Search results for: degree of operating leverage (DOL)
161 Mediating Role of 'Investment Recovery' and 'Competitiveness' on the Impact of Green Supply Chain Management Practices over Firm Performance: An Empirical Study Based on Textile Industry of Pakistan
Authors: Mehwish Jawaad
Abstract:
Purpose: The concept of GrSCM (Green Supply Chain Management) in the academic and research field is still thought to be in the development stage especially in Asian Emerging Economies. The purpose of this paper is to contribute significantly to the first wave of empirical investigation on GrSCM Practices and Firm Performance measures in Pakistan. The aim of this research is to develop a more holistic approach towards investigating the impact of Green Supply Chain Management Practices (Ecodesign, Internal Environmental Management systems, Green Distribution, Green Purchasing and Cooperation with Customers) on multiple dimensions of Firm Performance Measures (Economic Performance, Environmental Performance and Operational Performance) with a mediating role of Investment Recovery and Competitiveness. This paper also serves as an initiative to identify if the relationship between Investment Recovery and Firm Performance Measures is mediated by Competitiveness. Design/ Methodology/Approach: This study is based on survey Data collected from 272, ISO (14001) Certified Textile Firms Based in Lahore, Faisalabad, and Karachi which are involved in Spinning, Dyeing, Printing or Bleaching. A Theoretical model was developed incorporating the constructs representing Green Activities and Firm Performance Measures of a firm. The data was analyzed using Partial Least Square Structural Equation Modeling. Senior and Mid-level managers provided the data reflecting the degree to which their organizations deal with both internal and external stakeholders to improve the environmental sustainability of their supply chain. Findings: Of the 36 proposed Hypothesis, 20 are considered valid and significant. The statistics result reveal that GrSCM practices positively impact Environmental Performance followed by Economic and Operational Performance. Investment Recovery acts as a strong mediator between Intra organizational Green activities and performance outcomes. The relationship of Reverse Logistics influencing outcomes is significantly mediated by Competitiveness. The pressure originating from customers exert significant positive influence on the firm to adopt Green Practices consequently leading to higher outcomes. Research Contribution/Originality: Underpinning the Resource dependence theory and as a first wave of investigating the impact of Green Supply chain on performance outcomes in Pakistan, this study intends to make a prominent mark in the field of research. Investment and Competitiveness together are tested as a mediator for the first time in this arena. Managerial implications: Practitioner is provided with a framework for assessing the synergistic impact of GrSCM practices on performance. Upgradation of Accreditations and Audit Programs on regular basis are the need of the hour. Making the processes leaner with the sale of excess inventories and scrap helps the firm to work more efficiently and productively.Keywords: economic performance, environmental performance, green supply chain management practices, operational performance, sustainability, a textile sector of Pakistan
Procedia PDF Downloads 224160 Screening of Freezing Tolerance in Eucalyptus Genotypes (Eucalyptus spp.) Using Chlorophyll Fluorescence, Ionic Leakage, Proline Accumulation and Stomatal Density
Authors: S. Lahijanian, M. Mobli, B. Baninasab, N. Etemadi
Abstract:
Low temperature extremes are amongst the major stresses that adversely affect the plant growth and productivity. Cold stress causes oxidative stress, physiological, morphological and biochemical changes in plant cells. Generally, low temperatures similar to salinity and drought exert their negative effects mainly by disrupting the ionic and osmotic equilibrium of the plant cells. Changes in climatic condition leading to more frequent extreme conditions will require adapted crop species on a larger scale in order to sustain agricultural production. Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. Members of this genus dominate the tree flora of Australia. The eucalyptus genus contains more than 580 species and large number of cultivars, which are native to Australia. Large distribution and diversity of compatible eucalyptus cultivars reflect the fact of ecological flexibility of eucalyptus. Some eucalyptus cultivars can sustain hard environmental conditions like high and low temperature, salinity, high level of PH, drought, chilling and freezing which are intensively effective on crops with tropical and subtropical origin. In this study, we tried to evaluate freezing tolerance of 12 eucalyptus genotypes by means of four different morphological and physiological methods: Chlorophyll fluorescence, electrolyte leakage, proline and stomatal density. The studied cultivars include Eucalyptus camaldulensis, E. coccifera, E. darlympleana, E. erythrocorys, E. glaucescens, E. globulus, E. gunnii, E. macrocorpa, E. microtheca, E. rubida, E. tereticornis, and E. urnigera. Except for stomatal density recording, in other methods, plants were exposed to five gradual temperature drops: zero, -5, -10, -15 and -20 degree of centigrade and they remained in these temperatures for at least one hour. Experiment for measuring chlorophyll fluorescence showed that genotypes E. erythrocorys and E. camaldulensis were the most resistant genotypes and E. gunnii and E.coccifera were more sensitive than other genotypes to freezing stress effects. In electrolyte leakage experiment with regard to significant interaction between cultivar and temperature, genotypes E. erythrocorys and E.macrocorpa were shown to be the most tolerant genotypes and E. gunnii, E. urnigera, E. microtheca and E. tereticornis with the more ionic leakage percentage showed to be more sensitive to low temperatures. Results of Proline experiment approved that the most resistant genotype to freezing stress is E. erythrocorys. In the stomatal density experiment, the numbers of stomata under microscopic field were totally counted and the results showed that the E. erythrocorys and E. macrocorpa genotypes had the maximum and E. coccifera and E. darlympleana genotypes had minimum number of stomata under microscopic field (0.0605 mm2). In conclusion, E. erythrocorys identified as the most tolerant genotype; meanwhile E. gunnii classified as the most freezing susceptible genotype in this investigation. Further, remarkable correlation was not obtained between the stomatal density and other cold stress measures.Keywords: chlorophyll fluorescence, cold stress, ionic leakage, proline, stomatal density
Procedia PDF Downloads 265159 Investigations on the Application of Avalanche Simulations: A Survey Conducted among Avalanche Experts
Authors: Korbinian Schmidtner, Rudolf Sailer, Perry Bartelt, Wolfgang Fellin, Jan-Thomas Fischer, Matthias Granig
Abstract:
This study focuses on the evaluation of snow avalanche simulations, based on a survey that has been carried out among avalanche experts. In the last decades, the application of avalanche simulation tools has gained recognition within the realm of hazard management. Traditionally, avalanche runout models were used to predict extreme avalanche runout and prepare avalanche maps. This has changed rather dramatically with the application of numerical models. For safety regulations such as road safety simulation tools are now being coupled with real-time meteorological measurements to predict frequent avalanche hazard. That places new demands on model accuracy and requires the simulation of physical processes that previously could be ignored. These simulation tools are based on a deterministic description of the avalanche movement allowing to predict certain quantities (e.g. pressure, velocities, flow heights, runout lengths etc.) of the avalanche flow. Because of the highly variable regimes of the flowing snow, no uniform rheological law describing the motion of an avalanche is known. Therefore, analogies to fluid dynamical laws of other materials are stated. To transfer these constitutional laws to snow flows, certain assumptions and adjustments have to be imposed. Besides these limitations, there exist high uncertainties regarding the initial and boundary conditions. Further challenges arise when implementing the underlying flow model equations into an algorithm executable by a computer. This implementation is constrained by the choice of adequate numerical methods and their computational feasibility. Hence, the model development is compelled to introduce further simplifications and the related uncertainties. In the light of these issues many questions arise on avalanche simulations, on their assets and drawbacks, on potentials for improvements as well as their application in practice. To address these questions a survey among experts in the field of avalanche science (e.g. researchers, practitioners, engineers) from various countries has been conducted. In the questionnaire, special attention is drawn on the expert’s opinion regarding the influence of certain variables on the simulation result, their uncertainty and the reliability of the results. Furthermore, it was tested to which degree a simulation result influences the decision making for a hazard assessment. A discrepancy could be found between a large uncertainty of the simulation input parameters as compared to a relatively high reliability of the results. This contradiction can be explained taking into account how the experts employ the simulations. The credibility of the simulations is the result of a rather thoroughly simulation study, where different assumptions are tested, comparing the results of different flow models along with the use of supplemental data such as chronicles, field observation, silent witnesses i.a. which are regarded as essential for the hazard assessment and for sanctioning simulation results. As the importance of avalanche simulations grows within the hazard management along with their further development studies focusing on the modeling fashion could contribute to a better understanding how knowledge of the avalanche process can be gained by running simulations.Keywords: expert interview, hazard management, modeling, simulation, snow avalanche
Procedia PDF Downloads 326158 A Qualitative Study of Experienced Early Childhood Teachers Resolving Workplace Challenges with Character Strengths
Authors: Michael J. Haslip
Abstract:
Character strength application improves performance and well-being in adults across industries, but the potential impact of character strength training among early childhood educators is mostly unknown. To explore how character strengths are applied by early childhood educators at work, a qualitative study was completed alongside professional development provided to a group of in-service teachers of children ages 0-5 in Philadelphia, Pennsylvania, United States. Study participants (n=17) were all female. The majority of participants were non-white, in full-time lead or assistant teacher roles, had at least ten years of experience and a bachelor’s degree. Teachers were attending professional development weekly for 2 hours over a 10-week period on the topic of social and emotional learning and child guidance. Related to this training were modules and sessions on identifying a teacher’s character strength profile using the Values in Action classification of 24 strengths (e.g., humility, perseverance) that have a scientific basis. Teachers were then asked to apply their character strengths to help resolve current workplace challenges. This study identifies which character strengths the teachers reported using most frequently and the nature of the workplace challenges being resolved in this context. The study also reports how difficult these challenges were to the teachers and their success rate at resolving workplace challenges using a character strength application plan. The study also documents how teachers’ own use of character strengths relates to their modeling of these same traits (e.g., kindness, teamwork) for children, especially when the nature of the workplace challenge directly involves the children, such as when addressing issues of classroom management and behavior. Data were collected on action plans (reflective templates) which teachers wrote to explain the work challenge they were facing, the character strengths they used to address the challenge, their plan for applying strengths to the challenge, and subsequent results. Content analysis and thematic analysis were used to investigate the research questions using approaches that included classifying, connecting, describing, and interpreting data reported by educators. Findings reveal that teachers most frequently use kindness, leadership, fairness, hope, and love to address a range of workplace challenges, ranging from low to high difficulty, involving children, coworkers, parents, and for self-management. Teachers reported a 71% success rate at fully or mostly resolving workplace challenges using the action plan method introduced during professional development. Teachers matched character strengths to challenges in different ways, with certain strengths being used mostly when the challenge involved children (love, forgiveness), others mostly with adults (bravery, teamwork), and others universally (leadership, kindness). Furthermore, teacher’s application of character strengths at work involved directly modeling character for children in 31% of reported cases. The application of character strengths among early childhood educators may play a significant role in improving teacher well-being, reducing job stress, and improving efforts to model character for young children.Keywords: character strengths, positive psychology, professional development, social-emotional learning
Procedia PDF Downloads 105157 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes
Authors: Madushani Rodrigo, Banuka Athuraliya
Abstract:
In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16
Procedia PDF Downloads 119156 The Effect of Rheological Properties and Spun/Meltblown Fiber Characteristics on “Hotmelt Bleed through” Behavior in High Speed Textile Backsheet Lamination Process
Authors: Kinyas Aydin, Fatih Erguney, Tolga Ceper, Serap Ozay, Ipar N. Uzun, Sebnem Kemaloglu Dogan, Deniz Tunc
Abstract:
In order to meet high growth rates in baby diaper industry worldwide, the high-speed textile backsheet lamination lines have recently been introduced to the market for non-woven/film lamination applications. It is a process where two substrates are bonded to each other via hotmelt adhesive (HMA). Nonwoven (NW) lamination system basically consists of 4 components; polypropylene (PP) nonwoven, polyethylene (PE) film, HMA and applicator system. Each component has a substantial effect on the process efficiency of continuous line and final product properties. However, for a precise subject cover, we will be addressing only the main challenges and possible solutions in this paper. The NW is often produced by spunbond method (SSS or SMS configuration) and has a 10-12 gsm (g/m²) basis weight. The NW rolls can have a width and length up to 2.060 mm and 30.000 linear meters, respectively. The PE film is the 2ⁿᵈ component in TBS lamination, which is usually a 12-14 gsm blown or cast breathable film. HMA is a thermoplastic glue (mostly rubber based) that can be applied in a large range of viscosity ranges. The main HMA application technology in TBS lamination is the slot die application in which HMA is spread on the top of the NW along the whole width at high temperatures in the melt form. Then, the NW is passed over chiller rolls with a certain open time depending on the line speed. HMAs are applied at certain levels in order to provide a proper de-lamination strength in cross and machine directions to the entire structure. Current TBS lamination line speed and width can be as high as 800 m/min and 2100 mm, respectively. They also feature an automated web control tension system for winders and unwinders. In order to run a continuous trouble-free mass production campaign on the fast industrial TBS lines, rheological properties of HMAs and micro-properties of NWs can have adverse effects on the line efficiency and continuity. NW fiber orientation and fineness, as well as spun/melt blown composition fabric micro-level properties, are the significant factors to affect the degree of “HMA bleed through.” As a result of this problem, frequent line stops are observed to clean the glue that is being accumulated on the chiller rolls, which significantly reduces the line efficiency. HMA rheology is also important and to eliminate any bleed through the problem; one should have a good understanding of rheology driven potential complications. So, the applied viscosity/temperature should be optimized in accordance with the line speed, line width, NW characteristics and the required open time for a given HMA formulation. In this study, we will show practical aspects of potential preventative actions to minimize the HMA bleed through the problem, which may stem from both HMA rheological properties and NW spun melt/melt blown fiber characteristics.Keywords: breathable, hotmelt, nonwoven, textile backsheet lamination, spun/melt blown
Procedia PDF Downloads 359155 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander
Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas
Abstract:
Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link
Procedia PDF Downloads 351154 Deterioration Prediction of Pavement Load Bearing Capacity from FWD Data
Authors: Kotaro Sasai, Daijiro Mizutani, Kiyoyuki Kaito
Abstract:
Expressways in Japan have been built in an accelerating manner since the 1960s with the aid of rapid economic growth. About 40 percent in length of expressways in Japan is now 30 years and older and has become superannuated. Time-related deterioration has therefore reached to a degree that administrators, from a standpoint of operation and maintenance, are forced to take prompt measures on a large scale aiming at repairing inner damage deep in pavements. These measures have already been performed for bridge management in Japan and are also expected to be embodied for pavement management. Thus, planning methods for the measures are increasingly demanded. Deterioration of layers around road surface such as surface course and binder course is brought about at the early stages of whole pavement deterioration process, around 10 to 30 years after construction. These layers have been repaired primarily because inner damage usually becomes significant after outer damage, and because surveys for measuring inner damage such as Falling Weight Deflectometer (FWD) survey and open-cut survey are costly and time-consuming process, which has made it difficult for administrators to focus on inner damage as much as they have been supposed to. As expressways today have serious time-related deterioration within them deriving from the long time span since they started to be used, it is obvious the idea of repairing layers deep in pavements such as base course and subgrade must be taken into consideration when planning maintenance on a large scale. This sort of maintenance requires precisely predicting degrees of deterioration as well as grasping the present situations of pavements. Methods for predicting deterioration are determined to be either mechanical or statistical. While few mechanical models have been presented, as far as the authors know of, previous studies have presented statistical methods for predicting deterioration in pavements. One describes deterioration process by estimating Markov deterioration hazard model, while another study illustrates it by estimating Proportional deterioration hazard model. Both of the studies analyze deflection data obtained from FWD surveys and present statistical methods for predicting deterioration process of layers around road surface. However, layers of base course and subgrade remain unanalyzed. In this study, data collected from FWD surveys are analyzed to predict deterioration process of layers deep in pavements in addition to surface layers by a means of estimating a deterioration hazard model using continuous indexes. This model can prevent the loss of information of data when setting rating categories in Markov deterioration hazard model when evaluating degrees of deterioration in roadbeds and subgrades. As a result of portraying continuous indexes, the model can predict deterioration in each layer of pavements and evaluate it quantitatively. Additionally, as the model can also depict probability distribution of the indexes at an arbitrary point and establish a risk control level arbitrarily, it is expected that this study will provide knowledge like life cycle cost and informative content during decision making process referring to where to do maintenance on as well as when.Keywords: deterioration hazard model, falling weight deflectometer, inner damage, load bearing capacity, pavement
Procedia PDF Downloads 390153 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors
Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara
Abstract:
Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement
Procedia PDF Downloads 121152 Exploring the Influence of Maternal Self-Discrepancy on Psychological Well-Being: A Study of Middle-Aged Japanese Mothers
Authors: Chooi Fong Lee
Abstract:
Maternal psychological well-being has been investigated from various aspects, such as social support, employment status. However, a perspective from self-discrepancy theory has not been employed. Moreover, most were focused on young mothers. Less is understanding the middle-aged mother’s psychological well-being. This research examined the influence of maternal self-discrepancy between actual and ideal self on maternal role achievement, state anxiety, trait anxiety, and subjective well-being among Japanese middle-aged mothers across their employment status. A pilot study with 20 Japanese mother participants (aged 40-55, 9 regular-employed, 8 non-regular-employed, and 3 homemakers) was conducted to assess the viability of survey questionnaires (Maternal Role Achievement Scale, State-Trait Anxiety Inventory, Subjective Well-being Scale, and Self-report questionnaire). The self-report questionnaire prompted participants to list up to 3 ideal selves they aspired to be and rate the extent to which their actual selves deviated from their ideal selves on a 7-point scale (1= not at all; 4 = medium; 7 = extremely). Self-discrepancy scores were calculated by subtracting participants’ degree ratings from a 7-point scale, summing them up, and then dividing the total by 3. The final sample consisted of 241 participants, 97 regular-employed, 87 non-regular employed, and 57 homemaker mothers. We ensured participants were randomly selected to mitigate bias. The results show that regular-employed mothers tend to exhibit lower self-discrepancy scores compared to non-regular employed and homemaker mothers. Moreover, the discrepancy between actual and ideal self negatively correlated with maternal role achievement, state anxiety, and subjective well-being, while positively correlated with trait anxiety. Trait anxiety arises when one feels they did not meet their ideal self, as evidenced by higher levels in homemaker mothers, who experience lower state anxiety. Conversely, regular-employed mothers exhibit higher state anxiety but lower trait anxiety, suggesting satisfaction in their professional pursuits despite balancing work and family responsibilities. Full-time maternal roles contribute to lower state anxiety but higher trait anxiety among homemaker mothers due to a lack of personal identity achievement. Non-regular employed mothers show similarities to homemaker mothers. In self-reports, regular-employed mothers highlight support and devotion to their children’s development, while non-regular-employed mothers seek life fulfillment through part-time work alongside child-rearing duties. Homemaker mothers emphasize qualities like sociability, and communication skills, potentially influencing their self-discrepancy scores. Furthermore, the hierarchical multiple regression analysis revealed that the discrepancy between actual and ideal self significantly predicts subjective well-being. In conclusion, the findings offer valuable insights into the impact of maternal self-discrepancy on psychological well-being among middle-aged Japanese mothers across different employment statuses. Understanding these dynamics becomes crucial as contemporary women increasingly pursue higher education and depart from traditional motherhood norms. Working toward one ideal self might contribute to a mother psychological well-being. Acknowledgment: This project was made possible with funding support from the Japan ICU Foundation.Keywords: maternal employment, maternal role, self-discrepancy, state-trait anxiety, subjective well-being
Procedia PDF Downloads 62151 Logic of Appearance vs Explanatory Logic: A Systemic Functional Linguistics Approach to the Evolution of Communicative Strategies in the European Union Institutional Discourse
Authors: Antonio Piga
Abstract:
The issue of European cultural identity has become a prominent topic of discussion among political actors in the wake of the unsuccessful referenda held in France and the Netherlands in May and June 2006. The „period of reflection‟ announced by the European Council at the conclusion of June 2006 has provided an opportunity for the implementation of several initiatives and programmes designed to „bridge the gap‟ between the EU institutions and its citizens. Specific programmes were designed with the objective of enhancing the European Commission‟s external communication of its activities. Subsequently, further plans for democracy, debate, and dialogue were devised with the objective of fostering open and extensive discourse between EU institutions and citizens. Further documentation on communication policy emphasised the necessity of developing linguistic techniques to re-engage disenchanted or uninformed citizens with the European project. It was observed that the European Union is perceived as a „faceless‟ entity, which is attributed to the absence of a distinct public identity vis-à-vis its institutions. This contribution presents an analysis of a collection of informative publications regarding the European Union, entitled “Europe on the Move”. This collection of booklets provides comprehensive information about the European Union, including its historical origins, core values, and historical development, as well as its achievements, strategic objectives, policies, and operational procedures. The theoretical framework adopted for the longitudinal linguistic analysis of EU discourse is that of Systemic Functional Linguistics (SFL). In more detail, this study considers two basic systems of relations between clauses: firstly, the degree of interdependency (or taxis) and secondly, the logico-semantic relation of expansion. The former refers to the structural markers of grammatical relations between clauses within sentences, namely paratactic, hypotactic and embedded relations. The latter pertains to various logicosemantic relationships existing between the primary and secondary members of the clause nexus. These relationships include how the secondary clause expands the primary clause, which may be achieved by (a) elaborating it, (b) extending it or (c) enhancing it. This study examines the impact of the European Commission‟s post-referendum communication methods on the portrayal of Europe, its role in facilitating the EU institutional process, and its articulation of a specific EU identity linked to distinct values. The research reveals that the language employed by the EU is evidently grounded in an explanatory logic, elucidating the rationale behind their institutionalised acts. Nevertheless, the minimal use of hypotaxis in the post-referendum booklets, coupled with the inconsistent yet increasing ratio of parataxis to hypotaxis, may suggest a potential shift towards a logic of appearance, characterised by a predominant reliance on coordination and additive, and elaborative logico-semantic relations.Keywords: systemic functional linguistics, logic of appearance, explanatory logic, interdependency, logico-semantic relation
Procedia PDF Downloads 8150 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery
Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal
Abstract:
Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT
Procedia PDF Downloads 231149 Ragging and Sludging Measurement in Membrane Bioreactors
Authors: Pompilia Buzatu, Hazim Qiblawey, Albert Odai, Jana Jamaleddin, Mustafa Nasser, Simon J. Judd
Abstract:
Membrane bioreactor (MBR) technology is challenged by the tendency for the membrane permeability to decrease due to ‘clogging’. Clogging includes ‘sludging’, the filling of the membrane channels with sludge solids, and ‘ragging’, the aggregation of short filaments to form long rag-like particles. Both sludging and ragging demand manual intervention to clear out the solids, which is time-consuming, labour-intensive and potentially damaging to the membranes. These factors impact on costs more significantly than membrane surface fouling which, unlike clogging, is largely mitigated by the chemical clean. However, practical evaluation of MBR clogging has thus far been limited. This paper presents the results of recent work attempting to quantify sludging and clogging based on simple bench-scale tests. Results from a novel ragging simulation trial indicated that rags can be formed within 24-36 hours from dispersed < 5 mm-long filaments at concentrations of 5-10 mg/L under gently agitated conditions. Rag formation occurred for both a cotton wool standard and samples taken from an operating municipal MBR, with between 15% and 75% of the added fibrous material forming a single rag. The extent of rag formation depended both on the material type or origin – lint from laundering operations forming zero rags – and the filament length. Sludging rates were quantified using a bespoke parallel-channel test cell representing the membrane channels of an immersed flat sheet MBR. Sludge samples were provided from two local MBRs, one treating municipal and the other industrial effluent. Bulk sludge properties measured comprised mixed liquor suspended solids (MLSS) concentration, capillary suction time (CST), particle size, soluble COD (sCOD) and rheology (apparent viscosity μₐ vs shear rate γ). The fouling and sludging propensity of the sludge was determined using the test cell, ‘fouling’ being quantified as the pressure incline rate against flux via the flux step test (for which clogging was absent) and sludging by photographing the channel and processing the image to determine the ratio of the clogged to unclogged regions. A substantial difference in rheological and fouling behaviour was evident between the two sludge sources, the industrial sludge having a higher viscosity but less shear-thinning than the municipal. Fouling, as manifested by the pressure increase Δp/Δt, as a function of flux from classic flux-step experiments (where no clogging was evident), was more rapid for the industrial sludge. Across all samples of both sludge origins the expected trend of increased fouling propensity with increased CST and sCOD was demonstrated, whereas no correlation was observed between clogging rate and these parameters. The relative contribution of fouling and clogging was appraised by adjusting the clogging propensity via increasing the MLSS both with and without a commensurate increase in the COD. Results indicated that whereas for the municipal sludge the fouling propensity was affected by the increased sCOD, there was no associated increased in the sludging propensity (or cake formation). The clogging rate actually decreased on increasing the MLSS. Against this, for the industrial sludge the clogging rate dramatically increased with solids concentration despite a decrease in the soluble COD. From this was surmised that sludging did not relate to fouling.Keywords: clogging, membrane bioreactors, ragging, sludge
Procedia PDF Downloads 178148 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance
Authors: Yuguang Gao, Mingtao Deng
Abstract:
The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.Keywords: collaborative medical alliance, disease related group, patient referral, simulation
Procedia PDF Downloads 58147 Outdoor Thermal Comfort Strategies: The Case of Cool Facades
Authors: Noelia L. Alchapar, Cláudia C. Pezzuto, Erica N. Correa
Abstract:
Mitigating urban overheating is key to achieving the environmental and energy sustainability of cities. The management of the optical properties of the materials that make up the urban envelope -roofing, pavement, and facades- constitutes a profitable and effective tool to improve the urban microclimate and rehabilitate urban areas. Each material that makes up the urban envelope has a different capacity to reflect received solar radiation, which alters the fraction of solar radiation absorbed by the city. However, the paradigm of increasing solar reflectance in all areas of the city without distinguishing their relative position within the urban canyon can cause serious problems of overheating and discomfort among its inhabitants. The hypothesis that supports the research postulates that not all reflective technologies that contribute to urban radiative cooling favor the thermal comfort conditions of pedestrians to equal measure. The objective of this work is to determine to what degree the management of the optical properties of the facades modifies outdoor thermal comfort, given that the mitigation potential of materials with high reflectance in facades is strongly conditioned by geographical variables and by the geometric characteristics of the urban profile aspect ratio (H/W). This research was carried out under two climatic contexts, that of the city of Mendoza-Argentina and that of the city of Campinas-Brazil, according to the Köppen climate classification: BWk and Cwa, respectively. Two areas in two different climatic contexts (Mendoza - Argentina and Campinas - Brazil) were selected. Both areas have comparable urban morphology patterns. These areas are located in a region with low horizontal building density and residential zoning. The microclimatic conditions were monitored during the summer period with temperature and humidity fixed sensors inside vial channels. The microclimate model was simulated in ENVI-Met V5. A grid resolution of 3.5 x 3.5 x 3.5m was used for both cities, totaling an area of 145x145x30 grids. Based on the validated theoretical model, ten scenarios were simulated, modifying the height of buildings and the solar reflectivity of facades. The solar reflectivity façades ranges were: low (0.3) and high (0.75). The density scenarios range from 1th to the 5th level. The study scenarios' performance was assessed by comparing the air temperature, physiological equivalent temperature (PET), and thermal climate index (UTCI). As a result, it is observed that the behavior of the materials of the urban outdoor space depends on complex interactions. Many urban environmental factors influence including constructive characteristics, urban morphology, geographic locations, local climate, and so forth. The role of the vertical urban envelope is decisive for the reduction of urban overheating. One of the causes of thermal gain is the multiple reflections within the urban canyon, which affects not only the air temperature but also the pedestrian thermal comfort. One of the main findings of this work leads to the remarkable importance of considering both the urban warming and the thermal comfort aspects of pedestrians in urban mitigation strategies.Keywords: materials facades, solar reflectivity, thermal comfort, urban cooling
Procedia PDF Downloads 92146 Upflow Anaerobic Sludge Blanket Reactor Followed by Dissolved Air Flotation Treating Municipal Sewage
Authors: Priscila Ribeiro dos Santos, Luiz Antonio Daniel
Abstract:
Inadequate access to clean water and sanitation has become one of the most widespread problems affecting people throughout the developing world, leading to an unceasing need for low-cost and sustainable wastewater treatment systems. The UASB technology has been widely employed as a suitable and economical option for the treatment of sewage in developing countries, which involves low initial investment, low energy requirements, low operation and maintenance costs, high loading capacity, short hydraulic retention times, long solids retention times and low sludge production. Whereas dissolved air flotation process is a good option for the post-treatment of anaerobic effluents, being capable of producing high quality effluents in terms of total suspended solids, chemical oxygen demand, phosphorus, and even pathogens. This work presents an evaluation and monitoring, over a period of 6 months, of one compact full-scale system with this configuration, UASB reactors followed by dissolved air flotation units (DAF), operating in Brazil. It was verified as a successful treatment system, and an issue of relevance since dissolved air flotation process treating UASB reactor effluents is not widely encompassed in the literature. The study covered the removal and behavior of several variables, such as turbidity, total suspend solids (TSS), chemical oxygen demand (COD), Escherichia coli, total coliforms and Clostridium perfringens. The physicochemical variables were analyzed according to the protocols established by the Standard Methods for Examination of Water and Wastewater. For microbiological variables, such as Escherichia coli and total coliforms, it was used the “pour plate” technique with Chromocult Coliform Agar (Merk Cat. No.1.10426) serving as the culture medium, while the microorganism Clostridium perfringens was analyzed through the filtering membrane technique, with the Ágar m-CP (Oxoid Ltda, England) serving as the culture medium. Approximately 74% of total COD was removed in the UASB reactor, and the complementary removal done during the flotation process resulted in 88% of COD removal from the raw sewage, thus the initial concentration of COD of 729 mg.L-1 decreased to 87 mg.L-1. Whereas, in terms of particulate COD, the overall removal efficiency for the whole system was about 94%, decreasing from 375 mg.L-1 in raw sewage to 29 mg.L-1 in final effluent. The UASB reactor removed on average 77% of the TSS from raw sewage. While the dissolved air flotation process did not work as expected, removing only 30% of TSS from the anaerobic effluent. The final effluent presented an average concentration of 38 mg.L-1 of TSS. The turbidity was significantly reduced, leading to an overall efficiency removal of 80% and a final turbidity of 28 NTU.The treated effluent still presented a high concentration of fecal pollution indicators (E. coli, total coliforms, and Clostridium perfringens), showing that the system did not present a good performance in removing pathogens. Clostridium perfringens was the organism which suffered the higher removal by the treatment system. The results can be considered satisfactory for the physicochemical variables, taking into account the simplicity of the system, besides that, it is necessary a post-treatment to improve the microbiological quality of the final effluent.Keywords: dissolved air flotation, municipal sewage, UASB reactor, treatment
Procedia PDF Downloads 331145 Multi-Dimensional Experience of Processing Textual and Visual Information: Case Study of Allocations to Places in the Mind’s Eye Based on Individual’s Semantic Knowledge Base
Authors: Joanna Wielochowska, Aneta Wielochowska
Abstract:
Whilst the relationship between scientific areas such as cognitive psychology, neurobiology and philosophy of mind has been emphasized in recent decades of scientific research, concepts and discoveries made in both fields overlap and complement each other in their quest for answers to similar questions. The object of the following case study is to describe, analyze and illustrate the nature and characteristics of a certain cognitive experience which appears to display features of synaesthesia, or rather high-level synaesthesia (ideasthesia). The following research has been conducted on the subject of two authors, monozygotic twins (both polysynaesthetes) experiencing involuntary associations of identical nature. Authors made attempts to identify which cognitive and conceptual dependencies may guide this experience. Operating on self-introduced nomenclature, the described phenomenon- multi-dimensional processing of textual and visual information- aims to define a relationship that involuntarily and immediately couples the content introduced by means of text or image a sensation of appearing in a certain place in the mind’s eye. More precisely: (I) defining a concept introduced by means of textual content during activity of reading or writing, or (II) defining a concept introduced by means of visual content during activity of looking at image(s) with simultaneous sensation of being allocated to a given place in the mind’s eye. A place can be then defined as a cognitive representation of a certain concept. During the activity of processing information, a person has an immediate and involuntary feel of appearing in a certain place themselves, just like a character of a story, ‘observing’ a venue or a scenery from one or more perspectives and angles. That forms a unique and unified experience, constituting a background mental landscape of text or image being looked at. We came to a conclusion that semantic allocations to a given place could be divided and classified into the categories and subcategories and are naturally linked with an individual’s semantic knowledge-base. A place can be defined as a representation one’s unique idea of a given concept that has been established in their semantic knowledge base. A multi-level structure of selectivity of places in the mind’s eye, as a reaction to a given information (one stimuli), draws comparisons to structures and patterns found in botany. Double-flowered varieties of flowers and a whorl system (arrangement) which is characteristic to components of some flower species were given as an illustrative example. A composition of petals that fan out from one single point and wrap around a stem inspired an idea that, just like in nature, in philosophy of mind there are patterns driven by the logic specific to a given phenomenon. The study intertwines terms perceived through the philosophical lens, such as definition of meaning, subjectivity of meaning, mental atmosphere of places, and others. Analysis of this rare experience aims to contribute to constantly developing theoretical framework of the philosophy of mind and influence the way human semantic knowledge base and processing given content in terms of distinguishing between information and meaning is researched.Keywords: information and meaning, information processing, mental atmosphere of places, patterns in nature, philosophy of mind, selectivity, semantic knowledge base, senses, synaesthesia
Procedia PDF Downloads 124144 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells
Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth
Abstract:
Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR
Procedia PDF Downloads 180143 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation
Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie
Abstract:
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)
Procedia PDF Downloads 134142 Student Experiences in Online Doctoral Programs: A Critical Review of the Literature
Authors: Nicole A. Alford
Abstract:
The study of online graduate education started just 30 years ago, with the first online graduate program in the 1990s. Institutions are looking for ways to increase retention and support the needs of students with the rapid expansion of online higher education due to the global pandemic. Online education provides access and opportunities to those who otherwise would be unable to pursue an advanced degree for logistical reasons. Thus, the objective of the critical literature review is to survey current research of student experiences given the expanding role of online doctoral programs. The guiding research questions are: What are the personal, professional, and student life practices of graduate students who enrolled in a fully online university doctoral program or course? and How do graduate students who enrolled in a fully online doctoral program or course describe the factors that contributed to their continued study? The systematic literature review was conducted employing a variety of databases to locate articles using key Boolean terms and synonyms within three categories of the e-learning, doctoral education, and student perspectives. Inclusion criteria for the literature review consisted of empirical peer-reviewed studies with original data sources that focused on doctoral programs and courses within a fully online environment and centered around student experiences. A total of 16 articles were selected based on the inclusion criteria and systemically analyzed through coding using the Boote and Beile criteria. Major findings suggest that doctoral students face stressors related to social and emotional wellbeing in the online environment. A lack of social connection, isolation, and burnout were the main challenges experienced by students. Students found support from their colleagues, advisors, and faculty to persist. Communities and cohorts of online doctoral students were found to guard against these challenges. Moreover, in the methods section of the articles, there was a lack of specificity related to student demographics, general student information, and insufficient detail about the online doctoral program. Additionally, descriptions regarding the experiences of cohorts and communities in the online environment were vague and not easily replicable with the given details. This literature review reveals that doctoral students face social and emotional challenges related to isolation and the rigor of the academic process and lean on others for support to continue in their studies. Given the lack of current knowledge about online doctoral students, it proves to be a challenge to identify effective practices and create high-retention doctoral programs in online environments. The paucity of information combined with the dramatic transition to e-learning due to the global pandemic can provide a perfect storm for attrition in these programs. Several higher education institutions have transitioned graduate studies online, thus providing an opportunity for further exploration. Given the new necessity of online learning, this work provides insight into examining current practices in online doctoral programs that have moved to this modality during the pandemic. The significance of the literature review provides a springboard for research into online doctoral programs as the solution to continue advanced education amongst a global pandemic.Keywords: e-learning, experiences, higher education, literature review
Procedia PDF Downloads 113141 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1
Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.
Abstract:
In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.Keywords: biochip, herpes virus, SPR
Procedia PDF Downloads 417140 Virtual Reality Applications for Building Indoor Engineering: Circulation Way-Finding
Authors: Atefeh Omidkhah Kharashtomi, Rasoul Hedayat Nejad, Saeed Bakhtiyari
Abstract:
Circulation paths and indoor connection network of the building play an important role both in the daily operation of the building and during evacuation in emergency situations. The degree of legibility of the paths for navigation inside the building has a deep connection with the perceptive and cognitive system of human, and the way the surrounding environment is being perceived. Human perception of the space is based on the sensory systems in a three-dimensional environment, and non-linearly, so it is necessary to avoid reducing its representations in architectural design as a two-dimensional and linear issue. Today, the advances in the field of virtual reality (VR) technology have led to various applications, and architecture and building science can benefit greatly from these capabilities. Especially in cases where the design solution requires a detailed and complete understanding of the human perception of the environment and the behavioral response, special attention to VR technologies could be a priority. Way-finding in the indoor circulation network is a proper example for such application. Success in way-finding could be achieved if human perception of the route and the behavioral reaction have been considered in advance and reflected in the architectural design. This paper discusses the VR technology applications for the way-finding improvements in indoor engineering of the building. In a systematic review, with a database consisting of numerous studies, firstly, four categories for VR applications for circulation way-finding have been identified: 1) data collection of key parameters, 2) comparison of the effect of each parameter in virtual environment versus real world (in order to improve the design), 3) comparing experiment results in the application of different VR devices/ methods with each other or with the results of building simulation, and 4) training and planning. Since the costs of technical equipment and knowledge required to use VR tools lead to the limitation of its use for all design projects, priority buildings for the use of VR during design are introduced based on case-studies analysis. The results indicate that VR technology provides opportunities for designers to solve complex buildings design challenges in an effective and efficient manner. Then environmental parameters and the architecture of the circulation routes (indicators such as route configuration, topology, signs, structural and non-structural components, etc.) and the characteristics of each (metrics such as dimensions, proportions, color, transparency, texture, etc.) are classified for the VR way-finding experiments. Then, according to human behavior and reaction in the movement-related issues, the necessity of scenario-based and experiment design for using VR technology to improve the design and receive feedback from the test participants has been described. The parameters related to the scenario design are presented in a flowchart in the form of test design, data determination and interpretation, recording results, analysis, errors, validation and reporting. Also, the experiment environment design is discussed for equipment selection according to the scenario, parameters under study as well as creating the sense of illusion in the terms of place illusion, plausibility and illusion of body ownership.Keywords: virtual reality (VR), way-finding, indoor, circulation, design
Procedia PDF Downloads 74139 Navigating States of Emergency: A Preliminary Comparison of Online Public Reaction to COVID-19 and Monkeypox on Twitter
Authors: Antonia Egli, Theo Lynn, Pierangelo Rosati, Gary Sinclair
Abstract:
The World Health Organization (WHO) defines vaccine hesitancy as the postponement or complete denial of vaccines and estimates a direct linkage to approximately 1.5 million avoidable deaths annually. This figure is not immune to public health developments, as has become evident since the global spread of COVID-19 from Wuhan, China in early 2020. Since then, the proliferation of influential, but oftentimes inaccurate, outdated, incomplete, or false vaccine-related information on social media has impacted hesitancy levels to a degree described by the WHO as an infodemic. The COVID-19 pandemic and related vaccine hesitancy levels have in 2022 resulted in the largest drop in childhood vaccinations of the 21st century, while the prevalence of online stigma towards vaccine hesitant consumers continues to grow. Simultaneously, a second disease has risen to global importance: Monkeypox is an infection originating from west and central Africa and, due to racially motivated online hate, was in August 2022 set to be renamed by the WHO. To better understand public reactions towards two viral infections that became global threats to public health no two years apart, this research examines user replies to threads published by the WHO on Twitter. Replies to two Tweets from the @WHO account declaring COVID-19 and Monkeypox as ‘public health emergencies of international concern’ on January 30, 2020, and July 23, 2022, are gathered using the Twitter application programming interface and user mention timeline endpoint. Research methodology is unique in its analysis of stigmatizing, racist, and hateful content shared on social media within the vaccine discourse over the course of two disease outbreaks. Three distinct analyses are conducted to provide insight into (i) the most prevalent topics and sub-topics among user reactions, (ii) changes in sentiment towards the spread of the two diseases, and (iii) the presence of stigma, racism, and online hate. Findings indicate an increase in hesitancy to accept further vaccines and social distancing measures, the presence of stigmatizing content aimed primarily at anti-vaccine cohorts and racially motivated abusive messages, and a prevalent fatigue towards disease-related news overall. This research provides value to non-profit organizations or government agencies associated with vaccines and vaccination programs in emphasizing the need for public health communication fitted to consumers' vaccine sentiments, levels of health information literacy, and degrees of trust towards public health institutions. Considering the importance of addressing fears among the vaccine hesitant, findings also illustrate the risk of alienation through stigmatization, lead future research in probing the relatively underexamined field of online, vaccine-related stigma, and discuss the potential effects of stigma towards vaccine hesitant Twitter users in their decisions to vaccinate.Keywords: social marketing, social media, public health communication, vaccines
Procedia PDF Downloads 98138 The System-Dynamic Model of Sustainable Development Based on the Energy Flow Analysis Approach
Authors: Inese Trusina, Elita Jermolajeva, Viktors Gopejenko, Viktor Abramov
Abstract:
Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the development of the way to social well-being in the frame of the ecological economics paradigm. The objective of the article is to present the results of the analysis of socio-economic systems in the context of sustainable development using the systems power (energy flows) changes analyzing method and structural Kaldor's model of GDP. In accordance with the principles of life's development and the ecological concept was formalized the tasks of sustainable development of the open, non-equilibrium, stable socio-economic systems were formalized using the energy flows analysis method. The methodology of monitoring sustainable development and level of life were considered during the research of interactions in the system ‘human - society - nature’ and using the theory of a unified system of space-time measurements. Based on the results of the analysis, the time series consumption energy and economic structural model were formulated for the level, degree and tendencies of sustainable development of the system and formalized the conditions of growth, degrowth and stationarity. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. During the research, the authors calculated and used a system of universal indicators of sustainable development in the invariant coordinate system in energy units. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. In the context of the proposed approach and methods, universal sustainable development indicators were calculated as models of development for the USA and China. The calculations used data from the World Bank database for the period from 1960 to 2019. Main results: 1) In accordance with the proposed approach, the heterogeneous energy resources of countries were reduced to universal power units, summarized and expressed as a unified number. 2) The values of universal indicators of the life’s level were obtained and compared with generally accepted similar indicators.3) The system of indicators in accordance with the requirements of sustainable development can be considered as a basis for monitoring development trends. This work can make a significant contribution to overcoming the difficulties of forming socio-economic policy, which is largely due to the lack of information that allows one to have an idea of the course and trends of socio-economic processes. The existing methods for the monitoring of the change do not fully meet this requirement since indicators have different units of measurement from different areas and, as a rule, are the reaction of socio-economic systems to actions already taken and, moreover, with a time shift. Currently, the inconsistency or inconsistency of measures of heterogeneous social, economic, environmental, and other systems is the reason that social systems are managed in isolation from the general laws of living systems, which can ultimately lead to a systemic crisis.Keywords: sustainability, system dynamic, power, energy flows, development
Procedia PDF Downloads 58137 The Relationship between 21st Century Digital Skills and the Intention to Start a Digit Entrepreneurship
Authors: Kathrin F. Schneider, Luis Xavier Unda Galarza
Abstract:
In our modern world, few are the areas that are not permeated by digitalization: we use digital tools for work, study, entertainment, and daily life. Since technology changes rapidly, skills must adapt to the new reality, which gives a dynamic dimension to the set of skills necessary for people's academic, professional, and personal success. The concept of 21st-century digital skills, which includes skills such as collaboration, communication, digital literacy, citizenship, problem-solving, critical thinking, interpersonal skills, creativity, and productivity, have been widely discussed in the literature. Digital transformation has opened many economic opportunities for entrepreneurs for the development of their products, financing possibilities, and product distribution. One of the biggest advantages is the reduction in cost for the entrepreneur, which has opened doors not only for the entrepreneur or the entrepreneurial team but also for corporations through intrapreneurship. The development of students' general literacy level and their digital competencies is crucial for improving the effectiveness and efficiency of the learning process, as well as for students' adaptation to the constantly changing labor market. The digital economy allows a free substantial increase in the supply share of conditional and also innovative products; this is mainly achieved through 5 ways to reduce costs according to the conventional digital economy: search costs, replication, transport, tracking, and verification. Digital entrepreneurship worldwide benefits from such achievements. There is an expansion and democratization of entrepreneurship thanks to the use of digital technologies. The digital transformation that has been taking place in recent years is more challenging for developing countries, as they have fewer resources available to carry out this transformation while offering all the necessary support in terms of cybersecurity and educating their people. The degree of digitization (use of digital technology) in a country and the levels of digital literacy of its people often depend on the economic level and situation of the country. Telefónica's Digital Life Index (TIDL) scores are strongly correlated with country wealth, reflecting the greater resources that richer countries can contribute to promoting "Digital Life". According to the Digitization Index, Ecuador is in the group of "emerging countries", while Chile, Colombia, Brazil, Argentina, and Uruguay are in the group of "countries in transition". According to Herrera Espinoza et al. (2022), there are startups or digital ventures in Ecuador, especially in certain niches, but many of the ventures do not exceed six months of creation because they arise out of necessity and not out of the opportunity. However, there is a lack of relevant research, especially empirical research, to have a clearer vision. Through a self-report questionnaire, the digital skills of students will be measured in an Ecuadorian private university, according to the skills identified as the six 21st-century skills. The results will be put to the test against the variable of the intention to start a digital venture measured using the theory of planned behavior (TPB). The main hypothesis is that high digital competence is positively correlated with the intention to start digital entrepreneurship.Keywords: new literacies, digital transformation, 21st century skills, theory of planned behavior, digital entrepreneurship
Procedia PDF Downloads 105136 The Efficacy of a Student Designed and Led Near Peer Anatomy Teaching
Authors: Mark Heads, Carrie Adamson
Abstract:
Introduction This study evaluated the educational merits of the teaching activities of ‘Sheffield Anatomy Society,’ a student society with minimal faculty oversight which delivers near peer teaching in a range of formats to support students in their revision. Near peer, teaching is defined as teaching delivered by more senior students who have themselves recently completed the course content. This study was conducted between early April and late May 2022. This programme aims to improve student knowledge of anatomy, increase student confidence in their anatomy learning and cultivate a sense of community. The sessions were delivered by more senior medical students and by medical students undertaking an intercalated Master's degree in Human Anatomy with Education. Background: The majority of studies concerning near peer teaching focus on faculty designed programmes. Few studies have examined entirely student led near peer teaching of anatomy. Existing studies have been favourable but have limited qualitative examination of the benefits and weaknesses of near peer teaching. Various drawbacks have been proposed in the literature but not extensively investigated in practice. This study examines student led near peer anatomy teaching across a range of formats and considers these proposed criticisms. Methods: The teaching series consisted of 11 online lectures, a small group teaching session, two in person mock spotter examinations, and an online mock examination. Feedback forms were given for each session, and follow up interviews were conducted. Thematic analysis utilising an interpretivist epistemology was conducted on the feedback form responses and interview transcripts. Findings: 207 first year medical students, 34 second year biomedical science students, and 12 third year biomedical science students completed one or more feedback forms following these sessions, with 875 responses being collected in total. Six interviews were conducted. 99.5% of respondents said that they would recommend these sessions to other students. The quantitative results ranged from a mean of 4.6-4.8/5 per session when asked to rate how useful the students found it. Qualitative: analysis yielded numerous strengths and some weaknesses of the programme. The most commonly cited strength was that students found the explanations readily comprehensible. Students also praised the interactive nature of the sessions, with students frequently saying they felt more able to engage with interactive elements and ask questions in these sessions than in faculty teaching. Students did, however, raise some issues. The most common drawback students mentioned was a desire for more help preparing for their examinations, especially more examination style questions. Criticisms of the teaching itself were less prominent and typically reflected time constraints and limited resources. Conclusions : This study suggests student organised near peer teaching, utilising interactive online lectures, small group teaching, and mock examinations, can be an effective method for supporting students studying anatomy. Students reported improvements in their knowledge as a result of the sessions, greater confidence approaching their examinations, and this programme has helped foster an environment where students feel able to ask questions outside of sessions and even get involved with teaching themselves the following academic year.Keywords: medical education, near peer teaching, anatomy teaching, online learning
Procedia PDF Downloads 65135 Affordable and Environmental Friendly Small Commuter Aircraft Improving European Mobility
Authors: Diego Giuseppe Romano, Gianvito Apuleo, Jiri Duda
Abstract:
Mobility is one of the most important societal needs for amusement, business activities and health. Thus, transport needs are continuously increasing, with the consequent traffic congestion and pollution increase. Aeronautic effort aims at smarter infrastructures use and in introducing greener concepts. A possible solution to address the abovementioned topics is the development of Small Air Transport (SAT) system, able to guarantee operability from today underused airfields in an affordable and green way, helping meanwhile travel time reduction, too. In the framework of Horizon2020, EU (European Union) has funded the Clean Sky 2 SAT TA (Transverse Activity) initiative to address market innovations able to reduce SAT operational cost and environmental impact, ensuring good levels of operational safety. Nowadays, most of the key technologies to improve passenger comfort and to reduce community noise, DOC (Direct Operating Costs) and pilot workload for SAT have reached an intermediate level of maturity TRL (Technology Readiness Level) 3/4. Thus, the key technologies must be developed, validated and integrated on dedicated ground and flying aircraft demonstrators to reach higher TRL levels (5/6). Particularly, SAT TA focuses on the integration at aircraft level of the following technologies [1]: 1) Low-cost composite wing box and engine nacelle using OoA (Out of Autoclave) technology, LRI (Liquid Resin Infusion) and advance automation process. 2) Innovative high lift devices, allowing aircraft operations from short airfields (< 800 m). 3) Affordable small aircraft manufacturing of metallic fuselage using FSW (Friction Stir Welding) and LMD (Laser Metal Deposition). 4) Affordable fly-by-wire architecture for small aircraft (CS23 certification rules). 5) More electric systems replacing pneumatic and hydraulic systems (high voltage EPGDS -Electrical Power Generation and Distribution System-, hybrid de-ice system, landing gear and brakes). 6) Advanced avionics for small aircraft, reducing pilot workload. 7) Advanced cabin comfort with new interiors materials and more comfortable seats. 8) New generation of turboprop engine with reduced fuel consumption, emissions, noise and maintenance costs for 19 seats aircraft. (9) Alternative diesel engine for 9 seats commuter aircraft. To address abovementioned market innovations, two different platforms have been designed: Reference and Green aircraft. Reference aircraft is a virtual aircraft designed considering 2014 technologies with an existing engine assuring requested take-off power; Green aircraft is designed integrating the technologies addressed in Clean Sky 2. Preliminary integration of the proposed technologies shows an encouraging reduction of emissions and operational costs of small: about 20% CO2 reduction, about 24% NOx reduction, about 10 db (A) noise reduction at measurement point and about 25% DOC reduction. Detailed description of the performed studies, analyses and validations for each technology as well as the expected benefit at aircraft level are reported in the present paper.Keywords: affordable, European, green, mobility, technologies development, travel time reduction
Procedia PDF Downloads 99134 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation
Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli
Abstract:
Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.Keywords: endothelialisation, plasma treatment, stent, surface functionalisation
Procedia PDF Downloads 311133 Is Materiality Determination the Key to Integrating Corporate Sustainability and Maximising Value?
Authors: Ruth Hegarty, Noel Connaughton
Abstract:
Sustainability reporting has become a priority for many global multinational companies. This is associated with ever-increasing expectations from key stakeholders for companies to be transparent about their strategies, activities and management with regard to sustainability issues. The Global Reporting Initiative (GRI) encourages reporters to only provide information on the issues that are really critical in order to achieve the organisation’s goals for sustainability and manage its impact on environment and society. A key challenge for most reporting organisations is how to identify relevant issues for sustainability reporting and prioritise those material issues in accordance with company and stakeholder needs. A recent study indicates that most of the largest companies listed on the world’s stock exchanges are failing to provide data on key sustainability indicators such as employee turnover, energy, greenhouse gas emissions (GHGs), injury rate, pay equity, waste and water. This paper takes an indepth look at the approaches used by a select number of international sustainability leader corporates to identify key sustainability issues. The research methodology involves performing a detailed analysis of the sustainability report content of up to 50 companies listed on the 2014 Dow Jones Sustainability Indices (DJSI). The most recent sustainability report content found on the GRI Sustainability Disclosure Database is then compared with 91 GRI Specific Standard Disclosures and a small number of GRI Standard Disclosures. Preliminary research indicates significant gaps in the information disclosed in corporate sustainability reports versus the indicator content specified in the GRI Content Index. The following outlines some of the key findings to date: Most companies made a partial disclosure with regard to the Economic indicators of climate change risks and infrastructure investments, but did not focus on the associated negative impacts. The top Environmental indicators disclosed were energy consumption and reductions, GHG emissions, water withdrawals, waste and compliance. The lowest rates of indicator disclosure included biodiversity, water discharge, mitigation of environmental impacts of products and services, transport, environmental investments, screening of new suppliers and supply chain impacts. The top Social indicators disclosed were new employee hires, rates of injury, freedom of association in operations, child labour and forced labour. Lesser disclosure rates were reported for employee training, composition of governance bodies and employees, political contributions, corruption and fines for non-compliance. The reporting on most other Social indicators was found to be poor. In addition, most companies give only a brief explanation on how material issues are defined, identified and ranked. Data on the identification of key stakeholders and the degree and nature of engagement for determining issues and their weightings is also lacking. Generally, little to no data is provided on the algorithms used to score an issue. Research indicates that most companies lack a rigorous and thorough methodology to systematically determine the material issues of sustainability reporting in accordance with company and stakeholder needs.Keywords: identification of key stakeholders, material issues, sustainability reporting, transparency
Procedia PDF Downloads 306132 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach
Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman
Abstract:
Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.Keywords: categorical data, log linear modeling, neural network, shifting cultivation
Procedia PDF Downloads 54