Search results for: hybrid storage system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20147

Search results for: hybrid storage system

14837 The Taiwan Environmental Impact Assessment Act Contributes to the Water Resources Saving

Authors: Feng-Ming Fan, Xiu-Hui Wen

Abstract:

Shortage of water resources is a crucial problem to be solved in Taiwan. However, lack of effective and mandatory regulation on water recovery and recycling leads to no effective water resource controls currently. Although existing legislation sets standards regarding water recovery, implementation and enforcement of legislation are facing challenges. In order to break through the dilemma, this study aims to find enforcement tools, improve inspection skills, develop an inspection system, to achieve sustainable development of precious water resources. The Taiwan Environmental Impact Assessment Act (EIA Act) was announced on 1994. The aim of EIA Act is to protect the environment by preventing and mitigating the adverse impact of development activity on the environment. During the EIA process, we can set standards that require enterprises to reach a certain percentage of water recycling based on different case characteristics, to promote sewage source reduction and water saving benefits. Next, we have to inspect how the enterprises handle their waste water and perform water recovery based on environmental assessment commitments, for the purpose of reviewing and measuring the implementation efficiency of water recycling and reuse, an eco-friendly measure. We invited leading experts in related fields to provide lecture on water recycling, strengthen law enforcement officials’ inspection knowledge, and write inspection reference manual to be used as basis of enforcement. Then we finalized the manual by reaching mutual agreement between the experts and relevant agencies. We then inspected 65 high-tech companies whose daily water consumption is over 1,000 tons individually, located at 3 science parks, set up by Ministry of Science and Technology. Great achievement on water recycling was achieved at an amount of 400 million tons per year, equivalent to 2.5 months water usage for general public in Taiwan. The amount is equal to 710 billion bottles of 600 ml cola, 170 thousand international standard swimming pools of 2,500 tons, irrigation water applied to 40 thousand hectares of rice fields, or 1.7 Taipei Feitsui Reservoir of reservoir storage. This study demonstrated promoting effects of environmental impact assessment commitments on water recycling, and therefore water resource sustainable development. It also confirms the value of EIA Act for environmental protection. Economic development should go hand in hand with environmental protection, and it’s a mainstream. It clearly shows the EIA regulation can minimize harmful effects caused by development activity to the environment, as well as pursuit water resources sustainable development.

Keywords: the environmental impact assessment act, water recycling environmental assessment commitment, water resource sustainable development, water recycling, water reuse

Procedia PDF Downloads 251
14836 Optimizing the Morphology and Flow Patterns of Scaffold Perfusion Systems for Effective Cell Deposition Using Computational Fluid Dynamics

Authors: Vineeth Siripuram, Abhineet Nigam

Abstract:

A bioreactor is an engineered system that supports a biologically active environment. Along the years, the advancements in bioreactors have been widely accepted all over the world for varied applications ranging from sewage treatment to tissue cloning. Driven by tissue and organ shortage, tissue engineering has emerged as an alternative to transplantation for the reconstruction of lost or damaged organs. In this study, Computational fluid dynamics (CFD) has been used to model porous medium flow in scaffolds (taken from the literature) with different flow patterns. A detailed analysis of different scaffold geometries and their influence on cell deposition in the perfusion system is been carried out using Computational fluid dynamics (CFD). Considering the fact that, the scaffold should mimic the organs or tissues structures in a three-dimensional manner, certain assumptions were made accordingly. The research on scaffolds has been extensively carried out in different bioreactors. However, there has been less focus on the morphology of the scaffolds and the flow patterns in which the perfusion system is laid upon. The objective of this paper is to employ a computational approach using CFD simulation to determine the optimal morphology and the anisotropic measurements of the various samples of scaffolds. Using predictive computational modelling approach, variables which exert dominant effects on the cell deposition within the scaffold were prioritised and corresponding changes in morphology of scaffold and flow patterns in the perfusion systems are made. A Eulerian approach was carried on in multiple CFD simulations, and it is observed that the morphological and topological changes in the scaffold perfusion system are of great importance in the commercial applications of scaffolds.

Keywords: cell seeding, CFD, flow patterns, modelling, perfusion systems, scaffold

Procedia PDF Downloads 164
14835 Using Business Simulations and Game-Based Learning for Enterprise Resource Planning Implementation Training

Authors: Carin Chuang, Kuan-Chou Chen

Abstract:

An Enterprise Resource Planning (ERP) system is an integrated information system that supports the seamless integration of all the business processes of a company. Implementing an ERP system can increase efficiencies and decrease the costs while helping improve productivity. Many organizations including large, medium and small-sized companies have already adopted an ERP system for decades. Although ERP system can bring competitive advantages to organizations, the lack of proper training approach in ERP implementation is still a major concern. Organizations understand the importance of ERP training to adequately prepare managers and users. The low return on investment, however, for the ERP training makes the training difficult for knowledgeable workers to transfer what is learned in training to the jobs at workplace. Inadequate and inefficient ERP training limits the value realization and success of an ERP system. That is the need to call for a profound change and innovation for ERP training in both workplace at industry and the Information Systems (IS) education in academia. The innovated ERP training approach can improve the users’ knowledge in business processes and hands-on skills in mastering ERP system. It also can be instructed as educational material for IS students in universities. The purpose of the study is to examine the use of ERP simulation games via the ERPsim system to train the IS students in learning ERP implementation. The ERPsim is the business simulation game developed by ERPsim Lab at HEC Montréal, and the game is a real-life SAP (Systems Applications and Products) ERP system. The training uses the ERPsim system as the tool for the Internet-based simulation games and is designed as online student competitions during the class. The competitions involve student teams with the facilitation of instructor and put the students’ business skills to the test via intensive simulation games on a real-world SAP ERP system. The teams run the full business cycle of a manufacturing company while interacting with suppliers, vendors, and customers through sending and receiving orders, delivering products and completing the entire cash-to-cash cycle. To learn a range of business skills, student needs to adopt individual business role and make business decisions around the products and business processes. Based on the training experiences learned from rounds of business simulations, the findings show that learners have reduced risk in making mistakes that help learners build self-confidence in problem-solving. In addition, the learners’ reflections from their mistakes can speculate the root causes of the problems and further improve the efficiency of the training. ERP instructors teaching with the innovative approach report significant improvements in student evaluation, learner motivation, attendance, engagement as well as increased learner technology competency. The findings of the study can provide ERP instructors with guidelines to create an effective learning environment and can be transferred to a variety of other educational fields in which trainers are migrating towards a more active learning approach.

Keywords: business simulations, ERP implementation training, ERPsim, game-based learning, instructional strategy, training innovation

Procedia PDF Downloads 143
14834 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 475
14833 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries

Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos

Abstract:

Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.

Keywords: ceramics, energy storage, electrochemical measurements, transmission electron microscope

Procedia PDF Downloads 264
14832 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 304
14831 Innovations for Freight Transport Systems

Authors: M. Lu

Abstract:

The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.

Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)

Procedia PDF Downloads 321
14830 Geo-Collaboration Model between a City and Its Inhabitants to Develop Complementary Solutions for Better Household Waste Collection

Authors: Abdessalam Hijab, Hafida Boulekbache, Eric Henry

Abstract:

According to several research studies, the city as a whole is a complex, spatially organized system; its modeling must take into account several factors, socio-economic, and political, or geographical, acting at multiple scales of observation according to varied temporalities. Sustainable management and protection of the environment in this complex system require significant human and technical investment, particularly for monitoring and maintenance. The objective of this paper is to propose an intelligent approach based on the coupling of Geographic Information System (GIS) and Information and Communications Technology (ICT) tools in order to integrate the inhabitants in the processes of sustainable management and protection of the urban environment, specifically in the processes of household waste collection in urban areas. We are discussing a collaborative 'city/inhabitant' space. Indeed, it is a geo-collaborative approach, based on the spatialization and real-time geo-localization of topological and multimedia data taken by the 'active' inhabitant, in the form of geo-localized alerts related to household waste issues in their city. Our proposal provides a good understanding of the extent to which civil society (inhabitants) can help and contribute to the development of complementary solutions for the collection of household waste and the protection of the urban environment. Moreover, it allows the inhabitant to contribute to the enrichment of a data bank for future uses. Our geo-collaborative model will be tested in the Lamkansa sampling district of the city of Casablanca in Morocco.

Keywords: geographic information system, GIS, information and communications technology, ICT, geo-collaboration, inhabitants, city

Procedia PDF Downloads 122
14829 Structural Health Monitoring Method Using Stresses Occurring on Bridge Bearings Under Temperature

Authors: T. Nishido, S. Fukumoto

Abstract:

The functions of movable bearings decline due to corrosion and sediments. As the result, they cannot move or rotate according to the behaviors of girders. Because of the constraints, the bending moments are generated by the horizontal reaction forces and the heights of girders. Under these conditions, the authors obtained the following results by analysis and experiment. Tensile stresses due to the moments occurred at temperature fluctuations. The large tensile stresses on concrete slabs around the bearings caused cracks. Even if concrete slabs are newly replaced, cracks will come out again with function declined bearings. The functional declines of bearings are generally found by using displacement gauges. However the method is not suitable for long-term measurements. We focused on the change in the strains at the bearings and the lower flanges near them at temperature fluctuations. It was found that their strains were particularly large when the movements of the bearings were constrained. Therefore, we developed a long-term health monitoring wireless system with FBG (Fiber Bragg Grating) sensors which were attached to bearings and lower flanges. The FBG sensors have the characteristics such as non-electrical influence, resistance to weather, and high strain sensitivity. Such characteristics are suitable for long-term measurements. The monitoring system was inexpensive because it was limited to the purpose of measuring strains and temperature. Engineers can monitor the behaviors of bearings in real time with the wireless system. If an office is away from bridge sites, the system will save traveling time and cost.

Keywords: bridge bearing, concrete slab,  FBG sensor, health monitoring

Procedia PDF Downloads 224
14828 Long-Term Outcome of Emergency Response Team System in In-Hospital Cardiac Arrest

Authors: Jirapat Suriyachaisawat, Ekkit Surakarn

Abstract:

Introduction: To improve early detection and mortality rate of in-hospital cardiac arrest, Emergency Response Team (ERT) system was planned and implemented since June 2009 to detect pre-arrest conditons and for any concerns. The ERT consisted of on duty physicians and nurses from emergency department. ERT calling criteria consisted of acute change of HR < 40 or > 130 beats per minute, systolic blood pressure < 90 mmHg, respiratory rate <8 or >28 breaths per minute, O2 saturation <90%, acute change in conscious state, acute chest pain or worry about the patients. From the data on ERT system implementation in our hospital in early phase (during June 2009-2011), there was no statistic significance in difference in in-hospital cardiac arrest incidence and overall hospital mortality rate. Since the introduction of the ERT service in our hospital, we have conducted continuous educational campaign to improve awareness in an attempt to increase use of the service. Methods: To investigate outcome of ERT system in in-hospital cardiac arrest and overall hospital mortality rate, we conducted a prospective, controlled before-and after examination of the long term effect of a ERT system on the incidence of cardiac arrest. We performed chi-square analysis to find statistic significance. Results: Of a total 623 ERT cases from June 2009 until December 2012, there were 72 calls in 2009, 196 calls in 2010, 139 calls in 2011 and 245 calls in 2012. The number of ERT calls per 1000 admissions in year 2009-10 was 7.69; 5.61 in 2011 and 9.38 in 2013. The number of code blue calls per 1000 admissions decreased significantly from 2.28 to 0.99 per 1000 admissions (P value < 0.001). The incidence of cardiac arrest decreased progressively from 1.19 to 0.34 per 1000 admissions and significant in difference in year 2012 (P value < 0.001 ). The overall hospital mortality rate decreased by 8 % from 15.43 to 14.43 per 1000 admissions (P value 0.095). Conclusions: ERT system implementation was associated with progressive reduction in cardiac arrests over three year period, especially statistic significant in difference in 4th year after implementation. We also found an inverse association between number of ERT use and the risk of occurrence of cardiac arrests, but we have not found difference in overall hospital mortality rate.

Keywords: cardiac arrest, outcome, in-hospital, ERT

Procedia PDF Downloads 201
14827 Effect of a new Released Bio Organic-Fertilizer in Improving Tomato Growth in Hydroponic System and Under Greenhouse

Authors: Zayneb Kthiri, Walid Hamada

Abstract:

The application of organic fertilizers is generally known to be useful to sustain soil fertility and plant growth, especially in poor soils, with less than 1% of organic matter, as it is very common in our Tunisian fields. Therefore, we focused on evaluating the effect of a new released liquid organic fertilizer named Solorga (with 5% of organic matter) compared to a reference product (Espartan: Kimitec, Spain) on tomato plant growth and physiology. Both fertilizers, derived from plant decomposition, were applied at an early stage in hydroponic system and under greenhouse. In hydroponic system, after 14 days of their application by root feeding, a significant difference was observed between treatments. Indeed, Solorga improved shoots and roots length, as well as the biomass respectively, by 45%, 27%, and 27.8% increase rate, while compared to control plants. However, Espartan induced less the measured parameters while compared to untreated control. Moreover, Solorga significantly increased the chlorophyll content by 42% compared to control and by 32% compared to Espartan. In the greenhouse, after 20 days of treatments, the results showed a significant effect of both fertilizers on SPAD index and the number of flowers blossom. Solorga increased the amount of chlorophyll present in the leaf by 7% compared to Espartan as well as the plant height under greenhouse. Moreover, the number of flowers blossom increased by 15% in plants treated with Solorga while compared to Espartan. Whereas, there is no notable difference between both organic fertilizers on the fruits blossom and the number of fruits per blossom. In conclusion, even though there is a difference in the organic matter between both fertilizers, Solorga improved better the plant growth in controlled conditions in hydroponic system while compared to Espartan. Altogether the obtained results are encouraging for the use of Solorga as a soil enriching source of organic matter to help plants to boost their growth and help them to overcome abiotic stresses linked to soil fertility.

Keywords: tomato, plant growth, organic fertilizer, hydroponic system, greenhouse

Procedia PDF Downloads 142
14826 Development and Characterization of Multiphase Hydrogel Systems for Wound Healing

Authors: Rajendra Jangde, Deependra Singh

Abstract:

Present work was based with objective to release of the antimicrobial and debriding agent in sustained manner at the wound surface. In order to provide a long-lasting antimicrobial action and moist environment on wound space, Biocompatible moist system was developed for complete healing. In the present study, a biocompatible moist system of PVA-gelatin hydrogel was developed capable of carrying multiple drugs- Quercetin and Cabopol in controlled manner for effective and complete wound healing. Carbopol and Quercetin were prepared by thin film hydration techniques and optimized system was incorporated in PVA-Gelatin slurry. PVA-Gelatin hydrogels were prepared by freeze thaw method. The prepared dispersion was casted into films to prepare multiphase hydrogel system and characterized by in vitro and in vivo studies. Results revealed the uniform dispersion of microspheres in a three-dimensional matrix of the PVA-Gelatin hydrogel observed at different magnifications. The in vitro release data showed typical biphasic release pattern, i.e., a burst release followed by a slower sustained release for 5 days. Prepared system was found to be stable under both normal and accelerated conditions. Histopathological study showed significant (p<0.05) increase in fibroblast cells, collagen fibres and blood vessels formation. All parameters such as wound contraction, tensile strength, histopathological and biochemical parameters- hydroxyproline content, protein level, etc. were observed significant (p<0.05) in comparison to control group. Present results suggest an accelerated re-epithelialization under moist wound environment with delivery of multiple drugs effective at different stages of wound healing cascade with minimum disturbance of wound bed.

Keywords: multiphase hydrogel, optimization quercetin, wound healing

Procedia PDF Downloads 242
14825 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 72
14824 Data Security and Privacy Challenges in Cloud Computing

Authors: Amir Rashid

Abstract:

Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode.

Keywords: cloud security, IaaS, cloud data privacy and integrity, hybrid cloud

Procedia PDF Downloads 301
14823 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis

Authors: J. Ritonja, B. Grcar

Abstract:

For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.

Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator

Procedia PDF Downloads 249
14822 Enhancing Problem Communication and Management Using Civil Information Modeling for Infrastructure Projects

Authors: Yu-Cheng Lin, Yu-Chih Su

Abstract:

Generally, there are many numerous existing problems during the construction phase special in civil engineering. The problems communication and management (PCM) of civil engineering are important and necessary to enhance the performance of construction management. The civil information modelling (CIM) approach is used to retain information with digital format and assist easy updating and transferring of information in the 3D environment for all related civil and infrastructure projects. When the application of CIM technology is adopted in infrastructure projects, all the related project participants can discuss problems and obtain feedback and responds among project participants integrated with the assistance of CIM models 3D illustration. Usually, electronic mail (e-mail) is one of the most popular communication tools among all related participants for rapid transit system (MRT), also known as a subway or metro, construction project in Taiwan. Furthermore, all interfaces should be traced and managed effectively during the process. However, there are many problems with the use of e-mail for communication of all interfaces. To solve the above problems, this study proposes a CIM-based Problem Communication and Management (CPCM) system to improve performance of problem communication and management. The CPCM system is applied to a case study of an MRT project in Taiwan to identify its CPCM effectiveness. Case study results show that the proposed CPCM system and Markup-enabled CIM Viewer are effective CIM-based communication tools in CIM-supported PCM work of civil engineering. Finally, this study identifies conclusion, suggestion, benefits, and limitations for further applications.

Keywords: building information modeling, civil information modeling, infrastructure, general contractor

Procedia PDF Downloads 155
14821 A Simple Algorithm for Real-Time 3D Capturing of an Interior Scene Using a Linear Voxel Octree and a Floating Origin Camera

Authors: Vangelis Drosos, Dimitrios Tsoukalos, Dimitrios Tsolis

Abstract:

We present a simple algorithm for capturing a 3D scene (focused on the usage of mobile device cameras in the context of augmented/mixed reality) by using a floating origin camera solution and storing the resulting information in a linear voxel octree. Data is derived from cloud points captured by a mobile device camera. For the purposes of this paper, we assume a scene of fixed size (known to us or determined beforehand) and a fixed voxel resolution. The resulting data is stored in a linear voxel octree using a hashtable. We commence by briefly discussing the logic behind floating origin approaches and the usage of linear voxel octrees for efficient storage. Following that, we present the algorithm for translating captured feature points into voxel data in the context of a fixed origin world and storing them. Finally, we discuss potential applications and areas of future development and improvement to the efficiency of our solution.

Keywords: voxel, octree, computer vision, XR, floating origin

Procedia PDF Downloads 137
14820 Learning-Oriented School Education: Indicator Construction and Taiwan's Implementation Performance

Authors: Meiju Chen, Chaoyu Guo, Chia Wei Tang

Abstract:

The present study's purpose is twofold: first, to construct indicators for learning-oriented school education and, second, to conduct a survey to examine how learning-oriented education has been implemented in junior high schools after the launch of the 12-year compulsory curriculum. For indicator system construction, we compiled relevant literature to develop a preliminary indicator list model and then conducted two rounds of a questionnaire survey to gain comprehensive feedback from experts to finalize our indicator model. In the survey's first round, 12 experts were invited to evaluate the indicators' appropriateness. Based on the experts' consensus, we determined our final indicator list and used it to develop the Fuzzy Delphi questionnaire to finalize the indicator system and each indicator's relative value. For the fact-finding survey, we collected 454 valid samples to examine how the concept of learning-oriented education is adopted and implemented in the junior high school context. We also used this data in our importance-performance analysis to explore the strengths and weaknesses of school education in Taiwan. The results suggest that the indicator system for learning-oriented school education must consist of seven dimensions and 34 indicators. Among the seven dimensions, 'student learning' and 'curriculum planning and implementation' are the most important yet underperforming dimensions that need immediate improvement. We anticipate that the indicator system will be a useful tool for other countries' evaluation of schools' performance in learning-oriented education.

Keywords: learning-oriented education, school education, fuzzy Delphi method, importance-performance analysis

Procedia PDF Downloads 147
14819 Adaptive Discharge Time Control for Battery Operation Time Enhancement

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.

Keywords: battery, recovery effect, low-power, alternating battery cell discharging, adaptive discharge time control

Procedia PDF Downloads 357
14818 Passively Q-Switched 914 nm Microchip Laser for LIDAR Systems

Authors: Marco Naegele, Klaus Stoppel, Thomas Dekorsy

Abstract:

Passively Q-switched microchip lasers enable the great potential for sophisticated LiDAR systems due to their compact overall system design, excellent beam quality, and scalable pulse energies. However, many near-infrared solid-state lasers show emitting wavelengths > 1000 nm, which are not compatible with state-of-the-art silicon detectors. Here we demonstrate a passively Q-switched microchip laser operating at 914 nm. The microchip laser consists of a 3 mm long Nd:YVO₄ crystal as a gain medium, while Cr⁴⁺:YAG with an initial transmission of 98% is used as a saturable absorber. Quasi-continuous pumping enables single pulse operation, and low duty cycles ensure low overall heat generation and power consumption. Thus, thermally induced instabilities are minimized, and operation without active cooling is possible while ambient temperature changes are compensated by adjustment of the pump laser current only. Single-emitter diode pumping at 808 nm leads to a compact overall system design and robust setup. Utilization of a microchip cavity approach ensures single-longitudinal mode operation with spectral bandwidths in the picometer regime and results in short laser pulses with pulse durations below 10 ns. Beam quality measurements reveal an almost diffraction-limited beam and enable conclusions concerning the thermal lens, which is essential to stabilize the plane-plane resonator. A 7% output coupler transmissivity is used to generate pulses with energies in the microjoule regime and peak powers of more than 600 W. Long-term pulse duration, pulse energy, central wavelength, and spectral bandwidth measurements emphasize the excellent system stability and facilitate the utilization of this laser in the context of a LiDAR system.

Keywords: diode-pumping, LiDAR system, microchip laser, Nd:YVO4 laser, passively Q-switched

Procedia PDF Downloads 134
14817 Development of 3D Neck Muscle to Analyze the Effect of Active Muscle Contraction in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are mostly experienced in car accidents. Symptoms of whiplash are commonly reported in studies, neck pain and headaches are two most common symptoms observed. The whiplash Injury mechanism is poorly understood. In present study, hybrid neck muscle model were developed with a combination of solid tetrahedral elements and 1D beam elements. Solid tetrahedral elements represents passive part of the muscle whereas, 1D beam elements represents active part. To simulate the active behavior of the muscle, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Some important muscles were then inserted into THUMS (Total Human Model for Safety) THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, THUMS, whiplash injury mechanism

Procedia PDF Downloads 336
14816 The Impact of Oxytetracycline on the Aquaponic System, Biofilter, and Plants

Authors: Hassan Alhoujeiri, Angele Matrat, Sandra Beaufort, Claire joaniss Cassan, Jerome Silvester

Abstract:

Aquaponics is a sustainable food production technology, and its transition to industrial-scale systems has created several challenges that require further investigation in order to make it a robust process. One of the critical concerns is the potential accumulation of compounds from veterinary treatments, phytosanitary agents, fish feed, or simply from contaminated water sources. The accumulation of these substances could negatively impact fish health, microbial biofilters, and plant growth, thereby disrupting the system’s overall balance and functionality. The lack of legislation and knowledge regarding the presence of such compounds in aquaponic systems raises concerns about their potential impact on both system balance and food safety. In this study, we focused on the effects of oxytetracycline (OTC), an antibiotic commonly used in aquaculture, on both the microbial biofilter and plant growth. Although OTC is rarely applied in aquaponics today, the fish compartment may need to be isolated from the system during treatment, as it inhibits specific bacterial populations, which could affect the microbial biofilter's efficiency. However, questions remain about the aquaponic system's tolerance threshold, particularly in cases of treatment or residual OTC traces post-treatment. This study results indicated a decline in microbial biofilter activity to 20% compared to the control, potentially corresponding to treatments of 41 mg/L of OTC. Analysis of microbial populations in the biofilter, using flow cytometry and microscopy (confocal and scanning electron microscopy), revealed an increase in bacterial mortality without disrupting the microbial biofilm. Additionally, OTC exposure led to noticeable changes in plant morphology (e.g., color) and growth, though it did not fully inhibit development. However, no significant effects were observed on seed germination at the tested concentrations despite a measurable impact on subsequent plant growth.

Keywords: aquaponic, oxytetracycline, nitrifying biofilter, plant, micropollutants, sustainability

Procedia PDF Downloads 28
14815 Balancing a Rotary Inverted Pendulum System Using Robust Generalized Dynamic Inverse: Design and Experiment

Authors: Ibrahim M. Mehedi, Uzair Ansari, Ubaid M. Al-Saggaf, Abdulrahman H. Bajodah

Abstract:

This paper presents a methodology for balancing a rotary inverted pendulum system using Robust Generalized Dynamic Inversion (RGDI) under influence of parametric variations and external disturbances. In GDI control, dynamic constraints are formulated in the form of asymptotically stable differential equation which encapsulates the control objectives. The constraint differential equations are based on the deviation function of the angular position and its rates from their reference values. The constraint dynamics are inverted using Moore-Penrose Generalized Inverse (MPGI) to realize the control expression. The GDI singularity problem is addressed by augmenting a dynamic scale factor in the interpretation of MPGI which guarantee asymptotically stable position tracking. An additional term based on Sliding Mode Control is appended within GDI control to make it robust against parametric variations, disturbances and tracking performance deterioration due to generalized inversion scaling. The stability of the closed loop system is ensured by using positive definite Lyapunov energy function that guarantees semi-global practically stable position tracking. Numerical simulations are conducted on the dynamic model of rotary inverted pendulum system to analyze the efficiency of proposed RGDI control law. The comparative study is also presented, in which the performance of RGDI control is compared with Linear Quadratic Regulator (LQR) and is verified through experiments. Numerical simulations and real-time experiments demonstrate better tracking performance abilities and robustness features of RGDI control in the presence of parametric uncertainties and disturbances.

Keywords: generalized dynamic inversion, lyapunov stability, rotary inverted pendulum system, sliding mode control

Procedia PDF Downloads 175
14814 Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study

Authors: Rakesh Kumar, Fatima Electricwala

Abstract:

One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach.

Keywords: BRTS, private modes, mode choice models, ecological footprint

Procedia PDF Downloads 523
14813 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.

Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations

Procedia PDF Downloads 67
14812 Conserving Naubad Karez Cultural Landscape – a Multi-Criteria Approach to Urban Planning

Authors: Valliyil Govindankutty

Abstract:

Human civilizations across the globe stand testimony to water being one of the major interaction points with nature. The interactions with nature especially in drier areas revolve around water, be it harnessing, transporting, usage and management. Many ingenious ideas were born, nurtured and developed for harnessing, transporting, storing and distributing water through the areas in the drier parts of the world. Many methods of water extraction, collection and management could be found throughout the world, some of which are associated with efficient, sustained use of surface water, ground water and rain water. Karez is one such ingenious method of collection, transportation, storage and distribution of ground water. Most of the Karez systems in India were developed during reign of Muslim dynasties with ruling class descending from Persia or having influential connections and inviting expert engineers from there. Karez have strongly influenced the village socio-economic organisations due to multitude of uses they were brought into. These are masterpiece engineering structures to collect groundwater and direct it, through a subsurface gallery with a gradual slope, to surface canals that provide water to settlements and agricultural fields. This ingenious technology, karez was result of need for harnessing groundwater in arid areas like that of Bidar. The study views this traditional technology in historical perspective linked to sustainable utilization and management of groundwater and above all the immediate environment. The karez system is one of the best available demonstration of human ingenuity and adaptability to situations and locations of water scarcity. Bidar, capital of erstwhile Bahmani sultanate with a history of more than 700 years or more is one of the heritage cities of present Karnataka State. The unique water systems of Bidar along with other historic entities have been listed under World Heritage Watch List by World Monument Fund. The Historical or cultural landscape in Bidar is very closely associated to the natural resources of the region, Karez systems being one of the best examples. The Karez systems were the lifeline of Bidar’s historical period providing potable water, fulfilling domestic and irrigation needs, both within and outside the fort enclosures. These systems are still functional, but under great pressure and threat of rapid and unplanned urbanisation. The change in land use and fragmentation of land are already paving way for irreversible modification of the karez cultural and geographic landscape. The Paper discusses the significance of character defining elements of Naubad Karez Landscape, highlights the importance of conserving cultural heritage and presents a geographical approach to its revival.

Keywords: Karez, groundwater, traditional water harvesting, cultural heritage landscape, urban planning

Procedia PDF Downloads 496
14811 Developing a Modular Architecture of Apparel Product

Authors: Yu Zhao, Mengqin Sun, Yahui Zhang

Abstract:

Apparel products (or apparel) with the sense of aesthetics, usability (ergonomics) and function are fundamental and varied in people’s daily life. The numerous apparel thus produced by apparel industry, have been triggered many issues, such as the waste of sources and the environmental pollutions. In this study, a hybrid architecture called modular architecture of apparel (MAA) has been proposed to deal with the variety of apparel, and thus to overcome the aforementioned issues. Generally, the establishment of MAA takes advantage of the modular design of a general product that a product is assembled with many modules through their modular interface connector. The development of MAA is to first analyze the structure of apparel in terms of the necessity to form an apparel and the aesthetics, ergonomics, and function of apparel; then to divide apparel into many segments (or module in product design) based on the structure of apparel; to develop modular interfaces and modular interface connectors in terms of the features of apparel’s modules. It is noted that in the general product design, modules of a product are only about the function and ergonomics, but in MAA, the module of aesthetics is developed. Further, an apparel design with employing the MAA is carried out to validate its usefulness and efficiency. There are three contributions out of this study, the first is to overcome the aforementioned issues (i.e. waste of source and environmental pollutions); the second is the improvement of the modular design for product by considering aesthetics; the third is to add the value in realizing the personalized mass production of apparel in the near future.

Keywords: apparel, architecture, modular design, segment

Procedia PDF Downloads 292
14810 Active Victim Participation in the Criminal Justice System: The Indian Scenario

Authors: Narayani Sepaha

Abstract:

In earlier days, the sufferer was burdened to prove the offence as well as to put the offender to punishment. The adversary system of legal procedure was characterized simply by two parties: the prosecution and the defence. With the onset of this system, firstly the judge started acting as a neutral arbitrator, and secondly, the state inadvertently started assuming the lead role and thereby relegated the victims to the position of oblivion. In this process, with the increasing role of police forces and the government, the victims got systematically excluded from the key stages of the case proceedings and were reduced to the stature of a prosecution witness. This paper tries to emphasise the increasing control over the various stages of the trial, by other stakeholders, leading to the marginalization of victims in the trial process. This monopolization has signalled the onset of an era of gross neglect of victims in the whole criminal justice system. This consciousness led some reformists to raise their concerns over the issue, during the early part of the 20th century. They started supporting the efforts which advocated giving prominence to the participation of victims in the trial process. This paved the way for the evolution of the science of victimology. Markedly the innovativeness to work out facts, seek opinions and statements of the victims and reassure that their voice is also heard has ensured the revival of their rightful roles in the justice delivery system. Many countries, like the US, have set an example by acknowledging the advantages of participation of victims in trials like in the proceedings of the Ariel Castro Kidnappings of Cleveland, Ohio and enacting laws for protecting their rights within the framework of the legal system to ensure speedy and righteous delivery of justice in some of the most complicated cases. An attempt has been made to flag that the accused have several rights in contrast to the near absence of separate laws for victims of crime, in India. It is sad to note that, even in the initial process of registering a crime the victims are subjected to the mercy of the officers in charge and thus begins the silent suffering of these victims, which continues throughout the process of their trial. The paper further contends, that the degree of victim participation in trials and its impact on the outcomes, can be debated and evaluated, but its potential to alter their position and make them regain their lost status cannot be ignored. Victim participation in trial proceedings will help the court in perceiving the facts of the case in a better manner and in arriving at a balanced view of the case. This will not only serve to protect the overall interest of the victims but will act to reinforce the faith in the criminal justice delivery system. It is pertinent to mention that there is an urgent need to review the accused centric prosecution system and introduce appropriate amendments so that the marginalization of victims comes to an end.

Keywords: victim participation, criminal justice, India, trial, marginalised

Procedia PDF Downloads 161
14809 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction

Authors: Jun Wang, Tingcun Wei

Abstract:

The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.

Keywords: DPWM, digitally-controlled DC-DC switching converter, FPGA, PLL megafunction, time resolution

Procedia PDF Downloads 483
14808 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor

Authors: Liliana Patricia Olivo Arias

Abstract:

The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.

Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study

Procedia PDF Downloads 169