Search results for: social learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15629

Search results for: social learning

10379 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction

Authors: William Whiteley, Jens Gregor

Abstract:

In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.

Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography

Procedia PDF Downloads 115
10378 The Controversy of the English Sentence and Its Teaching Implication

Authors: Franklin Uakhemen Ajogbor

Abstract:

The issue of the English sentence has remained controversial from Traditional Grammar to modern linguistics. The English sentence occupies the highest rank in the hierarchy of grammatical units. Its consideration is therefore very necessary in learning English as a second language. Unfortunately, divergent views by grammarians on the concept of the English sentence have generated much controversy. There seems not to be a unanimous agreement on what actually constitute a sentence. Some schools of thought believe that a sentence must have a subject and a predicate while some believe that it should not. The types of sentence according to structure are also not devoid of controversy as the views of several linguists have not been properly harmonized. Findings have shown that serious effort and attention have not been paid by previous linguists to clear these ambiguities as it has a negative implication in the learning and teaching of English language. The variations on the concept of the English sentence have become particularly worrisome as a result of the widening patronage of English as a global language. The paper is therefore interested in the investigation of this controversy and suggesting a solution to the problem. In doing this, data was collected from students and scholars that show lack of uniformity in what a sentence is. Using the Systemic Functional Model as theoretical framework, the paper launches into the views held by these various schools of thought with the aim of reconciling these divergent views and also an attempt to open up further research on what actually constitute a sentence.

Keywords: traditional grammar, linguistics, controversy, sentence, grammatical units

Procedia PDF Downloads 299
10377 A Discourse Completion Test Analysis of Email Request Strategies as Used by Tunisian Postgraduate Students

Authors: Imen Aribi Ben Amor

Abstract:

The aim of the present study is to analyze the performance of requests in emails among a group of Tunisian postgraduate students. It also seeks to determine the influence of the social factors on the participants’ requests performance. For this purpose, the data were collected using a discourse completion test (DCT). Accordingly, 42 Tunisian postgraduate students were asked to respond in English to eight different situations in which they carried out the speech act of request in emails. The data were analyzed based on the degree of directness. A detailed analysis of the head acts found in the DCT revealed that Tunisian Postgraduate students use a varied repertoire of request strategies (direct, conventionally indirect and non-conventionally indirect) but at the same time rely heavily on direct request strategies. They tended to address their requestees directly except for distant superiors. DCT results suggest that the participants are to some extent aware of the influence of the ranking of imposition and social distance but fail to acknowledge the weight of social power when performing requests in emails. The preference of the participants to use direct strategies may be the result of the effect of Tunisian culture and the negative transfer of Tunisian communicative strategies. Accordingly, this study suggests some pedagogical implications and suggestions for Tunisian EFL (English as a Foreign Language) instructors. They are required to pay closer attention to the pragmalinguistic nuances of the ways in which requests in emails are realized. Teachers can also help students understand academic email etiquettes by explicitly explaining what they expect in the student email. Thus, EFL teachers and syllabus designers should devote more attention to developing EFL learners’ pragmatic competence through teaching L2 pragmatics.

Keywords: directness, ranking of imposition, request strategies, social distance, social power

Procedia PDF Downloads 234
10376 A Mixed Methods Study to Examine Teachers’ Views towards Using Interactive White Boards (IWBs) in Tatweer Primary Schools in Saudi Arabia

Authors: Azzah Alghamdi

Abstract:

The Interactive White Boards (IWBs) as one of the innovative educational technologies have been extensively investigated in advanced countries such as the UK, US, and Australia. However, there is a significant lack of research studies, which mainly examine the use of IWBs in Saudi Arabia. Therefore, this study aims to investigate the attitudes of primary teachers towards using IWBs in both the teaching and learning processes. Moreover, it aims to investigate if there is any significant difference between male teachers and females regarding their attitudes towards using this technology. This study concentrated on teachers in primary schools, which participated in Tatweer project in the city of Jeddah, in Saudi Arabia. Mixed methods approach was employed in this study using a designed questionnaire, classroom observations, and a semi-structured interview. 587 teachers (286 men and 301 women) from Tatweer primary schools were completed the questionnaire as well as twenty teachers were interviewed including seven female teachers were observed in their classrooms. The findings of this study indicated that approximately 11% of the teachers within the sample (n=587) had negative attitudes towards the use of IWBs in the teaching and learning processes. However, the majority of them nearly 89% agreed about the benefits of using IWBs in their classrooms. Additionally, all the twenty teachers who were interviewed (including the seven observed female teachers) had positive attitudes towards the use of these technologies. Moreover, 87% of male teachers and 91% of female teachers who completed the questionnaire accepted the usefulness of using IWBs in improving their teaching and students' learning. Thus, this indicates that there was no significant difference between male and female teachers in Tatweer primary schools in terms of their views about using these innovative technologies in their lessons. The findings of the current study will help the Ministry of Education to improve the policies of using IWBs in Saudi Arabia. Indeed, examining teachers’ attitudes towards IWBs is a very important issue because they are the main users in classrooms. Hence, their views should be considered to addressing the powers and boundaries of using IWBs. Moreover, students will feel comfortable to use IWBs if their teachers accept and use them well.

Keywords: IWBs, Saudi teachers’ views, Tatweer schools, teachers' gender

Procedia PDF Downloads 231
10375 Neuropsychological Aspects in Adolescents Victims of Sexual Violence with Post-Traumatic Stress Disorder

Authors: Fernanda Mary R. G. Da Silva, Adriana C. F. Mozzambani, Marcelo F. Mello

Abstract:

Introduction: Sexual assault against children and adolescents is a public health problem with serious consequences on their quality of life, especially for those who develop post-traumatic stress disorder (PTSD). The broad literature in this research area points to greater losses in verbal learning, explicit memory, speed of information processing, attention and executive functioning in PTSD. Objective: To compare the neuropsychological functions of adolescents from 14 to 17 years of age, victims of sexual violence with PTSD with those of healthy controls. Methodology: Application of a neuropsychological battery composed of the following subtests: WASI vocabulary and matrix reasoning; Digit subtests (WISC-IV); verbal auditory learning test RAVLT; Spatial Span subtest of the WMS - III scale; abbreviated version of the Wisconsin test; concentrated attention test - D2; prospective memory subtest of the NEUPSILIN scale; five-digit test - FDT and the Stroop test (Trenerry version) in adolescents with a history of sexual violence in the previous six months, referred to the Prove (Violence Care and Research Program of the Federal University of São Paulo), for further treatment. Results: The results showed a deficit in the word coding process in the RAVLT test, with impairment in A3 (p = 0.004) and A4 (p = 0.016) measures, which compromises the verbal learning process (p = 0.010) and the verbal recognition memory (p = 0.012), seeming to present a worse performance in the acquisition of verbal information that depends on the support of the attentional system. A worse performance was found in list B (p = 0.047), a lower priming effect p = 0.026, that is, lower evocation index of the initial words presented and less perseveration (p = 0.002), repeated words. Therefore, there seems to be a failure in the creation of strategies that help the mnemonic process of retention of the verbal information necessary for learning. Sustained attention was found to be impaired, with greater loss of setting in the Wisconsin test (p = 0.023), a lower rate of correct responses in stage C of the Stroop test (p = 0.023) and, consequently, a higher index of erroneous responses in C of the Stroop test (p = 0.023), besides more type II errors in the D2 test (p = 0.008). A higher incidence of total errors was observed in the reading stage of the FDT test p = 0.002, which suggests fatigue in the execution of the task. Performance is compromised in executive functions in the cognitive flexibility ability, suggesting a higher index of total errors in the alternating step of the FDT test (p = 0.009), as well as a greater number of persevering errors in the Wisconsin test (p = 0.004). Conclusion: The data from this study suggest that sexual violence and PTSD cause significant impairment in the neuropsychological functions of adolescents, evidencing risk to quality of life in stages that are fundamental for the development of learning and cognition.

Keywords: adolescents, neuropsychological functions, PTSD, sexual violence

Procedia PDF Downloads 139
10374 Assessment of Social Vulnerability of Urban Population to Floods – a Case Study of Mumbai

Authors: Sherly M. A., Varsha Vijaykumar, Subhankar Karmakar, Terence Chan, Christian Rau

Abstract:

This study aims at proposing an indicator-based framework for assessing social vulnerability of any coastal megacity to floods. The final set of indicators of social vulnerability are chosen from a set of feasible and available indicators which are prepared using a Geographic Information System (GIS) framework on a smaller scale considering 1-km grid cell to provide an insight into the spatial variability of vulnerability. The optimal weight for each individual indicator is assigned using data envelopment analysis (DEA) as it avoids subjective weights and improves the confidence on the results obtained. In order to de-correlate and reduce the dimension of multivariate data, principal component analysis (PCA) has been applied. The proposed methodology is demonstrated on twenty four wards of Mumbai under the jurisdiction of Municipal Corporation of Greater Mumbai (MCGM). This framework of vulnerability assessment is not limited to the present study area, and may be applied to other urban damage centers.

Keywords: urban floods, vulnerability, data envelopment analysis, principal component analysis

Procedia PDF Downloads 364
10373 Improving Machine Learning Translation of Hausa Using Named Entity Recognition

Authors: Aishatu Ibrahim Birma, Aminu Tukur, Abdulkarim Abbass Gora

Abstract:

Machine translation plays a vital role in the Field of Natural Language Processing (NLP), breaking down language barriers and enabling communication across diverse communities. In the context of Hausa, a widely spoken language in West Africa, mainly in Nigeria, effective translation systems are essential for enabling seamless communication and promoting cultural exchange. However, due to the unique linguistic characteristics of Hausa, accurate translation remains a challenging task. The research proposes an approach to improving the machine learning translation of Hausa by integrating Named Entity Recognition (NER) techniques. Named entities, such as person names, locations, organizations, and dates, are critical components of a language's structure and meaning. Incorporating NER into the translation process can enhance the quality and accuracy of translations by preserving the integrity of named entities and also maintaining consistency in translating entities (e.g., proper names), and addressing the cultural references specific to Hausa. The NER will be incorporated into Neural Machine Translation (NMT) for the Hausa to English Translation.

Keywords: machine translation, natural language processing (NLP), named entity recognition (NER), neural machine translation (NMT)

Procedia PDF Downloads 50
10372 Attitudes Towards Homosexuality, Bisexuality and Transgenderism among Medical Students of a Sri Lankan University

Authors: Rajapaksha J. S. R. L., Rajapaksha R. G. D. T., Ranawaka A. U. R., Rangalla R. D. M. P., Ranwala R. D. E. B., Chandratilake M. N.

Abstract:

Introduction: Lesbian, gay, bisexual, and transgender (LGBT) patients experience discrimination, insensitivity, and ignorance about LGBT-specific health needs among healthcare providers. Developing the correct attitudes among medical students towards LGBT may help provide them with optimal healthcare. Objectives: This study aimed at assessing the attitudes of medical students towards the LBGT community. Methodology: A cross-sectional descriptive study was among all the medical students in the Faculty of Medicine, University of Kelaniya, Sri Lanka, using a validated online questionnaire. The questionnaire focused on eight areas. The data were descriptively analyzed, and the demographic groups were compared. Results: 358 students completed the survey. The response rate was 34.26%. Their attitudes on traditional gender roles and comfortability in interacting with LGBT people were moderate, and they disagreed with negative LGBT social beliefs. They knew less about the origin of sexuality/gender of LGBT. Although they accepted LGBT as a part of diversity, they discouraged normalizing the social practices of LGBT people. Their acceptance and association of LGBT were moderately positive. A minority has encountered LGBT in close social circles, and the majority of them were batch-mates. Although males’ knowledge about the origin of LGBT was higher, they favoured traditional gender roles more. The religious groups showed no differences. The favourability of attitudes towards LGBT reflected respondents’ political ideology. Conclusion: Although medical students’ knowledge on the sexuality/gender basis of LGBT is poor, they have moderately favourable attitudes towards them. They accept LGBT as a part of social diversity but not their social practices. Poor knowledge, lack of encounters, cultural influences, and political ideology may have influenced their attitudes.

Keywords: medical students, attitude, LGBT, diversity

Procedia PDF Downloads 170
10371 NGOs from the Promotion of Civic Participation to Public Problems Solving: Case Study Urmia, Iran

Authors: Amin Banae Babazadeh

Abstract:

In the contemporary world, NGOs are considered as important tool for motivating the community. So they committed their true mission and the promotion of civic participation and strengthen social identities. Functional characteristics of non-governmental organizations are the element to leverage the centers of political and social development of powerful governments since they are concrete and familiar with the problems of society and the operational strategies which would facilitate this process of mutual trust between the people and organizations. NGOs on the one hand offer reasonable solutions in line with approved organizations as agents to match between the facts and reality of society and on the other hand changes to a tool to have true political, social and economic behavior. However, the NGOs are active in the formulation of national relations and policy formulation in an organized and disciplined based on three main factors, i.e., resources, policies, and institutions. Organizations are not restricted to state administration in centralized system bodies and this process in the democratic system limits the accumulation of desires and expectations and at the end reaches to the desired place. Hence, this research will attempt to emphasis on field research (questionnaire) and according to the development evolution and role of NGOs analyze the effects of this center on youth. Therefore, the hypothesis is that there is a direct relationship between the Enlightenment and the effectiveness of policy towards NGOs and solving social damages.

Keywords: civic participation, community vulnerability, insightful, NGO, urmia

Procedia PDF Downloads 243
10370 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model

Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu

Abstract:

The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.

Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR

Procedia PDF Downloads 148
10369 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 122
10368 Using Peer Instruction in Physics of Waves for Pre-Service Science Teacher

Authors: Sumalee Tientongdee

Abstract:

In this study, it was aimed to investigate Physics achievement of the pre-service science teacher studying in general science program at Suan Sunandha Rajabhat University, Bangkok, Thailand. The program has provided the new curriculum that focuses on 21st-century skills development. Active learning approaches are used to teach in all subjects. One of the active learning approaches Peer Instruction, or PI was used in this study to teach physics of waves as a compulsory course. It was conducted in the second semester from January to May of 2017. The concept test was given to evaluate pre-service science teachers’ understanding in concept of waves. Problem-solving assessment form was used to evaluate their problem-solving skill. The results indicated that after they had learned through Peer Instruction in physics of waves course, their concepts in physics of waves was significantly higher at 0.05 confident levels. Their problem-solving skill from the whole class was at the highest level. Based on the group interview on the opinions of using Peer Instruction in Physics class, they mostly felt that it was very useful and helping them understand more about physics, especially for female students.

Keywords: peer instruction, physics of waves, pre-service science teacher, Suan Sunandha Rajabhat university

Procedia PDF Downloads 350
10367 Developmental Psycholinguistic Approach to Conversational Skills - A Continuum of the Sensitivity to Gricean Maxims

Authors: Zsuzsanna Schnell, Francesca Ervas

Abstract:

Background: the experimental pragmatic study confirms a basic tenet in the Relevance theoretical views in language philosophy. It draws up a developmental trajectory of the maxims, revealing the cognitive difficulty of their interpretation, their relative place to each other, and the order they may follow in development. A central claim of the present research is that social-cognitive skills play a significant role in inferential meaning construction. Children passing the False Belief Test are significantly more successful in tasks measuring the recognition of the infringement of conversational maxims. Aims and method: Preschoolers’ conversational skills and pragmatic competence is examined in view of their mentalization skills. In doing so it use a measure of linguistic tasks, containing 5 short scenarios for each Gricean maxim. it measure preschoolers’ ToM performance with a first- and a second order ToM task and compare participants’ ability to recognize the infringement of the Gricean maxims in view of their social cognitive skills. Results: Findings suggest that Theory of Mind has a predictive force of 75% concerning the ability to follow Gricean maxims efficiently. ToM proved to be a significant factor in predicting the group’s performance and success rates in 3 out of 4 maxim infringement recognition tasks: in the Quantity, Relevance and Manner conditions, but not in the Quality trial. Conclusions: the results confirm that children’s communicative competence in social contexts requires the development of higher-order social-cognitive reasoning, and reveal the cognitive effort needed for the recognition of the infringement of each maxim, yielding a continuum of their cognitive difficulty and trajectory of development.

Keywords: maxim infringement recognition, social cognition, Gricean maxims, developmental pragmatics

Procedia PDF Downloads 18
10366 The Grievances Theory versus Transnationalism and the Cameroon Anglophone Question, 1961-2017

Authors: Nkatow Mafany Christian

Abstract:

No other period in human history has offered such great opportunities for grievances not only to last long but also to be manifested across international boundaries. This state of affairs is likely a common feature of the advent of social media. The Anglophone Question in Cameroon has been a problem of poor constitutional arrangements that can be traced to 1961 when the former French Cameroon reunified with former British Southern Cameroons following a plebiscite in which the latter overwhelmingly voted to reunify with the former. Though Southern/Anglophone Cameroons complained of perceived marginalization and an attempt by the majority French section to assimilate them, the manifestation was subtle and took place only through protests, petitions, strikes movements and demonstrations. However, with the advent of social media, a new cream of leaders emerged in the diaspora, including the US, Canada, Europe, Asia and the Middle East, to champion the manifestations leading to violence and conflicts that have bedeviled the region since 2017. The feeling of political subjugation, economic exploitation, social suppression and cultural assimilation among Anglophone Cameroonians united them under diaspora leaders against the government of Cameroon, calling for the creation of a separate state for Anglophones. This paper draws from this lead-up to analyze the current Anglophone Crisis in Cameroon in the light of the Grievance Theory and Transnationalism. The paper makes an appeal to field experience, interviews, official sources, documentation, and the internet to succor its central thesis. From the fertility of its sources, the paper submits that social media is a potent source of conflicts and makes nonsense of the principle of sovereignty and territorial integrity by its capacity to promote the transnational manifestation of grievances.

Keywords: grievance, transnationalism, anglophone crisis, Cameroon, crisis and social media

Procedia PDF Downloads 70
10365 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 124
10364 The Influence of Group Heuristics on Corporate Social Responsibility Messages Designed to Reduce Illegal Consumption

Authors: Kate Whitman, Zahra Murad, Joe Cox

Abstract:

Corporate social responsibility projects are suggested to motivate consumers to reciprocate good corporate deeds with their custom. When the projects benefit the ingroup vs the outgroup, such as locals rather than foreigners, the effect on reciprocity is suggested to be more powerful. This may be explained by group heuristics, a theory which indicates that favours to the ingroup (but not outgroup) are expected to be reciprocated, resulting in ingroup favouritism. The heuristic is theorised to explain prosocial behaviours towards the ingroup. The aim of this study is to test whether group heuristics similarly explain a reduction in antisocial behaviours towards the ingroup, measured by illegal consumption which harms a group that consumers identify with. In order to test corporate social responsibility messages, a population of interested consumers is required, so sport fans are recruited. A pre-registered experiment (N = 600) tests the influence of a focused “team” benefiting message vs a broader “sport” benefiting message on change in illegal intentions. The influence of group (team) identity and trait reciprocity on message efficacy are tested as measures of group heuristics. Results suggest that the “team” treatment significantly reduces illegal consumption intentions. The “sport” treatment interacted with the team identification measure, increasing illegal consumption intentions for low team identification individuals. The results suggest that corporate social responsibility may be effective in reducing illegal consumption, if the messages are delivered directly from brands to consumers with brand identification. Messages delivered on the behalf of an industry may have an undesirable effect.

Keywords: live sports, piracy, counterfeiting, corporate social responsibility, group heuristics, ingroup bias, team identification

Procedia PDF Downloads 90
10363 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue

Procedia PDF Downloads 96
10362 Evaluating the Possibility of Expanding National Health Insurance Funding From Zakat, Sudan

Authors: Fawzia Mohammed Idris

Abstract:

Zakat is an Islamic procedure for wealth distribution as a social protection mechanism for needy people. This study aimed to assess the possibility to expand the share of fund for national health insurance fund from zakat funds allocated for poor people by measuring the reduction of poverty that result from the investing on direct payment to the needy or by covering them in social health insurance. This study used stata regression as a statistical analysis tool and the finding clarified that there is no significant relationship between the poverty rate as the main indicator and, the number of poor people covered by national health insurance on one hand and the number of benefits poor people from the distribution of zakat fund. This study experienced many difficulties regarding the quality and the consistency of the data. The study suggested that a joint mission between national health insurance fund and zakat chamber to conduct study to assess the efficient use of zakat fund allocated to poor people.

Keywords: health finance, poverty, social health insurance, zakat

Procedia PDF Downloads 149
10361 The Relationship Between Social Support, Happiness, Work-Family Conflict and State-Trait Anxiety Among Single Mothers by Choice at Time of Covid-19 Pandemic

Authors: Shamir Balderman Orit, Shamir Michal

Abstract:

Israel often deals with crisis situations, but most have been characterized as security crises (e.g., war). This is the first time that the Israel has dealt with a health and social emergency as part of a global crisis. The crisis began in January 2020 with the emergence of the novel coronavirus (Covid-19), which was defined as a pandemic (World Health Organization, 2020) and arrived in Israel in early March 2020. This study examined how single mothers by choice (SMBC) experience state anxiety (SA), social support, work–family conflict (WFC), and happiness. This group has not been studied in the context of crises in general or a global crisis. Using a snowball sample, 386 SMBCanswered an online questionnaire. The findings show a negative relationship between income and level of state anxiety. State anxiety was also negatively associated with social support, level of happiness, and WFC. Finally, a stepwise regression analysis indicated that happiness explained 34% of the variance in SA. We also found that most of the women did not turn to formal support agencies such as social workers, other Government Ministries, or municipal welfare. A positive and strong correlations was also found between SA and WFC. The findings of the study reinforce the understanding that although these women made a conscious and informed decision regarding the choice of their family cell, their situation is more complex in the absence of a spouse support. Therefore, this study, as other future studies in the field of SMBC, may contribute to the improvement of their social status and the understanding that they are a unique group. Although SMBC are a growing sector of society in the past few years, there are still special needs and special attention that is needed from the formal and informal supports systems. A comparative study of these two groups and in different countries would shed light on SA among mothers in general, regardless of their relationship status and location. Researchers should expand this study by comparing mothers in relationships and exploring how SMBC coped in other countries. In summary, the findings of the study contribute knowledge on three levels: (a) knowledge about SMBC in general and during crisis situations; (b) examination of social support using tools assessing receipt of assistance and support, some of which were developed for the present study; and (c) insights regarding counseling, accompaniment, and guidance of welfare mechanisms.

Keywords: single mothers by choice, state anxiety, social support, happiness, work-family conflict

Procedia PDF Downloads 106
10360 The Jurisprudential Evolution of Corruption Offenses in Spain: Before and after the Economic Crisis

Authors: Marta Fernandez Cabrera

Abstract:

The period of economic boom generated by the housing bubble created a climate of social indifference to the problem of corruption. This resulted in the persecution and conviction for these criminal offenses being low. After the economic recession, social awareness about the problem of corruption has increased. This has led to the Spanish citizenship requiring the public authorities to try to end the problem in the most effective way possible. In order to respond to the continuous social demands that require an exemplary punishment, the legislator has made changes in crimes against the public administration in the Spanish Criminal Code. However, from the point of view of criminal law, the social change has not served to modify only the law, but also the jurisprudence. After the recession, judges are punishing more severely these conducts than in the past. Before the crisis, it was usual for criminal judges to divert relevant behavior to other areas of the legal system such as administrative law and acquit in the criminal field. Criminal judges have considered that administrative law already has mechanisms that can effectively deal with this type of behavior in order to respect the principle of subsidiarity or ultima ratio. It has also been usual for criminal judges to acquit civil servants due to the absence of requirements unrelated to the applicable offense. For example, they have required an economic damage to the public administration when the offense in the criminal code does not require it. Nevertheless, for some years, these arguments have either partially disappeared or considerably transformed. Since 2010, a jurisprudential stream has been consolidated that aims to provide a more severe response to corruption than it had received until now. This change of opinion, together with greater prosecution of these behaviors by judges and prosecutors, has led to a significant increase in the number of individuals convicted of corruption crimes. This paper has two objectives. The first one is to show that even though judges apply the law impartially, they are flexible to social changes. The second one is to identify the erroneous arguments the courts have used up until now. To carry out the present paper, it has been done a detailed analysis of the judgments of the supreme court before and after the year 2010. Therefore, the jurisprudential analysis is complemented with the statistical data on corruption available.

Keywords: corruption, public administration, social perception, ultima ratio principle

Procedia PDF Downloads 149
10359 Experiences and Challenges of Community Participation in Urban Renewal Projects: A Case Study of Bhendi Bazzar, Mumbai, India

Authors: Madhura Yadav

Abstract:

Urban redevelopment planning initiatives in developing countries have been largely criticised due to top-down planning approach and lack of involvement of the targeted beneficiaries which have led to a challenging situation which is contrary to the perceived needs of beneficiaries. Urban renewal projects improve the lives of people and meaningful participation of community plays a pivotal role. Public perceptions on satisfaction and participation have been given less priority in the investigation, which hinders effective planning and implementation of urban renewal projects. Moreover, challenges of community participation in urban renewal projects are less documented, particularly in relation to public participation and satisfaction. There is a need for new paradigm shift focusing on community participatory approach in urban renewal projects. The over 125-year-old Bhendi Bazar in Mumbai, India is the country’s first ever cluster redevelopment project, popularly known as Bhendi Bazaar redevelopment and it will be one of the largest projects for urban rejuvenation of one of Mumbai’s oldest and dying inner city areas. The project is led by the community trust, inputs were taken from various stakeholders, including residents, commercial tenants and expert consultants to shape the master plan and design of the project. The project started in 2016 but there is a significant delay in implementing the project. The study aimed at studying and assessing public perceptions on satisfaction and the relationship between community participation and community satisfaction in Bhendi Bazaar of Mumbai, India. Furthermore, the study will outline the challenges and problems of community participation in urban renewal projects and it suggests recommendations for the future. The qualitative and quantitative methods such as reconnaissance survey, key informant interviews, focus group discussions, walking interviews, a narrative inquiry is used for analysis of data. Preliminary findings revealed that all tenants are satisfied for the redevelopment of an area but the willingness of residential tenants to move in transit accommodation has made the projects successful and reductant of some residential and commercial tenants, regulatory provisions rising to face challenges in implementation. Experiences from the case study can help to understand dynamics behind public participation and government. At the same time, they serve as an inspiration and learning opportunity for future projects to ensure that they are sustainable not only from an economic standpoint but also, a social perspective.

Keywords: urban renewal, Bhendi Bazaar, community participation, satisfaction, social perspective

Procedia PDF Downloads 183
10358 Uncovering Geometrical Ideas in Weaving: An Ethnomathematical Approaches to School Pedagogy

Authors: Jaya Bishnu Pradhan

Abstract:

Weaving mat is one of the common activities performed in different community generally in the rural part of Nepal. Mat weavers’ practice mathematical ideas and concepts implicitly in order to perform their job. This study is intended to uncover the mathematical ideas embedded in mat weaving that can help teachers and students for the teaching and learning of school geometry. The ethnographic methodology was used to uncover and describe the beliefs, values, understanding, perceptions, and attitudes of the mat weavers towards mathematical ideas and concepts in the process of mat weaving. A total of 4 mat weavers, two mathematics teachers and 12 students from grade level 6-8, who are used to participate in weaving, were selected for the study. The whole process of the mat weaving was observed in a natural setting. The classroom observation and in-depth interview were taken with the participants with the help of interview guidelines and observation checklist. The data obtained from the field were categorized according to the themes regarding mathematical ideas embedded in the weaving activities, and its possibilities in teaching learning of school geometry. In this study, the mathematical activities in different sectors of their lives, their ways of understanding the natural phenomena, and their ethnomathematical knowledge were analyzed with the notions of pluralism. From the field data, it was found that the mat weaver exhibited sophisticated geometrical ideas in the process of construction of frame of mat. They used x-test method for confirming if the mat is rectangular. Mat also provides a good opportunity to understand the space geometry. A rectangular form of mat may be rolled up when it is not in use and can be converted to a cylindrical form, which usually can be used as larder so as to reserve food grains. From the observation of the situations, this cultural experience enables students to calculate volume, curved surface area and total surface area of the cylinder. The possibilities of incorporation of these cultural activities and its pedagogical use were observed in mathematics classroom. It is argued that it is possible to use mat weaving activities in the teaching and learning of school geometry.

Keywords: ethnography, ethnomathematics, geometry, mat weaving, school pedagogy

Procedia PDF Downloads 161
10357 A Quasi-Systematic Review on Effectiveness of Social and Cultural Sustainability Practices in Built Environment

Authors: Asif Ali, Daud Salim Faruquie

Abstract:

With the advancement of knowledge about the utility and impact of sustainability, its feasibility has been explored into different walks of life. Scientists, however; have established their knowledge in four areas viz environmental, economic, social and cultural, popularly termed as four pillars of sustainability. Aspects of environmental and economic sustainability have been rigorously researched and practiced and huge volume of strong evidence of effectiveness has been founded for these two sub-areas. For the social and cultural aspects of sustainability, dependable evidence of effectiveness is still to be instituted as the researchers and practitioners are developing and experimenting methods across the globe. Therefore, the present research aimed to identify globally used practices of social and cultural sustainability and through evidence synthesis assess their outcomes to determine the effectiveness of those practices. A PICO format steered the methodology which included all populations, popular sustainability practices including walkability/cycle tracks, social/recreational spaces, privacy, health & human services and barrier free built environment, comparators included ‘Before’ and ‘After’, ‘With’ and ‘Without’, ‘More’ and ‘Less’ and outcomes included Social well-being, cultural co-existence, quality of life, ethics and morality, social capital, sense of place, education, health, recreation and leisure, and holistic development. Search of literature included major electronic databases, search websites, organizational resources, directory of open access journals and subscribed journals. Grey literature, however, was not included. Inclusion criteria filtered studies on the basis of research designs such as total randomization, quasi-randomization, cluster randomization, observational or single studies and certain types of analysis. Studies with combined outcomes were considered but studies focusing only on environmental and/or economic outcomes were rejected. Data extraction, critical appraisal and evidence synthesis was carried out using customized tabulation, reference manager and CASP tool. Partial meta-analysis was carried out and calculation of pooled effects and forest plotting were done. As many as 13 studies finally included for final synthesis explained the impact of targeted practices on health, behavioural and social dimensions. Objectivity in the measurement of health outcomes facilitated quantitative synthesis of studies which highlighted the impact of sustainability methods on physical activity, Body Mass Index, perinatal outcomes and child health. Studies synthesized qualitatively (and also quantitatively) showed outcomes such as routines, family relations, citizenship, trust in relationships, social inclusion, neighbourhood social capital, wellbeing, habitability and family’s social processes. The synthesized evidence indicates slight effectiveness and efficacy of social and cultural sustainability on the targeted outcomes. Further synthesis revealed that such results of this study are due weak research designs and disintegrated implementations. If architects and other practitioners deliver their interventions in collaboration with research bodies and policy makers, a stronger evidence-base in this area could be generated.

Keywords: built environment, cultural sustainability, social sustainability, sustainable architecture

Procedia PDF Downloads 403
10356 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 125
10355 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe

Authors: Zeta Dooly, Aidan Duane

Abstract:

The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.

Keywords: research networks, competency building, network theory, case study

Procedia PDF Downloads 133
10354 Performants: A Digital Event Manager-Organizer

Authors: Ioannis Andrianakis, Manolis Falelakis, Maria Pavlidou, Konstantinos Papakonstantinou, Ermioni Avramidou, Dimitrios Kalogiannis, Nikolaos Milios, Katerina Bountakidou, Kiriakos Chatzidimitriou, Panagiotis Panagiotopoulos

Abstract:

Artistic events, such as concerts and performances, are challenging to organize because they involve many people with different skill sets. Small and medium venues often struggle to afford the costs and overheads of booking and hosting remote artists, especially if they lack sponsors or subsidies. This limits the opportunities for both venues and artists, especially those outside of big cities. However, more and more research shows that audiences prefer smaller-scale events and concerts, which benefit local economies and communities. To address this challenge, our project “PerformAnts: Digital Event Manager-Organizer” aims to develop a smart digital tool that automates and optimizes the processes and costs of live shows and tours. By using machine learning, applying best practices and training users through workshops, our platform offers a comprehensive solution for a growing market, enhances the mobility of artists and the accessibility of venues and allows professionals to focus on the creative aspects of concert production.

Keywords: event organization, creative industries, event promotion, machine learning

Procedia PDF Downloads 91
10353 Key Factors for Stakeholder Engagement and Sustainable Development

Authors: Jo Rhodes, Bruce Bergstrom, Peter Lok, Vincent Cheng

Abstract:

The aim of this study is to determine key factors and processes for multinationals (MNCs) to develop an effective stakeholder engagement and sustainable development framework. A qualitative multiple-case approach was used. A triangulation method was adopted (interviews, archival documents and observations) to collect data on three global firms (MNCs). 9 senior executives were interviewed for this study (3 from each firm). An initial literature review was conducted to explore possible practices and factors (the deductive approach) to sustainable development. Interview data were analysed using Nvivo to obtain appropriate nodes and themes for the framework. A comparison of findings from interview data and themes, factors developed from the literature review and cross cases comparison were used to develop the final conceptual framework (the inductive approach). The results suggested that stakeholder engagement is a key mediator between ‘stakeholder network’ (internal and external factors) and outcomes (corporate social responsibility, social capital, shared value and sustainable development). Key internal factors such as human capital/talent, technology, culture, leadership and processes such as collaboration, knowledge sharing and co-creation of value with stakeholders were identified. These internal factors and processes must be integrated and aligned with external factors such as social, political, cultural, environment and NGOs to achieve effective stakeholder engagement.

Keywords: stakeholder, engagement, sustainable development, shared value, corporate social responsibility

Procedia PDF Downloads 518
10352 Social Ties and the Prevalence of Single Chronic Morbidity and Multimorbidity among the Elderly Population in Selected States of India

Authors: Sree Sanyal

Abstract:

Research in ageing often highlights the age-related health dimension more than the psycho-social characteristics of the elderly, which also influences and challenges the health outcomes. Multimorbidity is defined as the person having more than one chronic non-communicable diseases and their prevalence increases with ageing. The study aims to evaluate the influence of social ties on self-reported prevalence of multimorbidity (selected chronic non-communicable diseases) among the selected states of elderly population in India. The data is accessed from Building Knowledge Base on Population Ageing in India (BKPAI), collected in 2011 covering the self-reported chronic non-communicable diseases like arthritis, heart disease, diabetes, lung disease with asthma, hypertension, cataract, depression, dementia, Alzheimer’s disease, and cancer. The data of the above diseases were taken together and categorized as: ‘no disease’, ‘one disease’ and ‘multimorbidity’. The predicted variables were demographic, socio-economic, residential types, and the variable of social ties includes social support, social engagement, perceived support, connectedness, and importance of the elderly. Predicted probability for multiple logistic regression was used to determine the background characteristics of the old in association with chronic morbidities showing multimorbidity. The finding suggests that 24.35% of the elderly are suffering from multimorbidity. Research shows that with reference to ‘no disease’, according to the socio-economic characteristics of the old, the female oldest old (80+) from others in caste and religion, widowed, never had any formal education, ever worked in their life, coming from the second wealth quintile standard, from rural Maharashtra are more prone with ‘one disease’. From the social ties background, the elderly who perceives they are important to the family, after getting older their decision-making status has been changed, prefer to stay with son and spouse only, satisfied with the communication from their children are more likely to have less single morbidity and the results are significant. Again, with respect to ‘no disease’, the female oldest old (80+), who are others in caste, Christian in religion, widowed, having less than 5 years of education completed, ever worked, from highest wealth quintile, residing in urban Kerala are more associated with multimorbidity. The elderly population who are more socially connected through family visits, public gatherings, gets support in decision making, who prefers to spend their later years with son and spouse only but stays alone shows lesser prevalence of multimorbidity. In conclusion, received and perceived social integration and support from associated neighborhood in the older days, knowing about their own needs in life facilitates better health and wellbeing of the elderly population in selected states of India.

Keywords: morbidity, multi-morbidity, prevalence, social ties

Procedia PDF Downloads 126
10351 Road Safety and Accident Prevention in Third World Countries: A Case Study of NH-7 in India

Authors: Siddegowda, Y. A. Sathish, G. Krishnegowda, T. M. Mohan Kumar

Abstract:

Road accidents are a human tragedy. They involve high human suffering and monetary costs in terms of untimely death, injuries and social problems. India had earned the dubious distinction of having more number of fatalities due to road accidents in the world. Road safety is emerging as a major social concern around the world especially in India because of infrastructure project works. A case study was taken on NH – 07 which connects to various major cities and industries. The study shows that major cases of fatalities are due to bus, trucks and high speed vehicles. The main causes of accidents are due to high density, non-restriction of speed, use of mobile phones, lack of board signs on road parking, visibility restriction, improper geometric design, road use characteristics, environmental aspects, social aspects etc. Data analysis and preventive measures are enlightened in this paper.

Keywords: accidents, environmental aspects, fatalities, geometric design, road user characteristics

Procedia PDF Downloads 256
10350 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases

Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal

Abstract:

Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.

Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN

Procedia PDF Downloads 69