aligned with this new theory of communication.

Keywords: artificial intelligence, CETI, communication, language

Procedia PDF Downloads 345
1484 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model

Authors: Didier Auroux, Vladimir Groza

Abstract:

This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.

Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization

Procedia PDF Downloads 304
1483 Numerical Modeling of Air Shock Wave Generated by Explosive Detonation and Dynamic Response of Structures

Authors: Michał Lidner, Zbigniew SzcześNiak

Abstract:

The ability to estimate blast load overpressure properly plays an important role in safety design of buildings. The issue of studying of blast loading on structural elements has been explored for many years. However, in many literature reports shock wave overpressure is estimated with simplified triangular or exponential distribution in time. This indicates some errors when comparing real and numerical reaction of elements. Nonetheless, it is possible to further improve setting similar to the real blast load overpressure function versus time. The paper presents a method of numerical analysis of the phenomenon of the air shock wave propagation. It uses Finite Volume Method and takes into account energy losses due to a heat transfer with respect to an adiabatic process rule. A system of three equations (conservation of mass, momentum and energy) describes the flow of a volume of gaseous medium in the area remote from building compartments, which can inhibit the movement of gas. For validation three cases of a shock wave flow were analyzed: a free field explosion, an explosion inside a steel insusceptible tube (the 1D case) and an explosion inside insusceptible cube (the 3D case). The results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected. Additionally analyses of dynamic response of one of considered structural element were made.

Keywords: adiabatic process, air shock wave, explosive, finite volume method

Procedia PDF Downloads 175
1482 The Next Generation’s Learning Ability, Memory, as Well as Cognitive Skills Is under the Influence of Paternal Physical Activity (An Intergenerational and Trans-Generational Effect): A Systematic Review and Meta-Analysis

Authors: Parvin Goli, Amirhosein Kefayat, Rezvan Goli

Abstract:

Background: It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on the brain in the offspring have not been explored in detail. Objective: This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the off-spring's hippocampus. Study design: In this systematic review and meta-analysis, an electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with the assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. Results: The systematic review revealed the important role of environmental enrichment in the behavioral development of the next generation. Also, offspring of exercised fathers displayed higher levels of memory ability and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. Conclusion: These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.

Keywords: hippocampal plasticity, learning ability, memory, parental exercise

Procedia PDF Downloads 196
1481 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 129
1480 Geometrical Analysis of an Atheroma Plaque in Left Anterior Descending Coronary Artery

Authors: Sohrab Jafarpour, Hamed Farokhi, Mohammad Rahmati, Alireza Gholipour

Abstract:

In the current study, a nonlinear fluid-structure interaction (FSI) biomechanical model of atherosclerosis in the left anterior descending (LAD) coronary artery is developed to perform a detailed sensitivity analysis of the geometrical features of an atheroma plaque. In the development of the numerical model, first, a 3D geometry of the diseased artery is developed based on patient-specific dimensions obtained from the experimental studies. The geometry includes four influential geometric characteristics: stenosis ratio, plaque shoulder-length, fibrous cap thickness, and eccentricity intensity. Then, a suitable strain energy density function (SEDF) is proposed based on the detailed material stability analysis to accurately model the hyperelasticity of the arterial walls. The time-varying inlet velocity and outlet pressure profiles are adopted from experimental measurements to incorporate the pulsatile nature of the blood flow. In addition, a computationally efficient type of structural boundary condition is imposed on the arterial walls. Finally, a non-Newtonian viscosity model is implemented to model the shear-thinning behaviour of the blood flow. According to the results, the structural responses in terms of the maximum principal stress (MPS) are affected more compared to the fluid responses in terms of wall shear stress (WSS) as the geometrical characteristics are varying. The extent of these changes is critical in the vulnerability assessment of an atheroma plaque.

Keywords: atherosclerosis, fluid-Structure interaction modeling, material stability analysis, and nonlinear biomechanics

Procedia PDF Downloads 76
1479 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 52
1478 Ferromagnetic Potts Models with Multi Site Interaction

Authors: Nir Schreiber, Reuven Cohen, Simi Haber

Abstract:

The Potts model has been widely explored in the literature for the last few decades. While many analytical and numerical results concern with the traditional two site interaction model in various geometries and dimensions, little is yet known about models where more than two spins simultaneously interact. We consider a ferromagnetic four site interaction Potts model on the square lattice (FFPS), where the four spins reside in the corners of an elementary square. Each spin can take an integer value 1,2,...,q. We write the partition function as a sum over clusters consisting of monochromatic faces. When the number of faces becomes large, tracing out spin configurations is equivalent to enumerating large lattice animals. It is known that the asymptotic number of animals with k faces is governed by λᵏ, with λ ≈ 4.0626. Based on this observation, systems with q < 4 and q > 4 exhibit a second and first order phase transitions, respectively. The transition nature of the q = 4 case is borderline. For any q, a critical giant component (GC) is formed. In the finite order case, GC is simple, while it is fractal when the transition is continuous. Using simple equilibrium arguments, we obtain a (zero order) bound on the transition point. It is claimed that this bound should apply for other lattices as well. Next, taking into account higher order sites contributions, the critical bound becomes tighter. Moreover, for q > 4, if corrections due to contributions from small clusters are negligible in the thermodynamic limit, the improved bound should be exact. The improved bound is used to relate the critical point to the finite correlation length. Our analytical predictions are confirmed by an extensive numerical study of FFPS, using the Wang-Landau method. In particular, the q=4 marginal case is supported by a very ambiguous pseudo-critical finite size behavior.

Keywords: entropic sampling, lattice animals, phase transitions, Potts model

Procedia PDF Downloads 149
1477 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller

Authors: P. Valsalal, S. Thangalakshmi

Abstract:

There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.

Keywords: available line transfer capability, congestion management, FACTS device, Hybrid Fish-Bee Algorithm, ISO, UPFC

Procedia PDF Downloads 368
1476 A Multicriteria Framework for Assessing Energy Audit Software for Low-Income Households

Authors: Charles Amoo, Joshua New, Bill Eckman

Abstract:

Buildings in the United States account for a significant proportion of energy consumption and greenhouse gas (GHG) emissions, and this trend is expected to continue as well as rise in the near future. Low-income households, in particular, bear a disproportionate burden of high building energy consumption and spending due to high energy costs. Energy efficiency improvements need to reach an average of 4% per year in this decade in order to meet global net zero emissions target by 2050, but less than 1 % of U.S. buildings are improved each year. The government has recognized the importance of technology in addressing this issue, and energy efficiency programs have been developed to tackle the problem. The Weatherization Assistance Program (WAP), the largest residential whole-house energy efficiency program in the U.S., is specifically designed to reduce energy costs for low-income households. Under the WAP, energy auditors must follow specific audit procedures and use Department of Energy (DOE) approved energy audit tools or software. This article proposes an expanded framework of factors that should be considered in energy audit software that is approved for use in energy efficiency programs, particularly for low-income households. The framework includes more than 50 factors organized under 14 assessment criteria and can be used to qualitatively and quantitatively score different energy audit software to determine their suitability for specific energy efficiency programs. While the tool can be useful for developers to build new tools and improve existing software, as well as for energy efficiency program administrators to approve or certify tools for use, there are limitations to the model, such as the lack of flexibility that allows continuous scoring to accommodate variability and subjectivity. These limitations can be addressed by using aggregate scores of each criterion as weights that could be combined with value function and direct rating scores in a multicriteria decision analysis for a more flexible scoring.

Keywords: buildings, energy efficiency, energy audit, software

Procedia PDF Downloads 62
1475 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows

Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican

Abstract:

This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.

Keywords: laboratory-process, optimization, pathology, computer simulation, workflow

Procedia PDF Downloads 276
1474 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 354
1473 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction

Authors: Yanxue Shang, Jingbin Zeng

Abstract:

Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.

Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction

Procedia PDF Downloads 132
1472 Receptor-Independent Effects of Endocannabinoid Anandamide on Contractility and Electrophysiological Properties of Rat Ventricular Myocytes

Authors: Lina T. Al Kury, Oleg I. Voitychuk, Ramiz M. Ali, Sehamuddin Galadari, Keun-Hang Susan Yang, Frank Christopher Howarth, Yaroslav M. Shuba, Murat Oz

Abstract:

A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier studies. In the present work, we have hypothesized that the antiarrhythmic effects reported for AEA are due to its negative inotropic effect and altered action potential (AP) characteristics. Therefore, we tested the effects of AEA on contractility and electrophysiological properties of rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) caused a significant decrease in the amplitudes of electrically-evoked myocyte shortening and Ca2+ transients and significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 µg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists). Furthermore, AEA inhibited voltage-activated inward Na+ (INa) and Ca2+ (IL,Ca) currents; major ionic currents shaping the APs in ventricular myocytes, in a voltage and PTX-independent manner. Collectively, the results suggest that AEA depresses ventricular myocyte contractility, by decreasing the action potential duration (APD), and inhibits the function of voltage-dependent Na+ and L-type Ca2+ channels in a manner independent of cannabinoid receptors. This mechanism may be importantly involved in the antiarrhythmic effects of anandamide.

Keywords: action potential, anandamide, cannabinoid receptor, endocannabinoid, ventricular myocytes

Procedia PDF Downloads 342
1471 Analyzing Apposition and the Typology of Specific Reference in Newspaper Discourse in Nigeria

Authors: Monday Agbonica Bello Eje

Abstract:

The language of the print media is characterized by the use of apposition. This linguistic element function strategically in journalistic discourse where it is communicatively necessary to name individuals and provide information about them. Linguistic studies on the language of the print media with bias for apposition have largely dwelt on other areas but the examination of the typology of appositive reference in newspaper discourse. Yet, it is capable of revealing ways writers communicate and provide information necessary for readers to follow and understand the message. The study, therefore, analyses the patterns of appositional occurrences and the typology of reference in newspaper articles. The data were obtained from The Punch and Daily Trust Newspapers. A total of six editions of these newspapers were collected randomly spread over three months. News and feature articles were used in the analysis. Guided by the referential theory of meaning in discourse, the appositions identified were subjected to analysis. The findings show that the semantic relation of coreference and speaker coreference have the highest percentage and frequency of occurrence in the data. This is because the subject matter of news reports and feature articles focuses on humans and the events around them; as a result, readers need to be provided with some form of detail and background information in order to identify as well as follow the discourse. Also, the non-referential relation of absolute synonymy and speaker synonymy no doubt have fewer occurrences and percentages in the analysis. This is tied to a major feature of the language of the media: simplicity. The paper concludes that appositions is mainly used for the purpose of providing the reader with much detail. In this way, the writer transmits information which helps him not only to give detailed yet concise descriptions but also in some way help the reader to follow the discourse.

Keywords: apposition, discourse, newspaper, Nigeria, reference

Procedia PDF Downloads 144
1470 Acoustic Energy Harvesting Using Polyvinylidene Fluoride (PVDF) and PVDF-ZnO Piezoelectric Polymer

Authors: S. M. Giripunje, Mohit Kumar

Abstract:

Acoustic energy that exists in our everyday life and environment have been overlooked as a green energy that can be extracted, generated, and consumed without any significant negative impact to the environment. The harvested energy can be used to enable new technology like wireless sensor networks. Technological developments in the realization of truly autonomous MEMS devices and energy storage systems have made acoustic energy harvesting (AEH) an increasingly viable technology. AEH is the process of converting high and continuous acoustic waves from the environment into electrical energy by using an acoustic transducer or resonator. AEH is not popular as other types of energy harvesting methods since sound waves have lower energy density and such energy can only be harvested in very noisy environment. However, the energy requirements for certain applications are also correspondingly low and also there is a necessity to observe the noise to reduce noise pollution. So the ability to reclaim acoustic energy and store it in a usable electrical form enables a novel means of supplying power to relatively low power devices. A quarter-wavelength straight-tube acoustic resonator as an acoustic energy harvester is introduced with polyvinylidene fluoride (PVDF) and PVDF doped with ZnO nanoparticles, piezoelectric cantilever beams placed inside the resonator. When the resonator is excited by an incident acoustic wave at its first acoustic eigen frequency, an amplified acoustic resonant standing wave is developed inside the resonator. The acoustic pressure gradient of the amplified standing wave then drives the vibration motion of the PVDF piezoelectric beams, generating electricity due to the direct piezoelectric effect. In order to maximize the amount of the harvested energy, each PVDF and PVDF-ZnO piezoelectric beam has been designed to have the same structural eigen frequency as the acoustic eigen frequency of the resonator. With a single PVDF beam placed inside the resonator, the harvested voltage and power become the maximum near the resonator tube open inlet where the largest acoustic pressure gradient vibrates the PVDF beam. As the beam is moved to the resonator tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams PVDF and PVDF-ZnO have been placed inside the resonator with two different configurations: the aligned and zigzag configurations. With the zigzag configuration which has the more open path for acoustic air particle motions, the significant increases in the harvested voltage and power have been observed. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing PVDF beams near the closed tube end is not beneficial. The total output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases. This study therefore reveals that the proposed technique used to harvest sound wave energy has great potential of converting free energy into useful energy.

Keywords: acoustic energy, acoustic resonator, energy harvester, eigenfrequency, polyvinylidene fluoride (PVDF)

Procedia PDF Downloads 364
1469 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom

Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou

Abstract:

The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.

Keywords: microbial community, harmful algal bloom, ecological process, network

Procedia PDF Downloads 95
1468 An Exploratory Study on 'Sub-Region Life Circle' in Chinese Big Cities Based on Human High-Probability Daily Activity: Characteristic and Formation Mechanism as a Case of Wuhan

Authors: Zhuoran Shan, Li Wan, Xianchun Zhang

Abstract:

With an increasing trend of regionalization and polycentricity in Chinese contemporary big cities, “sub-region life circle” turns to be an effective method on rational organization of urban function and spatial structure. By the method of questionnaire, network big data, route inversion on internet map, GIS spatial analysis and logistic regression, this article makes research on characteristic and formation mechanism of “sub-region life circle” based on human high-probability daily activity in Chinese big cities. Firstly, it shows that “sub-region life circle” has been a new general spatial sphere of residents' high-probability daily activity and mobility in China. Unlike the former analysis of the whole metropolitan or the micro community, “sub-region life circle” has its own characteristic on geographical sphere, functional element, spatial morphology and land distribution. Secondly, according to the analysis result with Binary Logistic Regression Model, the research also shows that seven factors including land-use mixed degree and bus station density impact the formation of “sub-region life circle” most, and then analyzes the index critical value of each factor. Finally, to establish a smarter “sub-region life circle”, this paper indicates that several strategies including jobs-housing fit, service cohesion and space reconstruction are the keys for its spatial organization optimization. This study expands the further understanding of cities' inner sub-region spatial structure based on human daily activity, and contributes to the theory of “life circle” in urban's meso-scale.

Keywords: sub-region life circle, characteristic, formation mechanism, human activity, spatial structure

Procedia PDF Downloads 284
1467 A Psychoanalytic Lens: Unmasked Layers of the Self among Post-Graduate Psychology Students in Surviving the COVID-19 Lockdown

Authors: Sharon Sibanda, Benny Motileng

Abstract:

The World Health Organisation (WHO) identified the Sars-Cov-2 (COVID-19) as a pandemic on the 12ᵗʰ of March 2020, with South Africa recording its first case on the 5ᵗʰ of March 2020. The rapidly spreading virus led the South African government to implement one of the strictest nationwide lockdowns globally, resulting in the closing down of all institutions of higher learning effective March 18ᵗʰ 2020. Thus, this qualitative study primarily aimed to explore whether post-graduate psychology students were in a state of a depleted or cohesive self, post the psychological isolation of COVID-19 risk-adjusted level 5 lockdown. Semi-structured interviews from a qualitative interpretive approach comprising N=6 psychology post-graduate students facilitated a rich understanding of their intra-psychic experiences of the self. Thematic analysis of data gathered from the interviews illuminated how students were forced into the self by the emotional isolation of hard lockdown, with the emergence of core psychic conflict often defended against through external self-object experiences. The findings also suggest that lockdown stripped off this sample of psychology post-graduate students’ defensive escape from the inner self through external self-object distractions. The external self was stripped to the core of the internal self by the isolation of hard lockdown, thereby uncovering the psychic function of roles and defenses amalgamated throughout modern cultural consciousness that dictates self-functioning. The study suggests modelling reflexivity skills in the integration of internal and external self-experience dynamics as part of a training model for continued personal and professional development for psychology students.

Keywords: COVID-19, fragmentation, self-object experience, true/false self

Procedia PDF Downloads 44
1466 Forecasting Lake Malawi Water Level Fluctuations Using Stochastic Models

Authors: M. Mulumpwa, W. W. L. Jere, M. Lazaro, A. H. N. Mtethiwa

Abstract:

The study considered Seasonal Autoregressive Integrated Moving Average (SARIMA) processes to select an appropriate stochastic model to forecast the monthly data from the Lake Malawi water levels for the period 1986 through 2015. The appropriate model was chosen based on SARIMA (p, d, q) (P, D, Q)S. The Autocorrelation function (ACF), Partial autocorrelation (PACF), Akaike Information Criteria (AIC), Bayesian Information Criterion (BIC), Box–Ljung statistics, correlogram and distribution of residual errors were estimated. The SARIMA (1, 1, 0) (1, 1, 1)12 was selected to forecast the monthly data of the Lake Malawi water levels from August, 2015 to December, 2021. The plotted time series showed that the Lake Malawi water levels are decreasing since 2010 to date but not as much as was the case in 1995 through 1997. The future forecast of the Lake Malawi water levels until 2021 showed a mean of 474.47 m ranging from 473.93 to 475.02 meters with a confidence interval of 80% and 90% against registered mean of 473.398 m in 1997 and 475.475 m in 1989 which was the lowest and highest water levels in the lake respectively since 1986. The forecast also showed that the water levels of Lake Malawi will drop by 0.57 meters as compared to the mean water levels recorded in the previous years. These results suggest that the Lake Malawi water level may not likely go lower than that recorded in 1997. Therefore, utilisation and management of water-related activities and programs among others on the lake should provide room for such scenarios. The findings suggest a need to manage the Lake Malawi jointly and prudently with other stakeholders starting from the catchment area. This will reduce impacts of anthropogenic activities on the lake’s water quality, water level, aquatic and adjacent terrestrial ecosystems thereby ensuring its resilience to climate change impacts.

Keywords: forecasting, Lake Malawi, water levels, water level fluctuation, climate change, anthropogenic activities

Procedia PDF Downloads 213
1465 Effect of a GABA/5-HTP Mixture on Behavioral Changes and Biomodulation in an Invertebrate Model

Authors: Kyungae Jo, Eun Young Kim, Byungsoo Shin, Kwang Soon Shin, Hyung Joo Suh

Abstract:

Gamma-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) are amino acids of digested nutrients or food ingredients and these can possibly be utilized as non-pharmacologic treatment for sleep disorder. We previously investigated the GABA/5-HTP mixture is the principal concept of sleep-promoting and activity-repressing management in nervous system of D. melanogaster. Two experiments in this study were designed to evaluate sleep-promoting effect of GABA/5-HTP mixture, to clarify the possible ratio of sleep-promoting action in the Drosophila invertebrate model system. Behavioral assays were applied to investigate distance traveled, velocity, movement, mobility, turn angle, angular velocity and meander of two amino acids and GABA/5-HTP mixture with caffeine treated flies. In addition, differentially expressed gene (DEG) analyses from next generation sequencing (NGS) were applied to investigate the signaling pathway and functional interaction network of GABA/5-HTP mixture administration. GABA/5-HTP mixture resulted in significant differences between groups related to behavior (p < 0.01) and significantly induced locomotor activity in the awake model (p < 0.05). As a result of the sequencing, the molecular function of various genes has relationship with motor activity and biological regulation. These results showed that GABA/5-HTP mixture administration significantly involved the inhibition of motor behavior. In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates locomotor activity to a greater extent than single administration of each amino acid, and that this modulation occurs via the neuronal system, neurotransmitter release cycle and transmission across chemical synapses.

Keywords: sleep, γ-aminobutyric acid, 5-hydroxytryptophan, Drosophila melanogaster

Procedia PDF Downloads 296
1464 Characterization of Natural Polymers for Guided Bone Regeneration Applications

Authors: Benedetta Isella, Aleksander Drinic, Alissa Heim, Phillip Czichowski, Lisa Lauts, Hans Leemhuis

Abstract:

Introduction: Membranes for guided bone regeneration are essential to perform a barrier function between the soft and the regenerating bone tissue. Bioabsorbable membranes are desirable in this field as they do not require a secondary surgery for removal, decreasing patient surgical risk. Collagen was the first bioabsorbable alternative introduced on the market, but its degradation time may be too fast to guarantee bone regeneration, and optimisation is needed. Silk fibroin, being biocompatible, slowly bioabsorbable, and processable into different scaffold types, could be a promising alternative. Objectives: The objective is to compare the general performance of a silk fibroin membrane for guided bone regeneration to current collagen alternatives developing suitable standardized tests for the mechanical and morphological characterization. Methods: Silk fibroin and collagen-based membranes were compared from the morphological and chemical perspective, with techniques such as SEM imaging and from the mechanical point of view with techniques such as tensile and suture retention strength (SRS) tests. Results: Silk fibroin revealed a high degree of reproducibility in surface density. The SRS of silk fibroin (0.76 ± 0.04 N), although lower than collagen, was still comparable to native tissues such as the internal mammary artery (0.56 N), and the same can be extended to general mechanical behaviour in tensile tests. The SRS could be increased by an increase in thickness. Conclusion: Silk fibroin is a promising material in the field of guided bone regeneration, covering the interesting position of not being considered a product containing cells or tissues of animal origin from the regulatory perspective and having longer degradation times with respect to collagen.

Keywords: guided bone regeneration, mechanical characterization, membrane, silk fibroin

Procedia PDF Downloads 15
1463 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm

Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi

Abstract:

To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.

Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm

Procedia PDF Downloads 218
1462 Views of South African Academic Instructors to the Scholarship of Teaching and Learning in Anatomy Education

Authors: Lelika Lazarus, Reshma Sookrajh, Kapil S. Satyapal

Abstract:

Reflecting on teaching is commonly cited as a fundamental practice for personal and professional development. Educational research into the scholarship of teaching and learning anatomy includes engaging in discipline specific literature on teaching, reflecting on individual teaching methods and communicating these findings to peers. The aim of this paper is to formally assess the opinions of senior anatomy instructors regarding the state of anatomical knowledge at their respective institutions. The context of the paper derives from ongoing debates about the perceived decline in standards of anatomical knowledge of medical students and postgraduate learners. An open ended questionnaire was devised consisting of eight direct questions seeking opinions on anatomy teaching, knowledge, and potential educational developments and general thoughts on the teaching of anatomy to medical students. These were distributed to senior anatomy Faculty (identified by the author by their affiliation with the Anatomical Society of Southern Africa) based at the eight national medical schools within the country. A number of key themes emerged. Most senior faculty felt that the standard of medical education at their respective institutions was ‘good.’. However, emphasis was also placed on the ‘quality of teaching’ incorporating clinical scenarios. There were also indications that staff are split into those that are keen to do research and those that are happy to provide teaching to medical students as their primary function. Several challenges were also highlighted such as time constraints within the medical curriculum, the lack of cadavers to reinforce knowledge and gain depth perception and lack of appropriately qualified staff. Recommendations included fostering partnerships with both clinicians and medical scientists into the anatomy curriculum thus improving teaching and research.

Keywords: anatomy, education, reflection, teaching

Procedia PDF Downloads 277
1461 An Analysis of Humanitarian Data Management of Polish Non-Governmental Organizations in Ukraine Since February 2022 and Its Relevance for Ukrainian Humanitarian Data Ecosystem

Authors: Renata Kurpiewska-Korbut

Abstract:

Making an assumption that the use and sharing of data generated in humanitarian action constitute a core function of humanitarian organizations, the paper analyzes the position of the largest Polish humanitarian non-governmental organizations in the humanitarian data ecosystem in Ukraine and their approach to non-personal and personal data management since February of 2022. Both expert interviews and document analysis of non-profit organizations providing a direct response in the Ukrainian crisis context, i.e., the Polish Humanitarian Action, Caritas, Polish Medical Mission, Polish Red Cross, and the Polish Center for International Aid and the applicability of theoretical perspective of contingency theory – with its central point that the context or specific set of conditions determining the way of behavior and the choice of methods of action – help to examine the significance of data complexity and adaptive approach to data management by relief organizations in the humanitarian supply chain network. The purpose of this study is to determine how the existence of well-established and accurate internal procedures and good practices of using and sharing data (including safeguards for sensitive data) by the surveyed organizations with comparable human and technological capabilities are implemented and adjusted to Ukrainian humanitarian settings and data infrastructure. The study also poses a fundamental question of whether this crisis experience will have a determining effect on their future performance. The obtained finding indicate that Polish humanitarian organizations in Ukraine, which have their own unique code of conduct and effective managerial data practices determined by contingencies, have limited influence on improving the situational awareness of other assistance providers in the data ecosystem despite their attempts to undertake interagency work in the area of data sharing.

Keywords: humanitarian data ecosystem, humanitarian data management, polish NGOs, Ukraine

Procedia PDF Downloads 78
1460 Aza-Flavanones as Small Molecule Inhibitors of MicroRNA-10b in MDA-MB-231 Breast Cancer Cells

Authors: Debasmita Mukhopadhyay, Manika Pal Bhadra

Abstract:

MiRNAs contribute to oncogenesis either as tumor suppressors or oncogenes. Hence, discovery of miRNA-based therapeutics are imperative to ameliorate cancer. Modulation of miRNA maturation is accomplished via several therapeutic agents, including small molecules and oligonucleotides. Due to the attractive pharmacokinetic properties of small molecules over oligonucleotides, we set to identify small molecule inhibitors of a metastasis-inducing microRNA. Cytotoxicity profile of aza-flavanone C1 was analyzed in a panel of breast cancer cells employing the NCI-60 screen protocols. Flow cytometry, immunofluorescence and western blotting of apoptotic or EMT markers were performed to analyze the effect of C1. A dual luciferase assay unequivocally suggested that C1 repressed endogenous miR-10b in MDA-MB-231 cells. A derivative of aza-flavanone C1 is shown as a strong inhibitor miR-10b. Blockade of miR-10b by C1 resulted in decreased expression of miR-10b targets in an aggressive breast cancer cell line model, MDA-MB-231. Abrogation of TWIST1, an EMT-inducing transcription factor also contributed to C1 mediated apoptosis. Moreover C1 exhibited a specific and selective down-regulation of miR-10b and did not function as a general inhibitor of miRNA biogenesis or other oncomiRs of breast carcinoma. Aza-flavanone congener C1 functions as a potent inhibitor of the metastasis-inducing microRNA, miR-10b. Our present study provides evidence for targeting metastasis-inducing microRNA, miR-10b with a derivative of Aza-flavanone. Better pharmacokinetic properties of small molecules place them as attractive agents compared to nucleic acids based therapies to target miRNA. Further work, in generating analogues based on aza-flavanone moieties will significantly improve the affinity of the small molecules to bind miR-10b. Finally, it is imperative to develop small molecules as novel miRNA-therapeutics in the fight against cancer.

Keywords: breast cancer, microRNA, metastasis, EMT

Procedia PDF Downloads 537
1459 Determination of the CCR5Δ32 Frequency in Emiratis and Tunisians and Screening of the CCR5 Gene for Novel Alleles in Emiratis

Authors: Sara A. Al-Jaberi, Salma Ben-Salem, Meriam Messedi, Fatma Ayadi, Lihadh Al-Gazali, Bassam R. Ali

Abstract:

Background: The chemokine receptor components play crucial roles in the immune system and some of them serve as co-receptors for the HIV virus. Several studies have documented those variants in chemokine receptors are correlated with susceptibility and resistance to infection with HIV virus. For example, mutations in the chemokine receptor 5 gene (CCR5) resulting in loss-of-function (such as the homozygous CCR5Δ32) confer high degree of resistance to HIV infection. Heterozygotes for these variants exhibit slow progression to AIDS. The prevalence of CCR5 polymorphisms varies among ethnic and geographical groups. For example, the CCR5 Δ32 variant is present in 10–15% of north Europeans but is rarely encountered among Africans. This study aims to identify the prevalence of some CCR5 variants in two geographically distant Arab populations (namely Emiratis and Tunisians). Methodology: The prevalence of CCR5 gene variants including CCR5Δ32, FS299, C101X, A29S and C178R has been determined using PCR and direct DNA sequencing. A total of 403 unrelated healthy individuals (253 Emiratis and 150 Tunisians) were genotyped for the CCR5Δ32 variant using PCR amplification and gel electrophoresis. In addition, 200 Emiratis have been screened for other SNPs using Sanger DNA sequencing. Results: Among Emiratis, the allele frequency of the CCR5Δ32 variant has been found to be 0.002. In addition, two variants L55Q and A159 were found at a frequency of 0.002.Moreover, the prevalence of the CCR5Δ32 variant in Tunisians was estimated to be 0.013 which is relatively higher than its frequency in Emiratis but lower than Europeans. Conclusion: We conclude that the allele frequency of the most critical CCR5 polymorphism (Δ32) is extremely low among Emiratis compared to other Arabs and North Europeans. In addition, very low allele frequencies of other CCR5 polymorphisms have been detected among Emiratis.

Keywords: chemokine receptors, CCR5Δ32, CCR5 polymorphisms, Emiratis, Arab populations

Procedia PDF Downloads 358
1458 Exploring Reading into Writing: A Corpus-Based Analysis of Postgraduate Students’ Literature Review Essays

Authors: Tanzeela Anbreen, Ammara Maqsood

Abstract:

Reading into writing is one of university students' most required academic skills. The current study explored postgraduate university students’ writing quality using a corpus-based approach. Twelve postgraduate students’ literature review essays were chosen for the corpus-based analysis. These essays were chosen because students had to incorporate multiple reading sources in these essays, which was a new writing exercise for them. The students were provided feedback at least two times which comprised of the written comments by the tutor highlighting the areas of improvement and also by using the ‘track changes’ function. This exercise was repeated two times, and students submitted two drafts. This investigation included only the finally submitted work of the students. A corpus-based approach was adopted to analyse the essays because it promotes autonomous discovery and personalised learning. The aim of this analysis was to understand the existing level of students’ writing before the start of their postgraduate thesis. Text Inspector was used to analyse the quality of essays. With the help of the Text Inspector tool, the vocabulary used in the essays was compared to the English Vocabulary Profile (EVP), which describes what learners know and can do at each Common European Framework of Reference (CEFR) level. Writing quality was also measured for the Flesch reading ease score, which is a standard to describe the ease of understanding the writing content. The results reflected that students found writing essays using multiple sources challenging. In most essays, the vocabulary level achieved was between B1-B2 of the CEFL level. The study recommends that students need extensive training in developing academic writing skills, particularly in writing the literature review type assignment, which requires multiple sources citations.

Keywords: literature review essays, postgraduate students, corpus-based analysis, vocabulary proficiency

Procedia PDF Downloads 55
1457 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid

Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan

Abstract:

In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.

Keywords: acid treatment, chemical extraction, sludge, waste management

Procedia PDF Downloads 184