Search results for: observational learning
2389 Use of Progressive Feedback for Improving Team Skills and Fair Marking of Group Tasks
Authors: Shaleeza Sohail
Abstract:
Self, and peer evaluations are some of the main components in almost all group assignments and projects in higher education institutes. These evaluations provide students an opportunity to better understand the learning outcomes of the assignment and/or project. A number of online systems have been developed for this purpose that provides automated assessment and feedback of students’ contribution in a group environment based on self and peer evaluations. All these systems lack a progressive aspect of these assessments and feedbacks which is the most crucial factor for ongoing improvement and life-long learning. In addition, a number of assignments and projects are designed in a manner that smaller or initial assessment components lead to a final assignment or project. In such cases, the evaluation and feedback may provide students an insight into their performance as a group member for a particular component after the submission. Ideally, it should also create an opportunity to improve for next assessment component as well. Self and Peer Progressive Assessment and Feedback System encourages students to perform better in the next assessment by providing a comparative analysis of the individual’s contribution score on an ongoing basis. Hence, the student sees the change in their own contribution scores during the complete project based on smaller assessment components. Self-Assessment Factor is calculated as an indicator of how close the self-perception of the student’s own contribution is to the perceived contribution of that student by other members of the group. Peer-Assessment Factor is calculated to compare the perception of one student’s contribution as compared to the average value of the group. Our system also provides a Group Coherence Factor which shows collectively how group members contribute to the final submission. This feedback is provided for students and teachers to visualize the consistency of members’ contribution perceived by its group members. Teachers can use these factors to judge the individual contributions of the group members in the combined tasks and allocate marks/grades accordingly. This factor is shown to students for all groups undertaking same assessment, so the group members can comparatively analyze the efficiency of their group as compared to other groups. Our System provides flexibility to the instructors for generating their own customized criteria for self and peer evaluations based on the requirements of the assignment. Students evaluate their own and other group members’ contributions on the scale from significantly higher to significantly lower. The preliminary testing of the prototype system is done with a set of predefined cases to explicitly show the relation of system feedback factors to the case studies. The results show that such progressive feedback to students can be used to motivate self-improvement and enhanced team skills. The comparative group coherence can promote a better understanding of the group dynamics in order to improve team unity and fair division of team tasks.Keywords: effective group work, improvement of team skills, progressive feedback, self and peer assessment system
Procedia PDF Downloads 1912388 Assessing Information Dissemination Of Group B Streptococcus In Antenatal Clinics, and Obstetricians and Midwives’ Opinions on the Importance of Doing so
Authors: Aakriti Chetan Shah, Elle Sein
Abstract:
Background/purpose: Group B Streptococcus(GBS) is the leading cause of severe early onset infection in newborns, with the incidence of Early Onset Group B Streptococcus (EOGBS) in the UK and Ireland rising from 0.48 to 0.57 per 1000 births from 2000 to 2015. A WHO study conducted in 2017, has shown that 38.5% of cases can result in stillbirth and infant deaths. This is an important problem to consider as 20% of women worldwide have GBS colonisation and can suffer from these detrimental effects. Current Royal College of Obstetricians and Midwives (RCOG) guidelines do not recommend bacteriological screening for pregnant women due to its low sensitivity in antenatal screening correlating with the neonate having GBS but advise a patient information leaflet be given to pregnant women. However, a Healthcare Safety Investigation Branch (HSIB) 2019 learning report found that only 50% of trusts and health boards reported giving GBS information leaflets to all pregnant mothers. Therefore, this audit aimed to assess current practices of information dissemination about GBS at Chelsea & Westminster (C&W) Hospital. Methodology: A quantitative cross-sectional study was carried out using a questionnaire based on the RCOG GBS guidelines and the HSIB Learning report. The study was conducted in antenatal clinics at Chelsea & Westminster Hospital, from 29th January 2021 to 14th February 2021, with twenty-two practicing obstetricians and midwives participating in the survey. The main outcome measure was the proportion of obstetricians and midwives who disseminate information about GBS to pregnant women, and the reasons behind why they do or do not. Results: 22 obstetricians and midwives responded with 18 complete responses. Of which 12 were obstetricians and 6 were midwives. Only 17% of clinical staff routinely inform all pregnant women about GBS, and do so at varying timeframes of the pregnancy, with an equal split in the first, second and third trimester. The primary reason for not informing women about GBS was influenced by three key factors: Deemed relevant only for patients at high risk of GBS, lack of time in clinic appointments and no routine NHS screening available. Interestingly 58% of staff in the antenatal clinic believe it is necessary to inform all women about GBS and its importance. Conclusion: It is vital for obstetricians and midwives to inform all pregnant women about GBS due to the high prevalence of incidental carriers in the population, and the harmful effects it can cause for neonates. Even though most clinicians believe it is important to inform all pregnant women about GBS, most do not. To ensure that RCOG and HSIB recommendations are followed, we recommend that women should be given this information at 28 weeks gestation in the antenatal clinic. Proposed implementations include an information leaflet to be incorporated into the Mum and Baby app, an informative video and end-to-end digital clinic documentation to include this information sharing prompt.Keywords: group B Streptococcus, early onset sepsis, Antenatal care, Neonatal morbidity, GBS
Procedia PDF Downloads 1802387 Optimizing Pick and Place Operations in a Simulated Work Cell for Deformable 3D Objects
Authors: Troels Bo Jørgensen, Preben Hagh Strunge Holm, Henrik Gordon Petersen, Norbert Kruger
Abstract:
This paper presents a simulation framework for using machine learning techniques to determine robust robotic motions for handling deformable objects. The main focus is on applications in the meat sector, which mainly handle three-dimensional objects. In order to optimize the robotic handling, the robot motions have been parameterized in terms of grasp points, robot trajectory and robot speed. The motions are evaluated based on a dynamic simulation environment for robotic control of deformable objects. The evaluation indicates certain parameter setups, which produce robust motions in the simulated environment, and based on a visual analysis indicate satisfactory solutions for a real world system.Keywords: deformable objects, robotic manipulation, simulation, real world system
Procedia PDF Downloads 2822386 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 1282385 Low-Cost Fog Edge Computing for Smart Power Management and Home Automation
Authors: Belkacem Benadda, Adil Benabdellah, Boutheyna Souna
Abstract:
The Internet of Things (IoT) is an unprecedented creation. Electronics objects are now able to interact, share, respond and adapt to their environment on a much larger basis. Actual spread of these modern means of connectivity and solutions with high data volume exchange are affecting our ways of life. Accommodation is becoming an intelligent living space, not only suited to the people circumstances and desires, but also to systems constraints to make daily life simpler, cheaper, increase possibilities and achieve a higher level of services and luxury. In this paper we are as Internet access, teleworking, consumption monitoring, information search, etc.). This paper addresses the design and integration of a smart home, it also purposes an IoT solution that allows smart power consumption based on measurements from power-grid and deep learning analysis.Keywords: array sensors, IoT, power grid, FPGA, embedded
Procedia PDF Downloads 1172384 Living the Religious of the Virgin Mary (RVM) Educational Mission: A Grounded Theory Approach
Authors: Violeta Juanico
Abstract:
While there was a statement made by the RVM Education Ministry Commission that its strength is its Ignacian identity, shaped by the Ignacian spirituality that permeates the school community leading to a more defined RVM school culture, there has been no empirical study made in terms of a clear and convincing conceptual framework on how the RVM Educational mission is lived in the Religious of the Virgin Mary (RVM) learning institutions to the best of author’s knowledge. This dissertation is an attempt to come up with a substantive theory that supports and explains the stakeholders’ experiences with the RVM educational mission in the Philippines. Participants that represent the different stakeholders ranging from students to administrators were interviewed. The expressions and thoughts of the participants were initially coded and analyzed using the Barney Glaser’s original grounded theory methodology to find out how the RVM mission is lived in the field of education.Keywords: catholic education, grounded theory, lived experience, RVM educational mission
Procedia PDF Downloads 4702383 Financial Assets Return, Economic Factors and Investor's Behavioral Indicators Relationships Modeling: A Bayesian Networks Approach
Authors: Nada Souissi, Mourad Mroua
Abstract:
The main purpose of this study is to examine the interaction between financial asset volatility, economic factors and investor's behavioral indicators related to both the company's and the markets stocks for the period from January 2000 to January2020. Using multiple linear regression and Bayesian Networks modeling, results show a positive and negative relationship between investor's psychology index, economic factors and predicted stock market return. We reveal that the application of the Bayesian Discrete Network contributes to identify the different cause and effect relationships between all economic, financial variables and psychology index.Keywords: Financial asset return predictability, Economic factors, Investor's psychology index, Bayesian approach, Probabilistic networks, Parametric learning
Procedia PDF Downloads 1522382 Cost-Effective Hybrid Cloud Framework for HEI’s
Authors: Shah Muhammad Butt, Ahmed Masaud Ansari
Abstract:
Present Financial crisis in Higher Educational Institutes (HEIs) facing lots of problems considerable budget cuts, make difficult to meet the ever growing IT-based research and learning needs, institutions are rapidly planning and promoting cloud-based approaches for their academic and research needs. A cost effective Hybrid Cloud framework for HEI’s will provide educational services for campus or intercampus communication. Hybrid Cloud Framework comprises Private and Public Cloud approaches. This paper will propose the framework based on the Open Source Cloud (OpenNebula for Virtualization, Eucalyptus for Infrastructure, and Aneka for programming development environment) combined with CSP’s services which are delivered to the end-user via the Internet from public clouds.Keywords: educational services, hybrid campus cloud, open source, electrical and systems sciences
Procedia PDF Downloads 4602381 The Influence of Noise on Aerial Image Semantic Segmentation
Authors: Pengchao Wei, Xiangzhong Fang
Abstract:
Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise
Procedia PDF Downloads 2212380 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit
Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu
Abstract:
Diagonal sparse matrix-vector multiplication is a well-studied topic in the fields of scientific computing and big data processing. However, when diagonal sparse matrices are stored in DIA format, there can be a significant number of padded zero elements and scattered points, which can lead to a degradation in the performance of the current DIA kernel. This can also lead to excessive consumption of computational and memory resources. In order to address these issues, the authors propose the DIA-Adaptive scheme and its kernel, which leverages the parallel instruction sets on MLU. The researchers analyze the effect of allocating a varying number of threads, clusters, and hardware architectures on the performance of SpMV using different formats. The experimental results indicate that the proposed DIA-Adaptive scheme performs well and offers excellent parallelism.Keywords: adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication
Procedia PDF Downloads 1372379 Teaching Light Polarization by Putting Art and Physics Together
Authors: Fabrizio Logiurato
Abstract:
Light Polarization has many technological applications, and its discovery was crucial to reveal the transverse nature of the electromagnetic waves. However, despite its fundamental and practical importance, in high school, this property of light is often neglected. This is a pity not only for its conceptual relevance, but also because polarization gives the possibility to perform many brilliant experiments with low cost materials. Moreover, the treatment of this matter lends very well to an interdisciplinary approach between art, biology and technology, which usually makes things more interesting to students. For these reasons, we have developed, and in this work, we introduce a laboratory on light polarization for high school and undergraduate students. They can see beautiful pictures when birefringent materials are set between two crossed polarizing filters. Pupils are very fascinated and drawn into by what they observe. The colourful images remind them of those ones of abstract painting or alien landscapes. With this multidisciplinary teaching method, students are more engaged and participative, and also, the learning process of the respective physics concepts is more effective.Keywords: light polarization, optical activity, multidisciplinary education, science and art
Procedia PDF Downloads 2142378 Demand for Index Based Micro-Insurance (IBMI) in Ethiopia
Authors: Ashenafi Sileshi Etefa, Bezawit Worku Yenealem
Abstract:
Micro-insurance is a relatively new concept that is just being introduced in Ethiopia. For an agrarian economy dominated by small holder farming and vulnerable to natural disasters, mainly drought, the need for an Index-Based Micro Insurance (IBMI) is crucial. Since IBMI solves moral hazard, adverse selection, and access issues to poor clients, it is preferable over traditional insurance products. IBMI is being piloted in drought prone areas of Ethiopia with the aim of learning and expanding the service across the country. This article analyses the demand of IBMI and the barriers to demand and finds that the demand for IBMI has so far been constrained by lack of awareness, trust issues, costliness, and the level of basis risk; and recommends reducing the basis risk and increasing the role of government and farmer cooperatives.Keywords: agriculture, index based micro-insurance (IBMI), drought, micro-finance institution (MFI)
Procedia PDF Downloads 2932377 Examining the Challenges of Teaching Traditional Dance in Contemporary India
Authors: Aadya Kaktikar
Abstract:
The role of a traditional dance teacher in India revolves around teaching movements and postures that have been a part of the movement vocabulary of dancers from before the 2nd century BC. These movements inscribe on the mind and body of the dancer a complex web of philosophy, culture history, and religion. However, this repository of tradition sits in a fast globalizing India creating a cultural space which is in a constant flux, where identities and meanings are being constantly challenged. The guru-shishya parampara, the traditional way of learning dance, sits uneasily with a modern education space in India. The traditional dance teacher is caught in the cross-currents of tradition and modernity, of preservation and exploration. This paper explores conflicting views on what dance ought to mean and how it should be taught. The paper explores the tensions of the social, economic and cultural spaces that the traditional dance teacher navigates.Keywords: pedagogy, dance education, dance curriculum, teacher training
Procedia PDF Downloads 3252376 Restructuring of Embedded System Design Course: Making It Industry Compliant
Authors: Geetishree Mishra, S. Akhila
Abstract:
Embedded System Design, the most challenging course of electronics engineering has always been appreciated and well acclaimed by the students of electronics and its related branches of engineering. Embedded system, being a product of multiple application domains, necessitates skilled man power to be well designed and tested in every important aspect of both hardware and software. In the current industrial scenario, the requirements are even more rigorous and highly demanding and needs to be to be on par with the advanced technologies. Fresh engineers are expected to be thoroughly groomed by the academic system and the teaching community. Graduates with the ability to understand both complex technological processes and technical skills are increasingly sought after in today's embedded industry. So, the need of the day is to restructure the under-graduate course- both theory and lab practice along with the teaching methodologies to meet the industrial requirements. This paper focuses on the importance of such a need in the present education system.Keywords: embedded system design, industry requirement, syllabus restructuring, project-based learning, teaching methodology
Procedia PDF Downloads 6652375 Estimating Big Five Personality Expressions with a Tiered Information Framework
Authors: Laura Kahn, Paul Rodrigues, Onur Savas, Shannon Hahn
Abstract:
An empirical understanding of an individual's personality expression can have a profound impact on organizations seeking to strengthen team performance and improve employee retention. A team's personality composition can impact overall performance. Creating a tiered information framework that leverages proxies for a user's social context and lexical and linguistic content provides insight into location-specific personality expression. We leverage the layered framework to examine domain-specific, psychological, and lexical cues within social media posts. We apply DistilBERT natural language transfer learning models with real world data to examine the relationship between Big Five personality expressions of people in Science, Technology, Engineering and Math (STEM) fields.Keywords: big five, personality expression, social media analysis, workforce development
Procedia PDF Downloads 1412374 Role of Education in the Transference of Global Values
Authors: Baratali Monfarediraz
Abstract:
Humans’ identity is not only under the influence of a certain society or social structure but also it is influenced by an international identity. This article is a research on role of education in the manifestation of universally accepted values such as, advancement of science, improvement in the quality of education, preservation of the natural environment, preservation, and spread of peace, exchange of knowledge and technology, equal educational opportunities, benefiting from a universal morality and etc. Therefore, the relation between universal beliefs and values and educational approaches and programs is the first thing to pay attention to. Studies indicate that the first step in achieving the above mentioned goals is offering learning strategies. Therefore the importance of educational approaches and programs as a tool for the transference of ideas, experiences and thoughts becomes quite clear. Proper education gives everyone the opportunity of acquiring knowledge while creating tendency toward social activities paves the way for achieving the universal values.Keywords: globalization, universal values, education, universal goal, values, society
Procedia PDF Downloads 3822373 Students’ Opinions Related to Virtual Classrooms within the Online Distance Education Graduate Program
Authors: Secil Kaya Gulen
Abstract:
Face to face and virtual classrooms that came up with different conditions and environments, but similar purposes have different characteristics. Although virtual classrooms have some similar facilities with face-to-face classes such as program, students, and administrators, they have no walls and corridors. Therefore, students can attend the courses from a distance and can control their own learning spaces. Virtual classrooms defined as simultaneous online environments where students in different places come together at the same time with the guidance of a teacher. Distance education and virtual classes require different intellectual and managerial skills and models. Therefore, for effective use of virtual classrooms, the virtual property should be taken into consideration. One of the most important factors that affect the spread and effective use of the virtual classrooms is the perceptions and opinions of students -as one the main participants-. Student opinions and recommendations are important in terms of providing information about the fulfillment of expectation. This will help to improve the applications and contribute to the more efficient implementations. In this context, ideas and perceptions of the students related to the virtual classrooms, in general, were determined in this study. Advantages and disadvantages of virtual classrooms expected contributions to the educational system and expected characteristics of virtual classrooms have examined in this study. Students of an online distance education graduate program in which all the courses offered by virtual classrooms have asked for their opinions. Online Distance Education Graduate Program has totally 19 students. The questionnaire that consists of open-ended and multiple choice questions sent to these 19 students and finally 12 of them answered the questionnaire. Analysis of the data presented as frequencies and percentages for each item. SPSS for multiple-choice questions and Nvivo for open-ended questions were used for analyses. According to the results obtained by the analysis, participants stated that they did not get any training on virtual classes before the courses; but they emphasize that newly enrolled students should be educated about the virtual classrooms. In addition, all participants mentioned that virtual classroom contribute their personal development and they want to improve their skills by gaining more experience. The participants, who mainly emphasize the advantages of virtual classrooms, express that the dissemination of virtual classrooms will contribute to the Turkish Education System. Within the advantages of virtual classrooms, ‘recordable and repeatable lessons’ and ‘eliminating the access and transportation costs’ are most common advantages according to the participants. On the other hand, they mentioned ‘technological features and keyboard usage skills affect the attendance’ is the most common disadvantage. Participants' most obvious problem during virtual lectures is ‘lack of technical support’. Finally ‘easy to use’, ‘support possibilities’, ‘communication level’ and ‘flexibility’ come to the forefront in the scope of expected features of virtual classrooms. Last of all, students' opinions about the virtual classrooms seems to be generally positive. Designing and managing virtual classrooms according to the prioritized features will increase the students’ satisfaction and will contribute to improve applications that are more effective.Keywords: distance education, virtual classrooms, higher education, e-learning
Procedia PDF Downloads 2692372 The Analysis of Cultural Diversity in EFL Textbook for Senior High School in Indonesia
Authors: Soni Ariawan
Abstract:
The study aims to explore the cultural diversity highlighted in EFL textbook for Senior High School grade 10 in Indonesia. The visual images are selected as the data and qualitatively analysed using content analysis. The reason to choose visual images because images are not always neutral and they might impact teaching and learning process. In the current study, cultural diversity aspects are focused on religion (Muslim, Protestant, Catholic, Hindu, Buddhist, Confucian), gender (male, female, unclear), ethnic (Melanesian, Austronesian, Foreigner) and socioeconomic (low, middle, high, undetermined) diversity as the theoretical framework. The four aspects of cultural diversity are sufficiently representative to draw a conclusion in investigating Indonesian culture representation in EFL textbook. The finding shows that cultural diversity is not proportionally reflected in the textbook, particularly in the visual images.Keywords: EFL textbook, cultural diversity, visual images, Indonesia
Procedia PDF Downloads 3142371 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.Keywords: solubility, random forest, molecular descriptors, maccs keys
Procedia PDF Downloads 492370 Utilization of Hybrid Teaching Methods to Improve Writing Skills of Undergraduate Students
Authors: Tahira Zaman
Abstract:
The paper intends to discover the utility of hybrid teaching methods to aid undergraduate students to improve their English academic writing skills. A total of 45 undergraduate students were selected randomly from three classes from varying language abilities, with the research design of monitoring and rubrics evaluation as a means of measure. Language skills of the students were upgraded with the help of experiential learning methods using reflective writing technique, guided method in which students were merely directed to correct form of writing techniques along with self-guided method for the students to produce a library research-based article measured through a standardized rubrics provided. The progress of the students was monitored and checked through rubrics and self-evaluation and concluded that a change was observed in the students’ writing abilities.Keywords: self evaluation, hybrid, self evaluation, reflective writing
Procedia PDF Downloads 1642369 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques
Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail
Abstract:
Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation
Procedia PDF Downloads 1832368 A Framework for ERP Project Evaluation Based on BSC Model: A Study in Iran
Authors: Mohammad Reza Ostad Ali Naghi Kashani, Esfanji Elia
Abstract:
Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing particularly in developing countries like Iran. ERP projects are expensive, time consuming, and complex, in addition the failure rate is high among these projects. It is important to know whether these projects could meet their goals or not. Furthermore, the area which should be improved should be identified. In this paper we made a framework to evaluate ERP projects success implementation. First, based on literature review we made a framework based on BSC model, financial, customer, processes, learning and knowledge, because of the importance of change management it was added to model. Then an organization was divided in three layers. We choose corporate, managerial, and operational levels. Then to find criteria to assess each aspect, we use Delphi method in two rounds. And for the second round we made a questionnaire and did some statistical tasks on them. Based on the statistical results some of them are accepted and others are rejected.Keywords: ERP, BSC, ERP project evaluation, IT projects
Procedia PDF Downloads 3232367 A Systematic Review of Situational Awareness and Cognitive Load Measurement in Driving
Authors: Aly Elshafei, Daniela Romano
Abstract:
With the development of autonomous vehicles, a human-machine interaction (HMI) system is needed for a safe transition of control when a takeover request (TOR) is required. An important part of the HMI system is the ability to monitor the level of situational awareness (SA) of any driver in real-time, in different scenarios, and without any pre-calibration. Presenting state-of-the-art machine learning models used to measure SA is the purpose of this systematic review. Investigating the limitations of each type of sensor, the gaps, and the most suited sensor and computational model that can be used in driving applications. To the author’s best knowledge this is the first literature review identifying online and offline classification methods used to measure SA, explaining which measurements are subject or session-specific, and how many classifications can be done with each classification model. This information can be very useful for researchers measuring SA to identify the most suited model to measure SA for different applications.Keywords: situational awareness, autonomous driving, gaze metrics, EEG, ECG
Procedia PDF Downloads 1202366 Experiences on the Application of WIKI Based Coursework in a Fourth-Year Engineering Module
Authors: D. Hassell, D. De Focatiis
Abstract:
This paper presents work on the application of wiki based coursework for a fourth-year engineering module delivered as part of both a MEng and MSc programme in Chemical Engineering. The module was taught with an equivalent structure simultaneously on two separate campuses, one in the United Kingdom (UK) and one in Malaysia, and the subsequent results were compared. Student feedback was sought via questionnaires, with 45 respondents from the UK and 49 from Malaysia. Results include discussion on; perceived difficulty; student enjoyment and experiences; differences between MEng and MSc students; differences between cohorts on different campuses. The response of students to the use of wiki-based coursework was found to vary based on their experiences and background, with UK students being generally more positive on its application than those in Malaysia.Keywords: engineering education, student differences, student learning, web based coursework
Procedia PDF Downloads 2972365 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information
Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai
Abstract:
Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.Keywords: knowledge graph, entity alignment, transformer, deep learning
Procedia PDF Downloads 472364 Achieving Sustainable Lifestyles Based on the Spiritual Teaching and Values of Buddhism from Lumbini, Nepal
Authors: Purna Prasad Acharya, Madhav Karki, Sunta B. Tamang, Uttam Basnet, Chhatra Katwal
Abstract:
The paper outlines the idea behind achieving sustainable lifestyles based on the spiritual values and teachings of Lord Buddha. This objective is to be achieved by spreading the tenets and teachings of Buddhism throughout the Asia Pacific region and the world from the sacred birth place of Buddha - Lumbini, Nepal. There is an urgent need to advance the relevance of Buddhist philosophy in tackling the triple planetary crisis of climate change, nature’s decline, and pollution. Today, the world is facing an existential crisis due to the above crises, exasperated by hunger, poverty and armed conflict. To address multi-dimensional impacts, the global communities have to adopt simple life styles that respect nature and universal human values. These were the basic teachings of Gautam Buddha. Lumbini, Nepal has the moral obligation to widely disseminate Buddha’s teaching to the world and receive constant feedback and learning to develop human and ecosystem resilience by molding the lifestyles of current and future generations through adaptive learning and simplicity across the geography and nationality based on spirituality and environmental stewardship. By promoting Buddhism, Nepal has developed a pro-nature tourism industry that focuses on both its spiritual and bio-cultural heritage. Nepal is a country rich in ancient wisdom, where sages have sought knowledge, practiced meditation, and followed spiritual paths for thousands of years. It can spread the teachings of Buddha in a way people can search for and adopt ways to live, creating harmony with nature. Using tools of natural sciences and social sciences, the team will package knowledge and share the idea of community well-being within the framework of environmental sustainability, social harmony and universal respect for nature and people in a more holistic manner. This notion takes into account key elements of sustainable development such as food-energy-water-biodiversity interconnections, environmental conservation, ecological integrity, ecosystem health, community resiliency, adaptation capacity, and indigenous culture, knowledge and values. This inclusive concept has garnered a strong network of supporters locally, regionally, and internationally. The key objectives behind this concept are: a) to leverage expertise and passion of a network of global collaborators to advance research, education, and policy outreach in the areas of human sustainability based on lifestyle change using the power of spirituality and Buddha’s teaching, resilient lifestyles, and adaptive living; b) help develop creative short courses for multi-disciplinary teaching in educational institutions worldwide in collaboration with Lumbini Buddha University and other relevant partners in Nepal; c) help build local and regional intellectual and cultural teaching and learning capacity by improving professional collaborations to promote nature based and Buddhist value-based lifestyles by connecting Lumbini to Nepal’s rich nature; d) promote research avenues to provide policy relevant knowledge that is creative, innovative, as well as practical and locally viable; and e) connect local research and outreach work with academic and cultural partners in South Korea so as to open up Lumbini based Buddhist heritage and Nepal’s Karnali River basin’s unique natural landscape to Korean scholars and students to promote sustainable lifestyles leading to human living in harmony with nature.Keywords: triple planetary crisis, spirituality, sustainable lifestyles, living in harmony with nature, resilience
Procedia PDF Downloads 382363 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1302362 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network
Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba
Abstract:
Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network
Procedia PDF Downloads 2372361 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation
Authors: Stephen Kirkup
Abstract:
This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education
Procedia PDF Downloads 1642360 The Challenge of Teaching French as a Foreign Language in a Multilingual Community
Authors: Carol C. Opara, Olukemi E. Adetuyi-Olu-Francis
Abstract:
The teaching of French language, like every other language, has its numerous challenges. A multilingual community, however, is a linguistic environment housing diverse languages, each with its peculiarity, both pros, and cones. A foreign language will have to strive hard for survival in an environment where various indigenous languages, as well as an established official language, exist. This study examined the challenges and prospects of the teaching of French as a foreign language in a multilingual community. A 22-item questionnaire was used to elicit information from 40 Nigerian Secondary school teachers of French. One of the findings of this study showed that the teachers of the French language are not motivated. Also, the linguistic environment is not favourable for the teaching and learning of French language in Nigeria. One of the recommendations was that training and re-training of teachers of French should be of utmost importance to the Nigerian Federal Ministry of Education.Keywords: challenges, french as foreign language, multilingual community, teaching
Procedia PDF Downloads 223