Search results for: teacher learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7787

Search results for: teacher learning

2627 Optimization of Bills Assignment to Different Skill-Levels of Data Entry Operators in a Business Process Outsourcing Industry

Authors: M. S. Maglasang, S. O. Palacio, L. P. Ogdoc

Abstract:

Business Process Outsourcing has been one of the fastest growing and emerging industry in the Philippines today. Unlike most of the contact service centers, more popularly known as "call centers", The BPO Industry’s primary outsourced service is performing audits of the global clients' logistics. As a service industry, manpower is considered as the most important yet the most expensive resource in the company. Because of this, there is a need to maximize the human resources so people are effectively and efficiently utilized. The main purpose of the study is to optimize the current manpower resources through effective distribution and assignment of different types of bills to the different skill-level of data entry operators. The assignment model parameters include the average observed time matrix gathered from through time study, which incorporates the learning curve concept. Subsequently, a simulation model was made to duplicate the arrival rate of demand which includes the different batches and types of bill per day. Next, a mathematical linear programming model was formulated. Its objective is to minimize direct labor cost per bill by allocating the different types of bills to the different skill-levels of operators. Finally, a hypothesis test was done to validate the model, comparing the actual and simulated results. The analysis of results revealed that the there’s low utilization of effective capacity because of its failure to determine the product-mix, skill-mix, and simulated demand as model parameters. Moreover, failure to consider the effects of learning curve leads to overestimation of labor needs. From 107 current number of operators, the proposed model gives a result of 79 operators. This results to an increase of utilization of effective capacity to 14.94%. It is recommended that the excess 28 operators would be reallocated to the other areas of the department. Finally, a manpower capacity planning model is also recommended in support to management’s decisions on what to do when the current capacity would reach its limit with the expected increasing demand.

Keywords: optimization modelling, linear programming, simulation, time and motion study, capacity planning

Procedia PDF Downloads 520
2626 Age and Second Language Acquisition: A Case Study from Maldives

Authors: Aaidha Hammad

Abstract:

The age a child to be exposed to a second language is a controversial issue in communities such as the Maldives where English is taught as a second language. It has been observed that different stakeholders have different viewpoints towards the issue. Some believe that the earlier children are exposed to a second language, the better they learn, while others disagree with the notion. Hence, this case study investigates whether children learn a second language better when they are exposed at an earlier age or not. The spoken and written data collected confirm that earlier exposure helps in mastering the sound pattern and speaking fluency with more native-like accent, while a later age is better for learning more abstract and concrete aspects such as grammar and syntactic rules.

Keywords: age, fluency, second language acquisition, development of language skills

Procedia PDF Downloads 426
2625 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning

Authors: Ezil Sam Leni, Shalen S.

Abstract:

Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.

Keywords: federated Learning, pothole detection, distributed framework, federated averaging

Procedia PDF Downloads 109
2624 BERT-Based Chinese Coreference Resolution

Authors: Li Xiaoge, Wang Chaodong

Abstract:

We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.

Keywords: BERT, coreference resolution, deep learning, nature language processing

Procedia PDF Downloads 218
2623 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset

Authors: Essam Al Daoud

Abstract:

Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.

Keywords: gradient boosting, XGBoost, LightGBM, CatBoost, home credit

Procedia PDF Downloads 173
2622 Comparison of Cognitive Load in Virtual Reality and Conventional Simulation-Based Training: A Randomized Controlled Trial

Authors: Michael Wagner, Philipp Steinbauer, Andrea Katharina Lietz, Alexander Hoffelner, Johannes Fessler

Abstract:

Background: Cardiopulmonary resuscitations are stressful situations in which vital decisions must be made within seconds. Lack of routine due to the infrequency of pediatric emergencies can lead to serious medical and communication errors. Virtual reality can fundamentally change the way simulation training is conducted in the future. It appears to be a useful learning tool for technical and non-technical skills. It is important to investigate the use of VR in providing a strong sense of presence within simulations. Methods: In this randomized study, we will enroll doctors and medical students from the Medical University of Vienna, who will receive learning material regarding the resuscitation of a one-year-old child. The study will be conducted in three phases. In the first phase, 20 physicians and 20 medical students from the Medical University of Vienna will be included. They will perform simulation-based training with a standardized scenario of a critically ill child with a hypovolemic shock. The main goal of this phase is to establish a baseline for the following two phases to generate comparative values regarding cognitive load and stress. In phase 2 and 3, the same participants will perform the same scenario in a VR setting. In both settings, on three set points of progression, one of three predefined events is triggered. For each event, three different stress levels (easy, medium, difficult) will be defined. Stress and cognitive load will be analyzed using the NASA Task Load Index, eye-tracking parameters, and heart rate. Subsequently, these values will be compared between VR training and traditional simulation-based training. Hypothesis: We hypothesize that the VR training and the traditional training groups will not differ in physiological response (cognitive load, heart rate, and heart rate variability). We further assume that virtual reality training can be used as cost-efficient additional training. Objectives: The aim of this study is to measure cognitive load and stress level during a real-life simulation training and compare it with VR training in order to show that VR training evokes the same physiological response and cognitive load as real-life simulation training.

Keywords: virtual reality, cognitive load, simulation, adaptive virtual reality training

Procedia PDF Downloads 116
2621 Concept-Based Assessment in Curriculum

Authors: Nandu C. Nair, Kamal Bijlani

Abstract:

This paper proposes a concept-based assessment to track the performance of the students. The idea behind this approach is to map the exam questions with the concepts learned in the course. So at the end of the course, each student will know how well he learned each concept. This system will give a self assessment for the students as well as instructor. By analyzing the score of all students, instructor can decide some concepts need to be teaching again or not. The system’s efficiency is proved using three courses from M-tech program in E-Learning technologies and results show that the concept-wise assessment improved the score in final exam of majority students on various courses.

Keywords: assessment, concept, examination, question, score

Procedia PDF Downloads 470
2620 Understanding Knowledge, Skills and Competency Needs in Digital Health for Current and Future Health Workforce

Authors: Sisira Edirippulige

Abstract:

Background: Digital health education and training (DHET) is imperative for preparing current and future clinicians to work competently in digitally enabled environments. Despite rapid integration of digital health in modern health services, systematic education and training opportunities for health workers is still lacking. Objectives: This study aimed to investigate healthcare professionals’ perspectives and expectations regarding the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Methods: A qualitative study design with semi-structured individual interviews was employed. A purposive sample method was adopted to collect relevant information from the health workers. Inductive thematic analysis was used to analyse data. Interviews were audio-recorded and transcribed verbatim. Consolidated Criteria for Reporting Qualitative Research (COREQ) was followed when we reported this study. Results: Two themes emerged while analysing the data: (1) what to teach in DHET and (2) how to teach DHET. Overall, healthcare professionals agreed that DHET is important for preparing current and future clinicians for working competently in digitally enabled environments. Knowledge relating to what is digital health, types of digital health, use of technology and human factors in digital health were considered as important to be taught in DHET. Skills relating to digital health consultations, clinical information system management and remote monitoring were considered important to be taught. Blended learning which combined e-learning and classroom-based teaching, simulation sessions and clinical rotations were suggested by healthcare professionals as optimal approaches to deliver the above-mentioned content. Conclusions: This study is the first of its kind to investigate health professionals’ perspectives and expectations relating to the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Healthcare workers are keen to acquire relevant knowledge, skills and competencies related to digital health. Different modes of education delivery is of interest to fit in with busy schedule of health workers.

Keywords: digital health, telehealth, telemedicine, education, curriculum

Procedia PDF Downloads 149
2619 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 79
2618 The Importance of Student Feedback in Development of Virtual Engineering Laboratories

Authors: A. A. Altalbe, N. W Bergmann

Abstract:

There has been significant recent interest in on-line learning, as well as considerable work on developing technologies for virtual laboratories for engineering students. After reviewing the state-of-the-art of virtual laboratories, this paper steps back from the technology issues to look in more detail at the pedagogical issues surrounding virtual laboratories, and examines the role of gathering student feedback in the development of such laboratories. The main contribution of the paper is a set of student surveys before and after a prototype deployment of a simulation laboratory tool, and the resulting analysis which leads to some tentative guidelines for the design of virtual engineering laboratories.

Keywords: engineering education, elearning, electrical engineering, virtual laboratories

Procedia PDF Downloads 360
2617 Snapchat’s Scanning Feature

Authors: Reham Banwair, Lana Alshehri, Sara Hadrawi

Abstract:

The purpose of this project is to identify user satisfaction with the AI functions on Snapchat, in order to generate improvement proposals that allow its development within the app. To achieve this, a qualitative analysis was carried out through interviews to people who usually use the application, revealing their satisfaction or dissatisfaction with the usefulness of the AI. In addition, the background of the company and its introduction in these algorithms were analyzed. Furthermore, the characteristics of the three main functions of AI were explained: identify songs, solve mathematical problems, and recognize plants. As a result, it was obtained that 50% still do not know the characteristics of AI, 50% still believe song recognition is not always correct, 41.7% believe that math problems are usually accurate and 91.7% believes the plant detection tool is working properly.

Keywords: artificial intelligence, scanning, Snapchat, machine learning

Procedia PDF Downloads 135
2616 Experiences and Challenges of Menstruation Among Rural Schoolgirls in Ghana: A Case of Nadowli-Kaleo District in the Upper West Region of Ghana

Authors: Rosemond Mbii

Abstract:

Menstruation is a critical topic. However normal menstruation is, it has become a determinant in the education of young women today. The research focuses on Breaking the silence and accessing menstrual hygiene management's challenges and experiences among rural schoolgirls in Ghana. The study's goal was to examine the menstrual hygiene practices of female students. Participants described their menstrual hygiene practices, their problems, and how they coped with their menstrual symptoms. The research used a qualitative technique through group interviews, personal interviews, and open-ended questionnaires since it is easier to understand a phenomenon from the subject's viewpoint. Sen's capacities approach and Feminist Political Ecology (FPE) were used to analyze the data. Menstruation was known to girls even before their menarche. A mother or grandmother, friends, and teachers were the primary sources of menstrual knowledge. The study also found that most girls use sanitary products made of fabrics, pads, and cotton during menstruation. Among the difficulties the girls faced, the study found were emotional upset, physical discomfort (cramps in the stomach, fatigue), embarrassment, and inadequate sanitation hygiene facilities. The girls wore many garments to avoid leaks; checked their skirts continuously, went to the bathroom with their friends to act as spics while they changed; sat differently on the chairs, and took medicine to reduce period discomfort. Introduction of a health care teacher who supplies sanitary products and medications to girls during school time. Euphemisms as a form of communication amongst girls were all coping mechanisms girls and the school developed. Another finding was that some girls continued to go to school even while having their periods, while others did not. Discomfort and menstruation cramps hampered class participation. In addition, the study revealed insufficient sanitation and hygiene for females to change sanitary products in private and manage menstrual hygiene comfortably.

Keywords: MHM (menstrual hygiene management), rural area, sanitation, menstruation, water, schoolgirl, rural area, sanitation, menstruation, water

Procedia PDF Downloads 115
2615 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 88
2614 Why Do We Need Hierachical Linear Models?

Authors: Mustafa Aydın, Ali Murat Sunbul

Abstract:

Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes.

Keywords: hierarchical linear modeling, nested data, hierarchical structure, data structure

Procedia PDF Downloads 652
2613 Increasing Student Engagement in Online Educational Leadership Courses

Authors: Mark Deschaine, David Whale

Abstract:

Utilization of online instruction continues to increase at universities, placing more emphasis on the exploration of issues related to adult graduate student engagement. This reflective case study reviews non-traditional student engagement in online courses. The goals of the study are to enhance student focus, attention and interaction. Findings suggest that interactivity seemed to be a key in keeping students involved and achieving, with specific activities routinely favored by students. It is recommended that time spent engaging students is worthwhile and results in greater course satisfaction and academic effort.

Keywords: online learning, student achievement, student engagement, technology

Procedia PDF Downloads 354
2612 Educase–Intelligent System for Pedagogical Advising Using Case-Based Reasoning

Authors: Elionai Moura, José A. Cunha, César Analide

Abstract:

This work introduces a proposal scheme for an Intelligent System applied to Pedagogical Advising using Case-Based Reasoning, to find consolidated solutions before used for the new problems, making easier the task of advising students to the pedagogical staff. We do intend, through this work, introduce the motivation behind the choices for this system structure, justifying the development of an incremental and smart web system who learns bests solutions for new cases when it’s used, showing technics and technology.

Keywords: case-based reasoning, pedagogical advising, educational data-mining (EDM), machine learning

Procedia PDF Downloads 421
2611 Gender, Sexual Diversity and Professional Practice Learning: Promoting the Equality of University Students

Authors: Caroline Bradbury-Jones, Maria Clark, Eleanor Molloy, Nicki Ward

Abstract:

Background: Significant developments in the protection of Lesbian, Gay, Bisexual, Transgender and Queer (LGBTQ) rights culminated in their inclusion in the Equality Act 2010. This provides legal protection against discrimination including the Public Sector Equality Duty requiring public bodies to consider all individuals when carrying out their day-to-day work. In the UK, whilst the Higher Education sector has made some commitment to eliminating discrimination and addressing LGBTQ inclusivity, there are two particular problems specifically affecting students on professional programmes: -All students will come into contact with LGBTQ patients/clients/students and need to be equipped to respond appropriately to their diverse needs but evidence suggests that this is not always the case. -Many LGBTQ students have specific concerns on professional placements; often ‘going back in the closet’ or feeling uncertain how to respond to questions about their personal lives and being reticent to challenge discrimination against LGBTQ patients/clients/students for fear of reprisal. Study aim: To investigate how best to prepare all students to deal with the issue of gender and sexual diversity and to support LGBTQ students in negotiating (non) disclosure in practice placements. Methods: This multi-method study was conducted in 2017 in the UK. It comprised a student survey, focus group interview with students and a national benchmarking exercise. Findings: Preliminary findings are that there is considerable variation across professional programmes regarding the preparation of students to respond to LGBTQ issues. Similarly, there is considerable difference between the level of preparedness experienced by students irrespective of whether they identify as LGBTQ. Discussion: Nationally there are a number of ‘best practice’ examples that we share in this presentation. These contain important details and guidance about how to better prepare university students for professional practice, and to contribute to eliminating discrimination and addressing LGBTQ inclusivity. Conclusions: The presentation will appeal to delegates who are interested in the equality agenda regarding LGBTQ people. The study findings will be discussed and debated to explore their impact on higher education and learning and to identify ways to integrate best practice into professional curricula across the UK and beyond.

Keywords: diversity, equality, practice, sexuality, students, university

Procedia PDF Downloads 185
2610 Tourist Emotion, Creative Experience and Behavioral Intention in Creative Tourism

Authors: Yi-Ju Lee

Abstract:

This study identified the hypothesized relationships among tourist emotion, creative experience, and behavioral intention of handmade ancient candy in Tainan, Taiwan. A face-to-face questionnaire survey was administered in Anping, Tainan. The result also revealed significant positive relationships between emotion, creative experience and behavioral intention in handmade activities. This paper provides additional suggestions for enhancing behavioral intention and guidance regarding creative tourism.

Keywords: creative tourism, sense of achievement, unique learning, interaction with instructors

Procedia PDF Downloads 332
2609 Relevant LMA Features for Human Motion Recognition

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.

Keywords: discriminative LMA features, features reduction, human motion recognition, random forest

Procedia PDF Downloads 195
2608 Assessing the Impact of High Fidelity Human Patient Simulation on Teamwork among Nursing, Medicine and Pharmacy Undergraduate Students

Authors: S. MacDonald, A. Manuel, R. Law, N. Bandruak, A. Dubrowski, V. Curran, J. Smith-Young, K. Simmons, A. Warren

Abstract:

High fidelity human patient simulation has been used for many years by health sciences education programs to foster critical thinking, engage learners, improve confidence, improve communication, and enhance psychomotor skills. Unfortunately, there is a paucity of research on the use of high fidelity human patient simulation to foster teamwork among nursing, medicine and pharmacy undergraduate students. This study compared the impact of high fidelity and low fidelity simulation education on teamwork among nursing, medicine and pharmacy students. For the purpose of this study, two innovative teaching scenarios were developed based on the care of an adult patient experiencing acute anaphylaxis: one high fidelity using a human patient simulator and one low fidelity using case based discussions. A within subjects, pretest-posttest, repeated measures design was used with two-treatment levels and random assignment of individual subjects to teams of two or more professions. A convenience sample of twenty-four (n=24) undergraduate students participated, including: nursing (n=11), medicine (n=9), and pharmacy (n=4). The Interprofessional Teamwork Questionnaire was used to assess for changes in students’ perception of their functionality within the team, importance of interprofessional collaboration, comprehension of roles, and confidence in communication and collaboration. Student satisfaction was also assessed. Students reported significant improvements in their understanding of the importance of interprofessional teamwork and of the roles of nursing and medicine on the team after participation in both the high fidelity and the low fidelity simulation. However, only participants in the high fidelity simulation reported a significant improvement in their ability to function effectively as a member of the team. All students reported that both simulations were a meaningful learning experience and all students would recommend both experiences to other students. These findings suggest there is merit in both high fidelity and low fidelity simulation as a teaching and learning approach to foster teamwork among undergraduate nursing, medicine and pharmacy students. However, participation in high fidelity simulation may provide a more realistic opportunity to practice and function as an effective member of the interprofessional health care team.

Keywords: acute anaphylaxis, high fidelity human patient simulation, low fidelity simulation, interprofessional education

Procedia PDF Downloads 232
2607 Basic Education Curriculum in South- South Nigeria: Challenges and Opportunities of Quality Contents in the Second Language Learning

Authors: Catherine Alex Agbor

Abstract:

The modern Nigerian society is dynamic, divided in zones based on economic, political and educational resources often shared across the zones. The Six Geopolitical Zones in Nigeria is a major division in modern Nigeria, created during the regime of president Ibrahim Badamasi Babangida. They are North Central, North East, North West, South East, South South and South West. However, the zone used in this study is known as former South-Eastern State of Akwa-Ibom State and Cross-River State; former Rivers State of Bayelsa State and Rivers State; and former Mid-Western Region, Nigeria of Delta State and Edo State. Many reforms have taken place overtime, particularly in the education sector. Education is constantly presenting new ideas and innovative approaches which act to facilitate the rapid exchange of knowledge and provide quality basic education for learners. The Federal Government of Nigeria in accordance with its National Council on Education directed the Nigerian Educational Research and Development Council to restructure its basic education curriculum with the hope to enable the nation meet national and global developmental goals. One of the goals of the 9-year Basic Education Programme is developing in the entire citizenry a strong consciousness for education and a strong commitment to its vigorous promotion. Another is ensuring the acquisition of appropriate levels of literacy, numeracy, manipulative, communicative and life-skills as well as the ethical, moral and civic values for laying a solid foundation for lifelong learning. Therefore, this article at the introductory stage is aimed to describe some key issues in Nigeria’s experience in the basic education curriculum. In this study, particular attention is paid to this very recent educational policy of the Nigerian government known as Universal Basic Education, its challenges and what can be done to make the policy achieve its desired objectives. It progresses to analyze modern requirements for second language teaching; and presents the challenges of second language teaching in Nigeria. Finally, it reports a study which investigated special efforts for appropriate achievement of quality education in language classroom in the south-south zone of Nigeria. One fundamental research question was posed on what educational practices can contribute to current understanding of the structure of language curriculum. More explicitly, the study was designed to analyze the extent to which quality content contributes to current understanding of the structure of school curriculum in the zone. Otherwise stated, it investigated how student-centred educational practices impact on their learning of French language. One hundred and eighty (180) participants (teachers) were purposefully sampled for the study. Qualitative technique was used to elicit information from participants. The qualitative method used was Focus Group Discussion (FGD). Participants were divided into six groups comprising of 30 teachers from each zone. Group discussions were based mainly on curriculum contents and practices. Information from participants revealed that the curriculum content, among others is inadequate and should be re-examined. Recommendations were proffered as a panacea to concrete implementation of the basic education in Nigeria.

Keywords: basic education, quality contents, second language, south-south states

Procedia PDF Downloads 243
2606 Socio-cultural Dimensions Inhibiting Female Condom Use by the Female Students: Experiences from a University in Rural South Africa

Authors: Christina Tafadzwa

Abstract:

Global HIV and AIDS trends show that Sub-Saharan Africa is the hardest-hit region, and women are disproportionately affected and infected by HIV. The trend is conspicuous in South Africa, where adolescent girls and young women (AGYW), female university students included, bear the burden of HIV infection. Although the female condom (FC) is the only female-oriented HIV and AIDS technology that provides dual protection against unwanted pregnancy and HIV, its uptake and use remain erratic, especially among the youth and young women in institutions of higher learning. This paper explores empirical evidence from the University of Venda (UniVen), which is in the rural areas of Limpopo Province in South Africa, and also among higher learning institutions experiencing low uptake and use of the FC. A phenomenological approach consisting of in-depth interviews was utilized to collect data from a total of 20 female university students at UniVen who were purposively sampled based on their participation in HIV and AIDS dialogues and campaigns conducted on campus. The findings that were analysed thematically revealed that notions of rurality and sociocultural beliefs surrounding women's sexual and reproductive health are key structural factors that influence the low use and uptake of the FC at the rural university. The evidence thus far revealed that female students are discouraged from collecting or initiating FC because of cultural dictates or prescripts which place the responsibility to collect and initiate condom use on men. Hence the inference that UniVen female students' realities are compounded by notions of rurality and society's patriarchal nature that intersect and limit women's autonomy in matters of sex. Guided by the women empowerment theory, this paper argues that such practices take away UniVen female students' agency to decide on their sexual and reproductive health. The normalisation of socio-cultural and harmful gender practices is also a retrogression in the women's health agenda. The paper recommends a holistic approach that engages traditional and community leaders, particularly men, to unlearn and uproot harmful gender norms and patriarchal elements that hinder the promotion and use of the FC.

Keywords: female condom, UniVen, socio-cultural factors, female students, HIV and AIDS

Procedia PDF Downloads 89
2605 Serious Digital Video Game for Solving Algebraic Equations

Authors: Liliana O. Martínez, Juan E González, Manuel Ramírez-Aranda, Ana Cervantes-Herrera

Abstract:

A serious game category mobile application called Math Dominoes is presented. The main objective of this applications is to strengthen the teaching-learning process of solving algebraic equations and is based on the board game "Double 6" dominoes. Math Dominoes allows the practice of solving first, second-, and third-degree algebraic equations. This application is aimed to students who seek to strengthen their skills in solving algebraic equations in a dynamic, interactive, and fun way, to reduce the risk of failure in subsequent courses that require mastery of this algebraic tool.

Keywords: algebra, equations, dominoes, serious games

Procedia PDF Downloads 132
2604 The Consumer's Behavior of Bakery Products in Bangkok

Authors: Jiraporn Weenuttranon

Abstract:

The objectives of the consumer behavior of bakery products in Bangkok are to study consumer behavior of the bakery product, to study the essential factors that could possibly affect the consumer behavior and to study recommendations for the development of the bakery products. This research is a survey research. Populations are buyer’s bakery products in Bangkok. The probability sample size is 400. The research uses a questionnaire for self-learning by using information technology. The researcher created a reliability value at 0.71 levels of significance. The data analysis will be done by using the percentage, mean, and standard deviation and testing the hypotheses by using chi-square.

Keywords: consumer, behavior, bakery, standard deviation

Procedia PDF Downloads 482
2603 Identifying the Hidden Curriculum Components in the Nursing Education

Authors: Alice Khachian, Shoaleh Bigdeli, Azita Shoghie, Leili Borimnejad

Abstract:

Background and aim: The hidden curriculum is crucial in nursing education and can determine professionalism and professional competence. It has a significant effect on their moral performance in relation to patients. The present study was conducted with the aim of identifying the hidden curriculum components in the nursing and midwifery faculty. Methodology: The ethnographic study was conducted over two years using the Spradley method in one of the nursing schools located in Tehran. In this focused ethnographic research, the approach of Lincoln and Goba, i.e., transferability, confirmability, and dependability, was used. To increase the validity of the data, they were collected from different sources, such as participatory observation, formal and informal interviews, and document review. Two hundred days of participatory observation, fifty informal interviews, and fifteen formal interviews from the maximum opportunities and conditions available to obtain multiple and multilateral information added to the validity of the data. Due to the situation of COVID, some interviews were conducted virtually, and the activity of professors and students in the virtual space was also monitored. Findings: The components of the hidden curriculum of the faculty are: the atmosphere (physical environment, organizational structure, rules and regulations, hospital environment), the interaction between activists, and teaching-learning activities, which ultimately lead to “A disconnection between goals, speech, behavior, and result” had revealed. Conclusion: The mutual effects of the atmosphere and various actors and activities on the process of student development, since the students have the most contact with their peers first, which leads to the most learning, and secondly with the teachers. Clinicians who have close and person-to-person contact with students can have very important effects on students. Students who meet capable and satisfied professors on their way become interested in their field and hope for their future by following the mentor of these professors. On the other hand, weak and dissatisfied professors lead students to feel abandoned, and by forming a colony of peers with different backgrounds, they distort the personality of a group of students and move away from family values, which necessitates a change in some cultural practices at the faculty level.

Keywords: hidden curriculum, nursing education, ethnography, nursing

Procedia PDF Downloads 109
2602 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 50
2601 Preparing Japanese University Students for an Increasingly Diverse Workplace

Authors: Jane O`Halloran

Abstract:

Japanese university students have traditionally shown antipathy towards English due to a generally unsatisfactory language-learning experience at the secondary level with a focus on grammar and translation rather than communication. The situation has become urgent, however, due to the rapid decline in the Japanese population, which will present both difficulties and opportunities as employees will increasingly be forced to use English in the workplace. For university lecturers, the challenge is to overcome the students` apathy and convince them of the need for English in the increasingly diverse workplaces they will be entering. This article will illustrate how English teachers and content teachers at a private science university came together to address this quandary.

Keywords: student motivation, CLIL, globalization, demographics

Procedia PDF Downloads 104
2600 Alterations in Habitation and Architectural Education Due to the COVID-19 Pandemic: The Operation of the Architectural Studio as a Crossroad

Authors: Chrysi K. Nikoloutsou, Gianna Th. Siapati

Abstract:

The pandemic limitations have altered architectural education as the discourse shifted towards virtual studios and blended learning. In addition, lockdown conditions and remote working have affected habitation. Adaptability is now a key factor. The architectural studio needs to adjust to these new terms both in education and in inhabitation. This paper will investigate the operation of an architectural studio in relation to how one experiences their house due to the pandemic, based on a literature review and qualitative research methods (interviews & workshops with students). Zenetos’ prophetic ideas of ‘Electronic Urbanism’ and ‘tele-activities’ are now more present than ever.

Keywords: architectural education, pandemic, residential design, studio pedagogy

Procedia PDF Downloads 105
2599 Practical Experiences as Part of Project Management Course

Authors: H. Hussain, N. H. Mohamad

Abstract:

Practical experiences have been one of the successful criteria for the Project Management course for the art and design students. There are series of events that the students have to undergo as part of their practical exercises in the learning context for Project Management courses. These series have been divided into few mini programs that involved the whole individual in each group. Therefore, the events have been one of the bench marks for these students. Through the practical experience, the task that has been given to individual has been performed according to the needs of professional practice and ethics.

Keywords: practical experience, project management, art and design students, events, programs

Procedia PDF Downloads 557
2598 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder

Procedia PDF Downloads 290