Search results for: harmonic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25414

Search results for: harmonic data

20164 UNIX Source Code Leak: Evaluation and Feasible Solutions

Authors: Gu Dongxing, Li Yuxuan, Nong Tengxiao, Burra Venkata Durga Kumar

Abstract:

Since computers are widely used in business models, more and more companies choose to store important information in computers to improve productivity. However, this information can be compromised in many cases, such as when it is stored locally on the company's computers or when it is transferred between servers and clients. Of these important information leaks, source code leaks are probably the most costly. Because the source code often represents the core technology of the company, especially for the Internet companies, source code leakage may even lead to the company's core products lose market competitiveness, and then lead to the bankruptcy of the company. In recent years, such as Microsoft, AMD and other large companies have occurred source code leakage events, suffered a huge loss. This reveals to us the importance and necessity of preventing source code leakage. This paper aims to find ways to prevent source code leakage based on the direction of operating system, and based on the fact that most companies use Linux or Linux-like system to realize the interconnection between server and client, to discuss how to reduce the possibility of source code leakage during data transmission.

Keywords: data transmission, Linux, source code, operating system

Procedia PDF Downloads 271
20163 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network

Authors: Widyani Fatwa Dewi, Subroto Athor

Abstract:

In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.

Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication

Procedia PDF Downloads 165
20162 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network

Authors: Gajaanuja Megalathan, Banuka Athuraliya

Abstract:

Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.

Keywords: arima model, ANN, crime prediction, data analysis

Procedia PDF Downloads 132
20161 The Triad Experience: Benefits and Drawbacks of the Paired Placement of Student Teachers in Physical Education

Authors: Todd Pennington, Carol Wilkinson, Keven Prusak

Abstract:

Traditional models of student teaching practices typically involve the placement of a student teacher with an experienced mentor teacher. However, due to the ever-decreasing number of quality placements, an alternative triad approach is the paired placement of student teachers with one mentor teacher in a community of practice. This study examined the paired-placement of student teachers in physical education to determine the benefits and drawbacks after a 14-week student teaching experience. PETE students (N = 22) at a university in the United States were assigned to work in a triad with a student teaching partner and a mentor teacher, making up eleven triads for the semester. The one exception was a pair that worked for seven weeks at an elementary school and then for seven weeks at a junior high school, thus having two mentor teachers and participating in two triads. A total of 12 mentor teachers participated in the study. All student teachers and mentor teachers volunteered and agreed to participate. The student teaching experience was structured so that students engaged in: (a) individual teaching (one teaching the lesson with the other observing), (b) co-planning, and (c) peer coaching. All students and mentor teachers were interviewed at the conclusion of the experience. Using interview data, field notes, and email response data, the qualitative data was analyzed using the constant comparative method. The benefits of the paired placement experience emerged into three categories (a) quality feedback, (b) support, and (c) collaboration. The drawbacks emerged into four categories (a) unrealistic experience, (b) laziness in preparation, (c) lack of quality feedback, and (d) personality mismatch. Recommendations include: providing in-service training prior to student teaching to optimize the triad experience, ongoing seminars throughout the experience specifically designed for triads, and a hybrid model of paired placement for the first half of student teaching followed by solo student teaching for the second half of the experience.

Keywords: community of practice, paired placement, physical education, student teaching

Procedia PDF Downloads 402
20160 Predictive Maintenance of Electrical Induction Motors Using Machine Learning

Authors: Muhammad Bilal, Adil Ahmed

Abstract:

This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.

Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures

Procedia PDF Downloads 118
20159 Interspecific Hybridization in Natural Sturgeon Populations of the Eastern Black Sea: The Consequence of Drastic Population Decline

Authors: Tamar Beridze, Elisa Boscari, Fleur Scheele, Tamari Edisherashvili, Cort Anderson, Leonardo Congiu

Abstract:

The eastern part of the Black Sea and its tributaries are suitable habitats for several sturgeon species, among which Acipenser gueldenstaedtii, A. stellatus, A. nudiventris, A. persicus, A. sturio, and H. huso are well documented. However, different threats have led these species to a dramatic decline; all of them are currently listed as Critically Endangered and some Locally Extinct in that area. We tested 94 wild sturgeon samples from the Black Sea and Rioni River by analyzing the mitochondrial Control Region and nuclear markers for hybrid identification. The data analyses (1) assessed mitochondrial diversity among samples, (2) identified their species, as well as (3) indicated instances of hybridization. The data collected, besides confirming a sharp decrease of catches of Beluga and Stellate sturgeon in recent years, also revealed four juvenile hybrids between Russian and Stellate sturgeon, providing the first evidence of natural interspecific hybridization in the Rioni. The present communication raises concerns about the status of sturgeon species in this area and underlines the urgent need for conservation programs to restore self-sustaining populations.

Keywords: black sea, sturgeon, Rioni river, interspecific hybridization

Procedia PDF Downloads 136
20158 Physically Informed Kernels for Wave Loading Prediction

Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross

Abstract:

Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.

Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design

Procedia PDF Downloads 193
20157 Stabilization of Fly Ash Slope Using Plastic Recycled Polymer and Finite Element Analysis Using Plaxis 3D

Authors: Tushar Vasant Salunkhe, Sariput M. Nawghare, Maheboobsab B. Nadaf, Sushovan Dutta, J. N. Mandal

Abstract:

The model tests were conducted in the laboratory without and with plastic recycled polymer in fly ash steep slopes overlaying soft foundation soils like fly ash and power soil in order to check the stability of steep slope. In this experiment, fly ash is used as a filling material, and Plastic Recycled Polymers of diameter = 3mm and length = 4mm were made from the waste plastic product (lower grade plastic product). The properties of fly ash and plastic recycled polymers are determined. From the experiments, load and settlement have measured. From these data, load–settlement curves have been reported. It has been observed from test results that the load carrying capacity of mixture fly ash with Plastic Recycled Polymers slope is more than that of fly ash slope. The deformation of Plastic Recycled Polymers slope is slightly more than that of fly ash slope. A Finite Element Method (F.E.M.) was also evaluated using PLAXIS 3D version. The failure pattern, deformations and factor of safety are reported based on analytical programme. The results from experimental data and analytical programme are compared and reported.

Keywords: factor of safety, finite element method (FEM), fly ash, plastic recycled polymer

Procedia PDF Downloads 428
20156 Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology

Authors: Mahdi Farajzadeh Ajirlou

Abstract:

Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer.

Keywords: fetal, cardiac MRI, ultrasound, 3D, 4D, heart disease, invasive, noninvasive, catheter

Procedia PDF Downloads 40
20155 Prevalence of Dietary Supplements among University Athlete Regime in Sri Lanka: A Cross-Sectional Study

Authors: S. A. N. Rashani, S. Pigera, P. N. J. Fernando, S. Jayawickema, M. A. Niriella, A. P. De Silva

Abstract:

Dietary supplement (DS) consumption is drastically trending among the young athlete generation in developing countries. Many athletes try to fulfill their nutrition requirements using dietary supplements without knowing their effects on health and performance. This study aimed to assess the DS usage patterns of university athletes in Sri Lanka. A self-administered questionnaire was employed to collect data from state university students representing a university team, and a sample of 200 respondents was selected based on a stratified random sampling technique. Incomplete questionnaires were omitted from the analysis. The data were analyzed using IBM SPSS statistics for Windows version 25. The level of significance was set at p<0.05 in the data analysis. The prevalence of DS was 48.2% (n= 94), with no significant association between gender and DS intake. Protein (15.9%), vitamin (14.9%), sports drinks (12.8%), and creatine (8.2%) were the most consumed DS by students. Weightlifting (85.0%), football (62.5%), rugby (57.7%), and wrestling (40.9%) players showed higher DS usage among other sports. Coaches were reported as the most frequent person who was advised to use DS (43.0%). Students who won interuniversity games showed significantly low DS intake (p = 0.002) compared to others. Interestingly, DS use was significantly affected by the season of use (p = 0.000), pointing out that during competition and training seasons (62.4%) was the most frequent use. The pharmacy (27.0%) was the commonest place to buy DS. Students who used nutrient-dense meal plans during the training and competition period still showed a 61.0% tendency to consume DS. Most claimed reason to use DS was to increase energy and strength (29.0%). A majority reported that they used DS for less than one month (35.5%), while the second-highest duration was over three years (17.2%). Considering body mass index (BMI), healthy weight students showed 71.0% DS prevalence. DS prevalence was moderate among Sri Lankan university students, highlighting that the highest DS use was during competition and training seasons. Moreover, it emphasizes the need for nutrition and anti-doping counseling in the Sri Lankan university system.

Keywords: athlete, dietary, supplements, university

Procedia PDF Downloads 206
20154 EFL Teacher Cognition and Learner Autonomy: An Exploratory Study into Algerian Teachers’ Understanding of Learner Autonomy

Authors: Linda Ghout

Abstract:

The main aim of the present case study was to explore EFL teachers’ understanding of learner autonomy. Thus, it sought to uncover how teachers at the de Department of English, University of Béjaia, Algeria view the process of language learning, their learners’ roles, their own roles and their practices to promote learner autonomy. For data collection, firstly, a questionnaire was designed and administered to all the teachers in the department. Secondly, interviews were conducted with some volunteers for the sake of clarifying emerging issues and digging deeper into some of the teachers’ answers to the questionnaire. The analysis revealed interesting data pertaining to the teachers’ cognition and its effects on their teaching practices. With regard to their views of language learning, it seems that the participants hold discrete views which are in opposition with the principles of learner autonomy. The teachers seemed to have a limited knowledge of the characteristics of autonomous learners and autonomy- based methodology. When it comes to teachers’ practices to promote autonomy in their classes, the majority reported that the most effective way is to ask students to search for information on their own. However, in defining their roles in the EFL learning process, most of the respondents claimed that teachers should play the role of facilitators.

Keywords: English, learner autonomy, learning process, teacher cognition

Procedia PDF Downloads 389
20153 Current Situation of Maritime Transport and Logistics in Myanmar

Authors: S. N. S. Thein, H. L. Yang, Z. B. Liu

Abstract:

There are many modes of transport. Among them, maritime transport is a major transportation mode of international trade. In the Republic of the Union of Myanmar (Burma), water transportation served as one of the most important modes of transport for country's exports and imports. Getting the accurate information and data-gathering activity are the most important aspects for any study field. Therefore, in this research, a historical review of the development of ports in Myanmar and how they have changed had been carried out. All the relevant literature and documents have also been reviewed, studied, and organized. The sources of collected data are from reports, journals, internet, as well as from the publications of authorized organizations and international associations. To get better understanding about real situation of maritime transport and logistics in Myanmar; current condition of existing ports, expansion and on-going projects, and future port development plans are described successively. Hence, the main purpose of this study is to build up a comprehensive picture of maritime transport and logistics, in addition to border trade within ASEAN and Myanmar. It will help for academic researchers, decision makers, and stakeholders for national planning as well as for the local and foreign investors to recognize current situation of maritime transport and logistics in Myanmar.

Keywords: ASEAN, border trade, logistics, maritime transport, ports of Myanmar

Procedia PDF Downloads 219
20152 Prioritizing the Factors Effective on Decreasing the Rate of Accidents on Freeways in Iran between 2013-2015

Authors: Mansour Hadji Hosseinlou, Alireza Mahdavi

Abstract:

Transportation is one of any society's needs which have developed after improving economically and socially and is one of civilization symbols today. Although it is so useful for human, it leads to many serious harms and injuries. The development of communication system and building new roads has resulted in increasing the rate of accidents; therefore, in practice, this increasing rate has decreased the advantages of transportation. Traffic accidents are one of the causes of death, serious financial and bodily harms and its significant social, economic and cultural consequences threatens the societies seriously. Iran's ground transportation system is one of the most eventful transportation systems in the world and mortality rate and financial harms cost too much for the country in national aspect. Therefore, we have presented a data collection by referring to recorded statistics of the accidents occurred in freeways from 2013 to 2015. These statistics are recorded in different related databases, generally police and road transportation system. The data is separated and arranged in tables and after preparing, processing and prioritizing the factors, the achieved collection is presented to the departments, managers and researchers to help them suggest practical solutions.

Keywords: freeways’ accidents, humane causes, death, tiredness, drowsiness

Procedia PDF Downloads 193
20151 Formulation and in vitro Evaluation of Sustained Release Matrix Tablets of Levetiracetam for Better Epileptic Treatment

Authors: Nagasamy Venkatesh Dhandapani

Abstract:

The objective of the present study was to develop sustained release oral matrix tablets of anti epileptic drug levetiracetam. The sustained release matrix tablets of levetiracetam were prepared using hydrophilic matrix hydroxypropyl methylcellulose (HPMC) as a release retarding polymer by wet granulation method. Prior to compression, FTIR studies were performed to understand the compatibility between the drug and excipients. The study revealed that there was no chemical interaction between drug and excipients used in the study. The tablets were characterized by physical and chemical parameters and results were found in acceptable limits. In vitro release study was carried out for the tablets using 0.1 N HCl for 2 hours and in phosphate buffer pH 7.4 for remaining time up to 12 hours. The effect of polymer concentration was studied. Different dissolution models were applied to drug release data in order to evaluate release mechanisms and kinetics. The drug release data fit well to zero order kinetics. Drug release mechanism was found as a complex mixture of diffusion, swelling and erosion.

Keywords: levetiracetam, sustained-release, hydrophilic matrix tablet, HPMC grade K 100 MCR, wet granulation, zero order release kinetics

Procedia PDF Downloads 316
20150 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images

Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi

Abstract:

Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.

Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis

Procedia PDF Downloads 59
20149 Setting up a Prototype for the Artificial Interactive Reality Unified System to Transform Psychosocial Intervention in Occupational Therapy

Authors: Tsang K. L. V., Lewis L. A., Griffith S., Tucker P.

Abstract:

Background:  Many children with high incidence disabilities, such as autism spectrum disorder (ASD), struggle to participate in the community in a socially acceptable manner. There are limitations for clinical settings to provide natural, real-life scenarios for them to practice the life skills needed to meet their real-life challenges. Virtual reality (VR) offers potential solutions to resolve the existing limitations faced by clinicians to create simulated natural environments for their clients to generalize the facilitated skills. Research design: The research aimed to develop a prototype of an interactive VR system to provide realistic and immersive environments for clients to practice skills. The descriptive qualitative methodology is employed to design and develop the Artificial Interactive Reality Unified System (AIRUS) prototype, which provided insights on how to use advanced VR technology to create simulated real-life social scenarios and enable users to interact with the objects and people inside the virtual environment using natural eye-gazes, hand and body movements. The eye tracking (e.g., selective or joint attention), hand- or body-tracking (e.g., repetitive stimming or fidgeting), and facial tracking (e.g., emotion recognition) functions allowed behavioral data to be captured and managed in the AIRUS architecture. Impact of project: Instead of using external controllers or sensors, hand tracking software enabled the users to interact naturally with the simulated environment using daily life behavior such as handshaking and waving to control and interact with the virtual objects and people. The AIRUS protocol offers opportunities for breakthroughs in future VR-based psychosocial assessment and intervention in occupational therapy. Implications for future projects: AI technology can allow more efficient data capturing and interpretation of object identification and human facial emotion recognition at any given moment. The data points captured can be used to pinpoint our users’ focus and where their interests lie. AI can further help advance the data interpretation system.

Keywords: occupational therapy, psychosocial assessment and intervention, simulated interactive environment, virtual reality

Procedia PDF Downloads 36
20148 Costa and Mccrae's Neo-Pi Factor and Early Adolescents School Social Adjustment in Cross River State Nigeria

Authors: Peter Unoh Bassey

Abstract:

The study examined the influence of Costa and McCrae’s Neo-PI Factor and early adolescent’s school social adjustment in Cross River State, Nigeria. The research adopted the causal-comparative design also known as the ex-post facto with about one thousand and eighteen (1,018) students who were randomly selected from one stream of JSS 1 classes in 19 schools out of seventy-three (73) in the study area. Data were collected using two instruments one is the NEO-PI scale, and students school social adjustment questionnaire. Three research questions and three research hypotheses were postulated and tested at 0.05 level of significance. The analysis of data was carried out using both the independent t-test statistics and the one-way analysis of variance (ANOVA). The analyzed result indicated that the five dimensions had a significant influence on students school social adjustment. A post hoc was equally carried out to show the relative significant difference among the study variables. In view of the above, it was recommended that teachers, parents and educational psychologists should be involved to enhance students the confidence to overcome their social adjustment problem.

Keywords: Costa and McCrae’s NEO-PI Factor, early adolescents, school, social adjustment

Procedia PDF Downloads 148
20147 Religiosity and Social Factors on Alcohol Use among South African University Students

Authors: Godswill Nwabuisi Osuafor, Sonto Maria Maputle

Abstract:

Background: Abounding studies found that religiosity and social factors modulate alcohol use among university students. However, there is a scarcity of empirical studies examining the protective effects of religiosity and other social factors on alcohol use and abuse in South African universities. The aim of this study was therefore to assess the protective effects of religiosity and roles of social factors on alcohol use among university students. Methodology: A survey on the use of alcohol among 416 university students was conducted using structured questionnaire in 2014. Data were sourced on religiosity and contextual variables. Students were classified as practicing intrinsic religiosity or extrinsic religiosity based on the response to the measures of religiosity. Descriptive, chi square and binary logistic analyses were used in processing the data. Result: Results revealed that alcohol use was associated with religiosity, religion, sex, family history of alcohol use and experimenting with alcohol. Reporting alcohol abuse was significantly predicted by sex, family history of alcohol use and experimenting with alcohol. Religiosity mediated lower alcohol use whereas family history of alcohol use and experimenting with alcohol promoted alcohol use and abuse. Conclusion: Families, religious groups and societal factors may be the specific niches for intervention on alcohol use among university students.

Keywords: religiosity, alcohol use, protective factors, university students

Procedia PDF Downloads 397
20146 Ranking of Managerial Parameters Impacting upon Performance of Football Referees in Iran

Authors: Mohammad Reza Boromand, Masoud Moradi, Amin Eskandari

Abstract:

The present study attempts to determine ranking of managerial parameters impacting upon performance of football referees in Iran. The population consisted of all referees in Leagues 1, 2 and 3 as well as super league of Iran (N=273), of which we selected 160 referees and assistant referees in 2013-2014. A research-designed questionnaire was used for data collection which was divided into two sections: (1) Demographic details (age range, Marital status, employment, refereeing experience, education level, refereeing level and proficiency) and (2) items related to parameters impacting upon performance of referees (structural parameters, operational parameters, environmental parameters, temporal parameters, economic parameters, facilities and tools, personal performance and performance evaluation). Internal consistency was calculated by Cronbach's alpha (r=0.85). For data analysis, we performed Freedman's Test and used SPSS software (α>0.05), along with descriptive statistics. The findings showed the following ranking for the above-mentioned managerial parameters: Facilities and tools, personal performance, economic parameters, structural parameters, operational parameters, environmental parameters, temporal parameters, and performance evaluation.

Keywords: Iran, football referees, managerial parameters, performance

Procedia PDF Downloads 571
20145 Transmission of ASCII Code Messages Using a High Power (50mW) Underwater Laser Communication Prototype in Two Controlled Scenarios

Authors: Lessly Borja, Anthony Gualli, Kelly Baño, Fabricio Santacruz

Abstract:

In this article, a prototype of underwater communication using a long-range laser (50mW) has been carried out in two aquatic scenarios (fish tank and swimming pool) with the aim of recreating Aqua-Fi technology (the future of underwater communications) using a Bluetooth connection to the transmitter to send data in ASCII code by means of light. Initially, the transmitter and receiver circuits were programmed in Arduino so that the data would travel by light pulses in the aforementioned code. To obtain the results of the underwater communication, two scenarios were chosen (fish tank and swimming pool), where the power value of the received signal was calculated from its peak-to-peak voltage using the Oscilloscope equipment (ESPOCH). Finally, it was concluded that the maximum communication range of this prototype is 12m underwater, and it was observed that the power decreases as the distance increases. However, this prototype still needs to improve communication so that the information is not distorted or lost when there is movement and dispersion of the water. It is hoped that it will form the basis for future research.

Keywords: prototype, underwater, communication, power, voltage, distance

Procedia PDF Downloads 91
20144 Performance of Rural and Urban Adult Participants on Neuropsychological Tests in Zambia

Authors: Happy Zulu

Abstract:

Neuropsychological examination is an important way of formally assessing brain function. While there is so much documentation about the influence that some factors, such as age and education, have on neuropsychological tests (NP), not so much has been done to assess the influence that residency (rural/urban) may have. The specific objectives of this study were to establish if there is a significant difference in mean test scores on NP tests between rural and urban participants and to assess which tests on the Zambia Neurobehavioural Test Battery (ZNTB) are more affected by the participants‘ residency (rural/urban) and to determine the extent to which education, gender, and age predict test performance on NP tests for rural and urban participants. The participants (324) were drawn from both urban and rural areas of Zambia (Rural = 152 and Urban = 172). However, only 234 participants (Rural = 152 and Urban 82) were used for all the analyses in this particular study. The 234 participants were used as the actual proportion of the rural vs urban population in Zambia was 65% : 35%, respectively (CSO, 2003). The rural-urban ratio for the participants that were captured during the data collection process was 152 : 172, respectively. Thus, all the rural participants (152) were included and 90 of the 172 urban participants were randomly excluded so that the rural/urban ratio reached the desired 65% : 35 % which was the required ideal statistic for appropriate representation of the actual population in Zambia. Data on NP tests were analyzed from 234 participants, rural (N=152) reflecting 65% and urban (N=82) reflecting 35%. T-tests indicated that urban participants had superior performances in all the seven NP test domains, and all the mean differences in all these domains were found to be statistically significant. Residency had a large or moderate effect in five domains, while its effect size was small only in two of the domains. A standard multiple regression revealed that education, age and residency as predictor variables made a significant contribution to variance in performance on various domains of the ZNTB. However, the gender of participants was not a major factor in determining one‘s performance on neuropsychological tests. This particular report is part of an ongoing, larger, cutting-edge study aimed at formulating the normative data for Zambia with regard to performance on neuropsychological tests. This is necessary for appropriate, effective, and efficient assessment or diagnosis of various neurocognitive and neurobehavioural deficits that a number of people may currently be suffering from. It has been shown in this study that it is vital to make careful analyses of the variables that may be associated with one‘s performance on neuropsychological tests.

Keywords: neuropsychology, neurobehavioural, residency, Zambia

Procedia PDF Downloads 55
20143 A Comprehensive Comparative Study on Seasonal Variation of Parameters Involved in Site Characterization and Site Response Analysis by Using Microtremor Data

Authors: Yehya Rasool, Mohit Agrawal

Abstract:

The site characterization and site response analysis are the crucial steps for reliable seismic microzonation of an area. So, the basic parameters involved in these fundamental steps are required to be chosen properly in order to efficiently characterize the vulnerable sites of the study region. In this study, efforts are made to delineate the variations in the physical parameter of the soil for the summer and monsoon seasons of the year (2021) by using Horizontal-to-Vertical Spectral Ratios (HVSRs) recorded at five sites of the Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India. The data recording at each site was done in such a way that less amount of anthropogenic noise was recorded at each site. The analysis has been done for five seismic parameters like predominant frequency, H/V ratio, the phase velocity of Rayleigh waves, shear wave velocity (Vs), compressional wave velocity (Vp), and Poisson’s ratio for both the seasons of the year. From the results, it is observed that these parameters majorly vary drastically for the upper layers of soil, which in turn may affect the amplification ratios and probability of exceedance obtained from seismic hazard studies. The HVSR peak comes out to be higher in monsoon, with a shift in predominant frequency as compared to the summer season of the year 2021. Also, the drastic reduction in shear wave velocity (up to ~10 m) of approximately 7%-15% is also perceived during the monsoon period with a slight decrease in compressional wave velocity. Generally, the increase in the Poisson ratios is found to have higher values during monsoon in comparison to the summer period. Our study may be very beneficial to various agricultural and geotechnical engineering projects.

Keywords: HVSR, shear wave velocity profile, Poisson ratio, microtremor data

Procedia PDF Downloads 90
20142 An Assessment of Drainage Network System in Nigeria Urban Areas using Geographical Information Systems: A Case Study of Bida, Niger State

Authors: Yusuf Hussaini Atulukwu, Daramola Japheth, Tabitit S. Tabiti, Daramola Elizabeth Lara

Abstract:

In view of the recent limitations faced by the township concerning poorly constructed and in some cases non - existence of drainage facilities that resulted into incessant flooding in some parts of the community poses threat to life,property and the environment. The research seeks to address this issue by showing the spatial distribution of drainage network in Bida Urban using Geographic information System techniques. Relevant features were extracted from existing Bida based Map using un-screen digitization and x, y, z, data of existing drainages were acquired using handheld Global Positioning System (GPS). These data were uploaded into ArcGIS 9.2, software, and stored in the relational database structure that was used to produce the spatial data drainage network of the township. The result revealed that about 40 % of the drainages are blocked with sand and refuse, 35 % water-logged as a result of building across erosion channels and dilapidated bridges as a result of lack of drainage along major roads. The study thus concluded that drainage network systems in Bida community are not in good working condition and urgent measures must be initiated in order to avoid future disasters especially with the raining season setting in. Based on the above findings, the study therefore recommends that people within the locality should avoid dumping municipal waste within the drainage path while sand blocked or weed blocked drains should be clear by the authority concerned. In the same vein the authority should ensured that contract of drainage construction be awarded to professionals and all the natural drainages caused by erosion should be addressed to avoid future disasters.

Keywords: drainage network, spatial, digitization, relational database, waste

Procedia PDF Downloads 334
20141 Composite Forecasts Accuracy for Automobile Sales in Thailand

Authors: Watchareeporn Chaimongkol

Abstract:

In this paper, we compare the statistical measures accuracy of composite forecasting model to estimate automobile customer demand in Thailand. A modified simple exponential smoothing and autoregressive integrate moving average (ARIMA) forecasting model is built to estimate customer demand of passenger cars, instead of using information of historical sales data. Our model takes into account special characteristic of the Thai automobile market such as sales promotion, advertising and publicity, petrol price, and interest rate for loan. We evaluate our forecasting model by comparing forecasts with actual data using six accuracy measurements, mean absolute percentage error (MAPE), geometric mean absolute error (GMAE), symmetric mean absolute percentage error (sMAPE), mean absolute scaled error (MASE), median relative absolute error (MdRAE), and geometric mean relative absolute error (GMRAE).

Keywords: composite forecasting, simple exponential smoothing model, autoregressive integrate moving average model selection, accuracy measurements

Procedia PDF Downloads 362
20140 Investigating the Vehicle-Bicyclists Conflicts using LIDAR Sensor Technology at Signalized Intersections

Authors: Alireza Ansariyar, Mansoureh Jeihani

Abstract:

Light Detection and Ranging (LiDAR) sensors are capable of recording traffic data including the number of passing vehicles and bicyclists, the speed of vehicles and bicyclists, and the number of conflicts among both road users. In order to collect real-time traffic data and investigate the safety of different road users, a LiDAR sensor was installed at Cold Spring Ln – Hillen Rd intersection in Baltimore City. The frequency and severity of collected real-time conflicts were analyzed and the results highlighted that 122 conflicts were recorded over a 10-month time interval from May 2022 to February 2023. By using an innovative image-processing algorithm, a new safety Measure of Effectiveness (MOE) was proposed to recognize the critical zones for bicyclists entering each zone. Considering the trajectory of conflicts, the results of the analysis demonstrated that conflicts in the northern approach (zone N) are more frequent and severe. Additionally, sunny weather is more likely to cause severe vehicle-bike conflicts.

Keywords: LiDAR sensor, post encroachment time threshold (PET), vehicle-bike conflicts, a measure of effectiveness (MOE), weather condition

Procedia PDF Downloads 237
20139 Discrimination in Insurance Pricing: A Textual-Analysis Perspective

Authors: Ruijuan Bi

Abstract:

Discrimination in insurance pricing is a topic of increasing concern, particularly in the context of the rapid development of big data and artificial intelligence. There is a need to explore the various forms of discrimination, such as direct and indirect discrimination, proxy discrimination, algorithmic discrimination, and unfair discrimination, and understand their implications in insurance pricing models. This paper aims to analyze and interpret the definitions of discrimination in insurance pricing and explore measures to reduce discrimination. It utilizes a textual analysis methodology, which involves gathering qualitative data from relevant literature on definitions of discrimination. The research methodology focuses on exploring the various forms of discrimination and their implications in insurance pricing models. Through textual analysis, this paper identifies the specific characteristics and implications of each form of discrimination in the general insurance industry. This research contributes to the theoretical understanding of discrimination in insurance pricing. By analyzing and interpreting relevant literature, this paper provides insights into the definitions of discrimination and the laws and regulations surrounding it. This theoretical foundation can inform future empirical research on discrimination in insurance pricing using relevant theories of probability theory.

Keywords: algorithmic discrimination, direct and indirect discrimination, proxy discrimination, unfair discrimination, insurance pricing

Procedia PDF Downloads 73
20138 Text Mining Past Medical History in Electrophysiological Studies

Authors: Roni Ramon-Gonen, Amir Dori, Shahar Shelly

Abstract:

Background and objectives: Healthcare professionals produce abundant textual information in their daily clinical practice. The extraction of insights from all the gathered information, mainly unstructured and lacking in normalization, is one of the major challenges in computational medicine. In this respect, text mining assembles different techniques to derive valuable insights from unstructured textual data, so it has led to being especially relevant in Medicine. Neurological patient’s history allows the clinician to define the patient’s symptoms and along with the result of the nerve conduction study (NCS) and electromyography (EMG) test, assists in formulating a differential diagnosis. Past medical history (PMH) helps to direct the latter. In this study, we aimed to identify relevant PMH, understand which PMHs are common among patients in the referral cohort and documented by the medical staff, and examine the differences by sex and age in a large cohort based on textual format notes. Methods: We retrospectively identified all patients with abnormal NCS between May 2016 to February 2022. Age, gender, and all NCS attributes reports were recorded, including the summary text. All patients’ histories were extracted from the text report by a query. Basic text cleansing and data preparation were performed, as well as lemmatization. Very popular words (like ‘left’ and ‘right’) were deleted. Several words were replaced with their abbreviations. A bag of words approach was used to perform the analyses. Different visualizations which are common in text analysis, were created to easily grasp the results. Results: We identified 5282 unique patients. Three thousand and five (57%) patients had documented PMH. Of which 60.4% (n=1817) were males. The total median age was 62 years (range 0.12 – 97.2 years), and the majority of patients (83%) presented after the age of forty years. The top two documented medical histories were diabetes mellitus (DM) and surgery. DM was observed in 16.3% of the patients, and surgery at 15.4%. Other frequent patient histories (among the top 20) were fracture, cancer (ca), motor vehicle accident (MVA), leg, lumbar, discopathy, back and carpal tunnel release (CTR). When separating the data by sex, we can see that DM and MVA are more frequent among males, while cancer and CTR are less frequent. On the other hand, the top medical history in females was surgery and, after that, DM. Other frequent histories among females are breast cancer, fractures, and CTR. In the younger population (ages 18 to 26), the frequent PMH were surgery, fractures, trauma, and MVA. Discussion: By applying text mining approaches to unstructured data, we were able to better understand which medical histories are more relevant in these circumstances and, in addition, gain additional insights regarding sex and age differences. These insights might help to collect epidemiological demographical data as well as raise new hypotheses. One limitation of this work is that each clinician might use different words or abbreviations to describe the same condition, and therefore using a coding system can be beneficial.

Keywords: abnormal studies, healthcare analytics, medical history, nerve conduction studies, text mining, textual analysis

Procedia PDF Downloads 96
20137 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 127
20136 Determinants of Financial Performance of South African Businesses in Africa: Evidence from JSE Listed Telecommunications Companies

Authors: Nomakhosi Tshuma, Carley Chetty

Abstract:

This study employed panel regression analysis to investigate the financial performance determinants of MTN and Vodacom’s rest of Africa businesses between 2012 to 2020. It used net profit margin, return on assets (ROA), and return on equity (ROE) as financial performance proxies. Financial performance determinants investigated were asset size, debt ratio, liquidity, number of subscribers, and exchange rate. Data relating to exchange rates were obtained from the World Bank website, while financial data and subscriber information were obtained from the companies’ audited financial statements. The study found statistically significant negative relationships between debt and both ROA and net profit, exchange rate and both ROA and net profit, and subscribers and ROE. It also found significant positive relationships between ROE and both asset size and exchange rate. The study recommends strategic options that optimise on the above findings, and these include infrastructure sharing to reduce infrastructure costs and the minimisation of foreign-denominated debt.

Keywords: financial performance, determinants of financial performance, business in Africa, telecommunications industry

Procedia PDF Downloads 100
20135 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff

Abstract:

Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.

Keywords: coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient

Procedia PDF Downloads 391