Search results for: construction sites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5611

Search results for: construction sites

481 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process

Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre

Abstract:

The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.

Keywords: building materials, ettringite, meta-ettringite, thermal energy storage

Procedia PDF Downloads 198
480 Predictability of Thermal Response in Housing: A Case Study in Australia, Adelaide

Authors: Mina Rouhollahi, J. Boland

Abstract:

Changes in cities’ heat balance due to rapid urbanization and the urban heat island (UHI) have increased energy demands for space cooling and have resulted in uncomfortable living conditions for urban residents. Climate resilience and comfortable living spaces can be addressed through well-designed urban development. The sustainable housing can be more effective in controlling high levels of urban heat. In Australia, to mitigate the effects of UHIs and summer heat waves, one solution to sustainable housing has been the trend to compact housing design and the construction of energy efficient dwellings. This paper analyses whether current housing configurations and orientations are effective in avoiding increased demands for air conditioning and having an energy efficient residential neighborhood. A significant amount of energy is consumed to ensure thermal comfort in houses. This paper reports on the modelling of heat transfer within the homes using the measurements of radiation, convection and conduction between exterior/interior wall surfaces and outdoor/indoor environment respectively. The simulation was tested on selected 7.5-star energy efficient houses constructed of typical material elements and insulation in Adelaide, Australia. The chosen design dwellings were analyzed in extremely hot weather through one year. The data were obtained via a thermal circuit to accurately model the fundamental heat transfer mechanisms on both boundaries of the house and through the multi-layered wall configurations. The formulation of the Lumped capacitance model was considered in discrete time steps by adopting a non-linear model method. The simulation results focused on the effects of orientation of the solar radiation on the dynamic thermal characteristics of the houses orientations. A high star rating did not necessarily coincide with a decrease in peak demands for cooling. A more effective approach to avoid increasing the demands for air conditioning and energy may be to integrate solar–climatic data to evaluate the performance of energy efficient houses.

Keywords: energy-efficient residential building, heat transfer, neighborhood orientation, solar–climatic data

Procedia PDF Downloads 119
479 Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes

Authors: Roman Matejka, Vaclav Prochazka, Tibor Izak, Jana Stepanovska, Martina Travnickova, Alexander Kromka

Abstract:

Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A.

Keywords: bio-impedance measuring, bioreactor, cell cultivation, diamond layer, gold interdigitated electrodes, tissue engineering

Procedia PDF Downloads 283
478 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems

Authors: Baba Mbaye

Abstract:

In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.

Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering

Procedia PDF Downloads 201
477 Study on Varying Solar Blocking Depths in the Exploration of Energy-Saving Renovation of the Energy-Saving Design of the External Shell of Existing Buildings: Using Townhouse Residences in Kaohsiung City as an Example

Authors: Kuang Sheng Liu, Yu Lin Shih*, Chun Ta Tzeng, Cheng Chen Chen

Abstract:

Buildings in the 21st century are facing issues such as an extreme climate and low-carbon/energy-saving requirements. Many countries in the world are of the opinion that a building during its medium- and long-term life cycle is an energy-consuming entity. As for the use of architectural resources, including the United Nations-implemented "Global Green Policy" and "Sustainable building and construction initiative", all are working towards "zero-energy building" and "zero-carbon building" policies. Because of this, countries are cooperating with industry development using policies such as "mandatory design criteria", "green procurement policy" and "incentive grants and rebates programme". The results of this study can provide a reference for sustainable building renovation design criteria. Aimed at townhouses in Kaohsiung City, this study uses different levels of solar blocking depth to carry out evaluation of design and energy-saving renovation of the outer shell of existing buildings by using data collection and the selection of representative cases. Using building resources from a building information model (BIM), simulation and efficiency evaluation are carried out and proven with simulation estimation. This leads into the ECO-efficiency model (EEM) for the life cycle cost efficiency (LCCE) evalution. The buildings selected by this research sit in a north-south direction set with different solar blocking depths. The indoor air-conditioning consumption rates are compared. The current balcony depth of 1 metre as the simulated EUI value acts as a reference value of 100%. The solar blocking of the balcony is increased to 1.5, 2, 2.5 and 3 metres for a total of 5 different solar-blocking balcony depths, for comparison of the air-conditioning improvement efficacy. This research uses different solar-blocking balcony depths to carry out air-conditioning efficiency analysis. 1.5m saves 3.08%, 2m saves 6.74%, 2.5m saves 9.80% and 3m saves 12.72% from the air-conditioning EUI value. This shows that solar-blocking balconies have an efficiency-increasing potential for indoor air-conditioning.

Keywords: building information model, eco-efficiency model, energy-saving in the external shell, solar blocking depth.

Procedia PDF Downloads 390
476 Micelles Made of Pseudo-Proteins for Solubilization of Hydrophobic Biologicals

Authors: Sophio Kobauri, David Tugushi, Vladimir P. Torchilin, Ramaz Katsarava

Abstract:

Hydrophobic / hydrophilically modified functional polymers are of high interest in modern biomedicine due to their ability to solubilize water-insoluble / poorly soluble (hydrophobic) drugs. Among the many approaches that are being developed in this direction, one of the most effective methods is the use of polymeric micelles (PMs) (micelles formed by amphiphilic block-copolymers) for solubilization of hydrophobic biologicals. For therapeutic purposes, PMs are required to be stable and biodegradable, although quite a few amphiphilic block-copolymers are described capable of forming stable micelles with good solubilization properties. For obtaining micelle-forming block-copolymers, polyethylene glycol (PEG) derivatives are desirable to use as hydrophilic shell because it represents the most popular biocompatible hydrophilic block and various hydrophobic blocks (polymers) can be attached to it. Although the construction of the hydrophobic core, due to the complex requirements and micelles structure development, is the very actual and the main problem for nanobioengineers. Considering the above, our research goal was obtaining biodegradable micelles for the solubilization of hydrophobic drugs and biologicals. For this purpose, we used biodegradable polymers– pseudo-proteins (PPs)(synthesized with naturally occurring amino acids and other non-toxic building blocks, such as fatty diols and dicarboxylic acids) as hydrophobic core since these polymers showed reasonable biodegradation rates and excellent biocompatibility. In the present study, we used the hydrophobic amino acid – L-phenylalanine (MW 4000-8000Da) instead of L-leucine. Amino-PEG (MW 2000Da) was used as hydrophilic fragments for constructing the suitable micelles. The molecular weight of PP (the hydrophobic core of micelle) was regulated by variation of used monomers ratios. Micelles were obtained by dissolving of synthesized amphiphilic polymer in water. The micelle-forming property was tested using dynamic light scattering (Malvern zetasizer NanoZSZEN3600). The study showed that obtaining amphiphilic block-copolymer form stable neutral micelles 100 ± 7 nm in size at 10mg/mL concentration, which is considered as an optimal range for pharmaceutical micelles. The obtained preliminary data allow us to conclude that the obtained micelles are suitable for the delivery of poorly water-soluble drugs and biologicals.

Keywords: amino acid – L-phenylalanine, pseudo-proteins, amphiphilic block-copolymers, biodegradable micelles

Procedia PDF Downloads 124
475 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.

Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety

Procedia PDF Downloads 113
474 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets

Authors: Rabindranath Bag, Surjeet Singh

Abstract:

Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.

Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique

Procedia PDF Downloads 257
473 Numerical Analysis of Charge Exchange in an Opposed-Piston Engine

Authors: Zbigniew Czyż, Adam Majczak, Lukasz Grabowski

Abstract:

The paper presents a description of geometric models, computational algorithms, and results of numerical analyses of charge exchange in a two-stroke opposed-piston engine. The research engine was a newly designed internal Diesel engine. The unit is characterized by three cylinders in which three pairs of opposed-pistons operate. The engine will generate a power output equal to 100 kW at a crankshaft rotation speed of 3800-4000 rpm. The numerical investigations were carried out using ANSYS FLUENT solver. Numerical research, in contrast to experimental research, allows us to validate project assumptions and avoid costly prototype preparation for experimental tests. This makes it possible to optimize the geometrical model in countless variants with no production costs. The geometrical model includes an intake manifold, a cylinder, and an outlet manifold. The study was conducted for a series of modifications of manifolds and intake and exhaust ports to optimize the charge exchange process in the engine. The calculations specified a swirl coefficient obtained under stationary conditions for a full opening of intake and exhaust ports as well as a CA value of 280° for all cylinders. In addition, mass flow rates were identified separately in all of the intake and exhaust ports to achieve the best possible uniformity of flow in the individual cylinders. For the models under consideration, velocity, pressure and streamline contours were generated in important cross sections. The developed models are designed primarily to minimize the flow drag through the intake and exhaust ports while the mass flow rate increases. Firstly, in order to calculate the swirl ratio [-], tangential velocity v [m/s] and then angular velocity ω [rad / s] with respect to the charge as the mean of each element were calculated. The paper contains comparative analyses of all the intake and exhaust manifolds of the designed engine. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: computational fluid dynamics, engine swirl, fluid mechanics, mass flow rates, numerical analysis, opposed-piston engine

Procedia PDF Downloads 184
472 Pathway to Sustainable Shipping: Electric Ships

Authors: Wei Wang, Yannick Liu, Lu Zhen, H. Wang

Abstract:

Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost.

Keywords: cost reduction, electric ship, environmental protection, sustainable shipping

Procedia PDF Downloads 61
471 Identifying Temporary Housing Main Vertexes through Assessing Post-Disaster Recovery Programs

Authors: S. M. Amin Hosseini, Oriol Pons, Carmen Mendoza Arroyo, Albert de la Fuente

Abstract:

In the aftermath of a natural disaster, the major challenge most cities and societies face, regardless of their diverse level of prosperity, is to provide temporary housing (TH) for the displaced population (DP). However, the features of TH, which have been applied in previous recovery programs, greatly varied from case to case. This situation demonstrates that providing temporary accommodation for DP in a short period time and usually in great numbers is complicated in terms of satisfying all the beneficiaries’ needs, regardless of the societies’ welfare levels. Furthermore, when previously used strategies are applied to different areas, the chosen strategies are most likely destined to fail, unless the strategies are context and culturally based. Therefore, as the population of disaster-prone cities are increasing, decision-makers need a platform to help to determine all the factors, which caused the outcomes of the prior programs. To this end, this paper aims to assess the problems, requirements, limitations, potential responses, chosen strategies, and their outcomes, in order to determine the main elements that have influenced the TH process. In this regard, and in order to determine a customizable strategy, this study analyses the TH programs of five different cases as: Marmara earthquake, 1999; Bam earthquake, 2003; Aceh earthquake and tsunami, 2004; Hurricane Katrina, 2005; and, L’Aquila earthquake, 2009. The research results demonstrate that the main vertexes of TH are: (1) local characteristics, including local potential and affected population features, (2) TH properties, which needs to be considered in four phases: planning, provision/construction, operation, and second life, and (3) natural hazards impacts, which embraces intensity and type. Accordingly, this study offers decision-makers the opportunity to discover the main vertexes, their subsets, interactions, and the relation between strategies and outcomes based on the local conditions of each case. Consequently, authorities may acquire the capability to design a customizable method in the face of complicated post-disaster housing in the wake of future natural disasters.

Keywords: post-disaster temporary accommodation, urban resilience, natural disaster, local characteristic

Procedia PDF Downloads 227
470 Crisis In/Out, Emergent, and Adaptive Urban Organisms

Authors: Alessandra Swiny, Michalis Georgiou, Yiorgos Hadjichristou

Abstract:

This paper focuses on the questions raised through the work of Unit 5: ‘In/Out of crisis, emergent and adaptive’; an architectural research-based studio at the University of Nicosia. It focusses on sustainable architectural and urban explorations tackling with the ever growing crises in its various types, phases and locations. ‘Great crisis situations’ are seen as ‘great chances’ that trigger investigations for further development and evolution of the built environment in an ultimate sustainable approach. The crisis is taken as an opportunity to rethink the urban and architectural directions as new forces for inventions leading to emergent and adaptive built environments. The Unit 5’s identity and environment facilitates the students to respond optimistically, alternatively and creatively towards the global current crisis. Mark Wigley’s notion that “crises are ultimately productive” and “They force invention” intrigued and defined the premises of the Unit. ‘Weather and nature are coauthors of the built environment’ Jonathan Hill states in his ‘weather architecture’ discourse. The weather is constantly changing and new environments, the subnatures are created which derived from the human activities David Gissen explains. The above set of premises triggered innovative responses by the Unit’s students. They thoroughly investigated the various kinds of crisis and their causes in relation to their various types of Terrains. The tools used for the research and investigation were chosen in contradictive pairs to generate further crisis situations: The re-used/salvaged competed with the new, the handmade rivalling with the fabrication, the analogue juxtaposed with digital. Students were asked to delve into state of art technologies in order to propose sustainable emergent and adaptive architectures and Urbanities, having though always in mind that the human and the social aspects of the community should be the core of the investigation. The resulting unprecedented spatial conditions and atmospheres of the emergent new ways of living are deemed to be the ultimate aim of the investigation. Students explored a variety of sites and crisis conditions such as: The vague terrain of the Green Line in Nicosia, the lost footprints of the sinking Venice, the endangered Australian coral reefs, the earthquake torn town of Crevalcore, and the decaying concrete urbanscape of Athens. Among other projects, ‘the plume project’ proposes a cloud-like, floating and almost dream-like living environment with unprecedented spatial conditions to the inhabitants of the coal mine of Centralia, USA, not just to enable them to survive but even to prosper in this unbearable environment due to the process of the captured plumes of smoke and heat. Existing water wells inspire inversed vertical structures creating a new living underground network, protecting the nomads from catastrophic sand storms in the Araoune of Mali. “Inverted utopia: Lost things in the sand”, weaves a series of tea-houses and a library holding lost artifacts and transcripts into a complex underground labyrinth by the utilization of the sand solidification technology. Within this methodology, crisis is seen as a mechanism for allowing an emergence of new and fascinating ultimate sustainable future cultures and cities.

Keywords: adaptive built environments, crisis as opportunity, emergent urbanities, forces for inventions

Procedia PDF Downloads 414
469 Standardization of Solar Water Pumping System for Remote Areas in Indonesia

Authors: Danar Agus Susanto, Hermawan Febriansyah, Meilinda Ayundyahrini

Abstract:

The availability of spring water to meet people demand is often a problem, especially in tropical areas with very limited surface water sources, or very deep underground water. Although the technology and equipment of pumping system are available and easy to obtain, but in remote areas, the availability of pumping system is difficult, due to the unavailability of fuel or the lack of electricity. Solar Water Pumping System (SWPS) became one of the alternatives that can overcome these obstacles. In the tropical country, sunlight can be obtained throughout the year, even in remote areas. SWPS were already widely built in Indonesia, but many encounter problems during operations, such as decreased of efficiency; pump damaged, damaged of controllers or inverters, and inappropriate photovoltaic performance. In 2011, International Electrotechnical Commission (IEC) issued the IEC standard 62253:2011 titled Photovoltaic pumping systems - Design qualification and performance measurements. This standard establishes design qualifications and performance measurements related to the product of a solar water pumping system. National Standardization Agency of Indonesia (BSN) as the national standardization body in Indonesia, has not set the standard related to solar water pumping system. This research to study operational procedures of SWPS by adopting of IEC Standard 62253:2011 to be Indonesia Standard (SNI). This research used literature study and field observation for installed SWPS in Indonesia. Based on the results of research on SWPS already installed in Indonesia, IEC 62253: 2011 standard can improve efficiency and reduce operational failure of SWPS. SWPS installed in Indonesia still has GAP of 51% against parameters in IEC standard 62253: 2011. The biggest factor not being met is related to operating and maintenance handbooks for personnel that included operation and repair procedures. This may result in operator ignorance in installing, operating and maintaining the system. The Photovoltaic (PV) was also the most non-compliance factor of 71%, although there are 22 Indonesia Standard (SNI) for PV (modules, installation, testing, and construction). These research samples (installers, manufacturers/distributors, and experts) agreed on the parameter in the IEC standard 62253: 2011 able to improve the quality of SWPS in Indonesia. Recommendations of this study, that is required the adoption of IEC standard 62253:2011 into SNI to support the development of SWPS for remote areas in Indonesia.

Keywords: efficiency, inappropriate installation, remote areas, solar water pumping system, standard

Procedia PDF Downloads 186
468 Effect of Thermal Treatment on Mechanical Properties of Reduced Activation Ferritic/Martensitic Eurofer Steel Grade

Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma

Abstract:

Reduced activation ferritic/martensitic (RAFM) steels like EUROFER97 are primary candidate structural materials for first wall application in the future demonstration (DEMO) fusion reactor. Existing steels of this type obtain their functional properties by a two-stage heat treatment, which consists of an annealing stage at 980°C for thirty minutes followed by quenching and an additional tempering stage at 750°C for two hours. This thermal quench and temper (Q&T) treatment creates a microstructure of tempered martensite with, as main precipitates, M23C6 carbides, with M = Fe, Cr and carbonitrides of MX type, e.g. TaC and VN. The resulting microstructure determines the mechanical properties of the steel. The ductility is largely determined by the tempered martensite matrix, while the resistance to mechanical degradation, determined by the spatial and size distribution of precipitates and the martensite crystals, plays a key role in the high temperature properties of the steel. Unfortunately, the high temperature response of EUROFER97 is currently insufficient for long term use in fusion reactors, due to instability of the matrix phase and coarsening of the precipitates at prolonged high temperature exposure. The objective of this study is to induce grain refinement by appropriate modifications of the processing route in order to increase the high temperature strength of a lab-cast EUROFER RAFM steel grade. The goal of the work is to obtain improved mechanical behavior at elevated temperatures with respect to conventionally heat treated EUROFER97. A dilatometric study was conducted to study the effect of the annealing temperature on the mechanical properties after a Q&T treatment. The microstructural features were investigated with scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the mechanical properties of the furnace-heated lab-cast EUROFER RAFM steel grade. A significant prior austenite grain (PAG) refinement was obtained by lowering the annealing temperature of the conventionally used Q&T treatment for EUROFER97. The reduction of the PAG results in finer martensitic constituents upon quenching, which offers more nucleation sites for carbide and carbonitride formation upon tempering. The ductile-to-brittle transition temperature (DBTT) was found to decrease with decreasing martensitic block size. Additionally, an increased resistance against high temperature degradation was accomplished in the fine grained martensitic materials with smallest precipitates obtained by tailoring the annealing temperature of the Q&T treatment. It is concluded that the microstructural refinement has a pronounced effect on the DBTT without significant loss of strength and ductility. Further investigation into the optimization of the processing route is recommended to improve the mechanical behavior of RAFM steels at elevated temperatures.

Keywords: ductile-to-brittle transition temperature (DBTT), EUROFER, reduced activation ferritic/martensitic (RAFM) steels, thermal treatments

Procedia PDF Downloads 280
467 Human-Carnivore Interaction: Patterns, Causes and Perceptions of Local Herders of Hoper Valley in Central Karakoram National Park, Pakistan

Authors: Saeed Abbas, Rahilla Tabassum, Haider Abbas, Babar Khan, Shahid Hussain, Muhammad Zafar Khan, Fazal Karim, Yawar Abbas, Rizwan Karim

Abstract:

Human–carnivore conflict is considered to be a major conservation and rural livelihood concern because many carnivore species have been heavily victimized due to elevated conflict levels with communities. Like other snow leopard range countries, this situation prevails in Pakistan, where WWF is currently working under Asia High Mountain Project (AHMP) in Gilgit-Baltistan of Pakistan. To mitigate such conflicts requires a firm understanding of grazing and predation pattern including human-carnivore interaction. For this purpose we conducted a survey in Hoper valley (one of the AHMP project sites in Pakistan), during August, 2013 through a questionnaire based survey and unstructured interviews covering 647 households, permanently residing in the project area out of the total 900 households. The valley, spread over 409 km2 between 36°7'46" N and 74°49'2"E, at 2900m asl in Karakoram ranges is considered to be one of an important habitat of snow leopard and associated prey species such as Himalayan ibex. The valley is home of 8100 Brusho people (ancient tribe of Northern Pakistan) dependent on agro-pastoral livelihoods including farming and livestock rearing. The total number of livestock reported were (N=15,481) out of which 8346 (53.91%) were sheep, 3546 (22.91%) goats, 2193 (14.16%) cows, 903 (5.83%) yaks, 508 (3.28%) bulls, 28 (0.18%) donkeys, 27 (0.17%) zo/zomo (cross breed of yak and cow), and 4 (0.03%) horses. 83 percent respondent (n=542 households) confirmed loss of their livestock during the last one year July, 2012 to June, 2013 which account for 2246 (14.51%) animals. The major reason of livestock loss include predation by large carnivores such as snow leopards and wolf (1710, 76.14%) followed by diseases (536, 23.86%). Of the total predation cases snow leopard is suspected to kill 1478 animals (86.43%). Among livestock sheep were found to be the major prey of snow leopard (810, 55%) followed by goats (484, 32.7%) cows (151, 10.21%), yaks (15, 1.015%), zo/zomo (7, 0.5%) and donkey (1, 0.07%). The reason for the mass depredation of sheep and goats is that they tend to browse on twigs of bushes and graze on soft grass near cliffs. They are also considered to be very active as compared to other species in moving quickly and covering more grazing area. This makes them more vulnerable to snow leopard attack. The majority (1283, 75%) of livestock killed by predators occurred during the warm season (May-September) in alpine and sub-alpine pastures and remaining (427, 25%) occurred in the winter season near settlements in valley. It was evident from the recent study that Snow leopard kills outside the pen were (1351, 79.76%) as compared to inside pen (359, 20.24%). Assessing the economic loss of livestock predation we found that the total loss of livestock predation in the study area is equal to PKR 11,230,000 (USD 105,797), which is about PRK 17, 357 (USD 163.51) per household per year. Economic loss incurred by the locals due to predation is quite significant where the average cash income per household per year is PKR 85,000 (USD 800.75).

Keywords: carnivores, conflict, predation, livelihood, conservation, rural, snow leopard, livestock

Procedia PDF Downloads 325
466 Being Chinese Online: Discursive (Re)Production of Internet-Mediated Chinese National Identity

Authors: Zhiwei Wang

Abstract:

Much emphasis has been placed on the political dimension of digitised Chinese national(ist) discourses and their embodied national identities, which neglects other important dimensions constitutive of their discursive nature. A further investigation into how Chinese national(ist) discourses are daily (re)shaped online by diverse socio-political actors (especially ordinary users) is crucial, which can contribute to not only deeper understandings of Chinese national sentiments on China’s Internet beyond the excessive focus on their passionate, political-charged facet but also richer insights into the socio-technical ecology of the contemporary Chinese digital (and physical) world. This research adopts an ethnographic methodology, by which ‘fieldsites’ are Sina Weibo and bilibili. The primary data collection method is virtual ethnographic observation on everyday national(ist) discussions on both platforms. If data obtained via observations do not suffice to answer research questions, in-depth online qualitative interviews with ‘key actors’ identified from those observations in discursively (re)producing Chinese national identity on each ‘fieldsite’ will be conducted, to complement data gathered through the first method. Critical discourse analysis is employed to analyse data. During the process of data coding, NVivo is utilised. From November 2021 to December 2022, 35 weeks’ digital ethnographic observations have been conducted, with 35 sets of fieldnotes obtained. The strategy adopted for the initial stage of observations was keyword searching, which means typing into the search box on Sina Weibo and bilibili any keywords related to China as a nation and then observing the search results. Throughout 35 weeks’ online ethnographic observations, six keywords have been employed on Sina Weibo and two keywords on bilibili. For 35 weeks’ observations, textual content created by ordinary users have been concentrated much upon. Based on the fieldnotes of the first week’s observations, multifarious national(ist) discourses on Sina Weibo and bilibili have been found, targeted both at national ‘Others’ and ‘Us’, both on the historical and real-world dimension, both aligning with and differing from or even conflicting with official discourses, both direct national(ist) expressions and articulations of sentiments in the name of presentation of national(ist) attachments but for other purposes. Second, Sina Weibo and bilibili users have agency in interpreting and deploying concrete national(ist) discourses despite the leading role played by the government and the two platforms in deciding on the basic framework of national expressions. Besides, there are also disputes and even quarrels between users in terms of explanations for concrete components of ‘nation-ness’ and (in)direct dissent to officially defined ‘mainstream’ discourses to some extent, though often expressed much more mundanely, discursively and playfully. Third, the (re)production process of national(ist) discourses on Sina Weibo and bilibili depends upon not only technical affordances and limitations of the two sites but also, to a larger degree, some established socio-political mechanisms and conventions in the offline China, e.g., the authorities’ acquiescence of citizens’ freedom in understanding and explaining concrete elements of national discourses while setting the basic framework of national narratives to the extent that citizens’ own national(ist) expressions do not reach political bottom lines and develop into mobilising power to shake social stability.

Keywords: national identity, national(ist) discourse(s), everyday nationhood/nationalism, Chinese nationalism, digital nationalism

Procedia PDF Downloads 72
465 Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM

Authors: Lana Migla

Abstract:

Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site.

Keywords: energy performance, PCM containers, solar thermal cooling, storage tank

Procedia PDF Downloads 125
464 Ethnic Tourism and Real Estate Development: A Case of Yiren Ancient Town, China

Authors: Li Yang

Abstract:

Tourism is employed by many countries to facilitate socioeconomic development and to assist in the heritage preservation. An “ethnic culture boom” is currently driving the tourism industry in China. Ethnic minorities, commonly portrayed as primitive, colorful and exotic, have become a big tourist draw. Many cultural attractions have been built throughout China to meet the demands of domestic tourists. Sacred cultural heritage sites have been rehabilitated as a major component of ethnic tourism. The purpose of this study is to examine the interconnected consequences of tourism development and tourism-related leisure property development and, and to discuss, in a broader context, issues and considerations that are pertinent to the management and development of ethnic attractions. The role of real estate in tourism development and its sociocultural consequences are explored. An empirical research was conducted in Yiren Ancient Town (literally, "Ancient Town of Yi People") in Chuxiong City, Yunnan Province, China. Multiple research methods, including in-depth interviews, informal discussions, on-site observations, and secondary data review were employed to measure residents and tourism decision-makers’ perceptions of ethnic tourism and to explore the impacts of tourism on local community. Key informants from government officials, tourism developers and local communities were interviewed individually to gather what they think about benefits and costs of tourism, and what their concerns about and hopes for tourism development are. Yiren Ancient Town was constructed in classical Yi architecture style featuring tranquil garden scenery. Commercial streets, entertainment complexes, and accommodation facilities occupied the center of the town, creating culturally distinctive and visually stimulating places for tourists. A variety of activities are presented to visitors, including walking tours of the town, staged dance shows, musical performances, ethnic festivals and ceremonies, tasting minority food and wedding shows. This study reveals that tourism real estate has transformed the town from a traditional neighborhood into diverse real estate landscapes. Ethnic architecture, costumes, festivals and folk culture have been represented, altered and reinvented through the tourist gaze and mechanisms of cultural production. Tourism is now a new economic driver of the community providing opportunities for the creation of small businesses. There was a general appreciation in the community that tourism has created many employment opportunities, especially for self-employment. However, profit-seeking is a primary motivation for the government, developers, businesses, and other actors involved in the tourism development process. As the town has attracted an increasing number of visitors, commercialization and business competition are intense in the town. Many residents complained about elevated land prices, making the town and the surroundings comparatively high-value locales. Local community is also concerned about the decline of traditional ethnic culture and an erosion of the sense of identity and place. A balance is difficult to maintain between protection and development. The preservation of ethnic culture and heritage should be enhanced if long-term sustainable development of tourism is to occur and the loss of ethnic identities is to be avoided.

Keywords: ancient town, ethnic tourism, local community, real estate, China

Procedia PDF Downloads 261
463 The Role and Tasks of a Social Worker in the Care of a Terminally Ill Child with Regard to the Malopolska Hospice for Children

Authors: Ewelina Zdebska

Abstract:

A social worker is an integral part of an interdisciplinary team working with the child and his family in a terminal state. Social support is an integral part of the medical procedure in the care of hospice. This is the basis and prerequisite of full treatment and good care of the child - patient, whose illness often finds at least the expected period of his life when his personal and legal issues are not regulated, and the family burdened with the problem requires care and support specialists - professionals. Hospice for Children in Krakow: a palliative care team operating in the province of Krakow and Malopolska, conducts specialized care for terminally ill children in place of their residence from the time when parents and doctors decided to end of treatment in hospital, allows parents to carry out medical care at home, provides parents social and legal assistance and provides care, psychological support and friendship to families throughout the life of the child's illness and after his death, as long as it is needed. The social worker in a hospice does not bear the burden of solving social problems, which is the responsibility of other authorities, but provides support possible and necessary at the moment. The most common form of assistance is to provide information on benefits, which for the child and his family may be subject to any treatment and fight for the life and health of a child. Employee assists in the preparation and completion of documents, requests to increase the degree of disability because of progressive disease or Allowance care because of the inability to live independently. It works in settling all the issues with the Department of Social Security, as well as with the Municipal and District Team Affairs of disability. Seeking help and support using multi-faceted childcare. With the Centres for Social Welfare contacts are also often on the organization of additional respite care for the sick at home (care), especially in the work of the other members of the family or if the family can not cope with the care and needs extra help. Hospice for Children in Cracow completing construction of Poland's first Respite Care Centre for chronically and terminally ill children, will be an open house where children suffering from chronic and incurable diseases and their families can get professional help, whenever - when they need it. The social worker has to pick up a very important role in caring for a terminally ill child. His presence gives a little patient and family the opportunity to be at this difficult time together while organizing assistance and support.

Keywords: social worker, care, terminal care, hospice

Procedia PDF Downloads 228
462 Industrial and Technological Applications of Brewer’s Spent Malt

Authors: Francielo Vendruscolo

Abstract:

During industrial processing of raw materials of animal and vegetable origin, large amounts of solid, liquid and gaseous wastes are generated. Solid residues are usually materials rich in carbohydrates, protein, fiber and minerals. Brewer’s spent grain (BSG) is the main waste generated in the brewing industry, representing 85% of the waste generated in this industry. It is estimated that world’s BSG generation is approximately 38.6 x 106 t per year and represents 20-30% (w/w) of the initial mass of added malt, resulting in low commercial value by-product, however, does not have economic value, but it must be removed from the brewery, as its spontaneous fermentation can attract insects and rodents. For every 100 grams in dry basis, BSG has approximately 68 g total fiber, being divided into 3.5 g of soluble fiber and 64.3 g of insoluble fiber (cellulose, hemicellulose and lignin). In addition to dietary fibers, depending on the efficiency of the grinding process and mashing, BSG may also have starch, reducing sugars, lipids, phenolics and antioxidants, emphasizing that its composition will depend on the barley variety and cultivation conditions, malting and technology involved in the production of beer. BSG demands space for storage, but studies have proposed alternatives such as the use of drying, extrusion, pressing with superheated steam, and grinding to facilitate storage. Other important characteristics that enhance its applicability in bioremediation, effluent treatment and biotechnology, is the surface area (SBET) of 1.748 m2 g-1, total pore volume of 0.0053 cm3 g-1 and mean pore diameter of 121.784 Å, characterized as a macroporous and possess fewer adsorption properties but have great ability to trap suspended solids for separation from liquid solutions. It has low economic value; however, it has enormous potential for technological applications that can improve or add value to this agro-industrial waste. Due to its composition, this material has been used in several industrial applications such as in the production of food ingredients, fiber enrichment by its addition in foods such as breads and cookies in bioremediation processes, substrate for microorganism and production of biomolecules, bioenergy generation, and civil construction, among others. Therefore, the use of this waste or by-product becomes essential and aimed at reducing the amount of organic waste in different industrial processes, especially in breweries.

Keywords: brewer’s spent malt, agro-industrial residue, lignocellulosic material, waste generation

Procedia PDF Downloads 194
461 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials

Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó

Abstract:

Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.

Keywords: morphology, PE, roughness, titanium

Procedia PDF Downloads 110
460 A Critical Examination of the Iranian National Legal Regulation of the Ecosystem of Lake Urmia

Authors: Siavash Ostovar

Abstract:

The Iranian national Law on the Ramsar Convention (officially known as the Convention of International Wetlands and Aquatic Birds' Habitat Wetlands) was approved by the Senate and became a law in 1974 after the ratification of the National Council. There are other national laws with the aim of preservation of environment in the country. However, Lake Urmia which is declared a wetland of international importance by the Ramsar Convention in 1971 and designated a UNESCO Biosphere Reserve in 1976 is now at the brink of total disappearance due mainly to the climate change, water mismanagement, dam construction, and agricultural deficiencies. Lake Urmia is located in the north western corner of Iran. It is the third largest salt water lake in the world and the largest lake in the Middle East. Locally, it is designated as a National Park. It is, indeed, a unique lake both nationally and internationally. This study investigated how effective the national legal regulation of the ecosystem of Lake Urmia is in Iran. To do so, the Iranian national laws as Enforcement of Ramsar Convention in the country including three nationally established laws of (i) Five sets of laws for the programme of economic, social and cultural development of Islamic Republic of Iran, (ii) The Iranian Penal Code, (iii) law of conservation, restoration and management of the country were investigated. Using black letter law methods, it was revealed that (i) regarding the national five sets of laws; the benchmark to force the implementation of the legislations and policies is not set clearly. In other words, there is no clear guarantee to enforce these legislations and policies at the time of deviation and violation; (ii) regarding the Penal Code, there is lack of determining the environmental crimes, determining appropriate penalties for the environmental crimes, implementing those penalties appropriately, monitoring and training programmes precisely; (iii) regarding the law of conservation, restoration and management, implementation of this regulation is adjourned to preparation, announcement and approval of several categories of enactments and guidelines. In fact, this study used a national environmental catastrophe caused by drying up of Lake Urmia as an excuse to direct the attention to the weaknesses of the existing national rules and regulations. Finally, as we all depend on the natural world for our survival, this study recommended further research on every environmental issue including the Lake Urmia.

Keywords: conservation, environmental law, Lake Urmia, national laws, Ramsar Convention, water management, wetlands

Procedia PDF Downloads 185
459 Inter-Complex Dependence of Production Technique and Preforms Construction on the Failure Pattern of Multilayer Homo-Polymer Composites

Authors: Ashraf Nawaz Khan, R. Alagirusamy, Apurba Das, Puneet Mahajan

Abstract:

The thermoplastic-based fibre composites are acquiring a market sector of conventional as well as thermoset composites. However, replacing the thermoset with a thermoplastic composite has never been an easy task. The inherent high viscosity of thermoplastic resin reveals poor interface properties. In this work, a homo-polymer towpreg is produced through an electrostatic powder spray coating methodology. The produced flexible towpreg offers a low melt-flow distance during the consolidation of the laminate. The reduced melt-flow distance demonstrates a homogeneous fibre/matrix distribution (and low void content) on consolidation. The composite laminate has been fabricated with two manufacturing techniques such as conventional film stack (FS) and powder-coated (PC) technique. This helps in understanding the distinct response of produced laminates on applying load since the laminates produced through the two techniques are comprised of the same constituent fibre and matrix (constant fibre volume fraction). The changed behaviour is observed mainly due to the different fibre/matrix configurations within the laminate. The interface adhesion influences the load transfer between the fibre and matrix. Therefore, it influences the elastic, plastic, and failure patterns of the laminates. Moreover, the effect of preform geometries (plain weave and satin weave structure) are also studied for corresponding composite laminates in terms of various mechanical properties. The fracture analysis is carried out to study the effect of resin at the interlacement points through micro-CT analysis. The PC laminate reveals a considerably small matrix-rich and deficient zone in comparison to the FS laminate. The different load tensile, shear, fracture toughness, and drop weight impact test) is applied to the laminates, and corresponding damage behaviour is analysed in the successive stage of failure. The PC composite has shown superior mechanical properties in comparison to the FS composite. The damage that occurs in the laminate is captured through the SEM analysis to identify the prominent mode of failure, such as matrix cracking, fibre breakage, delamination, debonding, and other phenomena.

Keywords: composite, damage, fibre, manufacturing

Procedia PDF Downloads 124
458 Fabrication and Characteristics of Ni Doped Titania Nanotubes by Electrochemical Anodization

Authors: J. Tirano, H. Zea, C. Luhrs

Abstract:

It is well known that titanium dioxide is a semiconductor with several applications in photocatalytic process. Its band gap makes it very interesting in the photoelectrodes manufacturing used in photoelectrochemical cells for hydrogen production, a clean and environmentally friendly fuel. The synthesis of 1D titanium dioxide nanostructures, such as nanotubes, makes possible to produce more efficient photoelectrodes for solar energy to hydrogen conversion. In essence, this is because it increases the charge transport rate, decreasing recombination options. However, its principal constraint is to be mainly sensitive to UV range, which represents a very low percentage of solar radiation that reaches earth's surface. One of the alternatives to modifying the TiO2’s band gap and improving its photoactivity under visible light irradiation is to dope the nanotubes with transition metals. This option requires fabricating efficient nanostructured photoelectrodes with controlled morphology and specific properties able to offer a suitable surface area for metallic doping. Hence, currently one of the central challenges in photoelectrochemical cells is the construction of nanomaterials with a proper band position for driving the reaction while absorbing energy over the VIS spectrum. This research focuses on the synthesis and characterization of Nidoped TiO2 nanotubes for improving its photocatalytic activity in solar energy conversion applications. Initially, titanium dioxide nanotubes (TNTs) with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C - 550 °C. Afterwards, the nanotubes were superficially modified by nickel deposition. Morphology and crystalline phase of the samples were carried out by SEM, EDS and XRD analysis before and after nickel deposition. Determining the photoelectrochemical performance of photoelectrodes is based on typical electrochemical characterization techniques. Also, the morphological characterization associated electrochemical behavior analysis were discussed to establish the effect of nickel nanoparticles modification on the TiO2 nanotubes. The methodology proposed in this research allows using other transition metal for nanotube surface modification.

Keywords: dimensionally stable electrode, nickel nanoparticles, photo-electrode, TiO₂ nanotubes

Procedia PDF Downloads 160
457 Geographic Information System Based Multi-Criteria Subsea Pipeline Route Optimisation

Authors: James Brown, Stella Kortekaas, Ian Finnie, George Zhang, Christine Devine, Neil Healy

Abstract:

The use of GIS as an analysis tool for engineering decision making is now best practice in the offshore industry. GIS enables multidisciplinary data integration, analysis and visualisation which allows the presentation of large and intricate datasets in a simple map-interface accessible to all project stakeholders. Presenting integrated geoscience and geotechnical data in GIS enables decision makers to be well-informed. This paper is a successful case study of how GIS spatial analysis techniques were applied to help select the most favourable pipeline route. Routing a pipeline through any natural environment has numerous obstacles, whether they be topographical, geological, engineering or financial. Where the pipeline is subjected to external hydrostatic water pressure and is carrying pressurised hydrocarbons, the requirement to safely route the pipeline through hazardous terrain becomes absolutely paramount. This study illustrates how the application of modern, GIS-based pipeline routing techniques enabled the identification of a single most-favourable pipeline route crossing of a challenging seabed terrain. Conventional approaches to pipeline route determination focus on manual avoidance of primary constraints whilst endeavouring to minimise route length. Such an approach is qualitative, subjective and is liable to bias towards the discipline and expertise that is involved in the routing process. For very short routes traversing benign seabed topography in shallow water this approach may be sufficient, but for deepwater geohazardous sites, the need for an automated, multi-criteria, and quantitative approach is essential. This study combined multiple routing constraints using modern least-cost-routing algorithms deployed in GIS, hitherto unachievable with conventional approaches. The least-cost-routing procedure begins with the assignment of geocost across the study area. Geocost is defined as a numerical penalty score representing hazard posed by each routing constraint (e.g. slope angle, rugosity, vulnerability to debris flows) to the pipeline. All geocosted routing constraints are combined to generate a composite geocost map that is used to compute the least geocost route between two defined terminals. The analyses were applied to select the most favourable pipeline route for a potential gas development in deep water. The study area is geologically complex with a series of incised, potentially active, canyons carved into a steep escarpment, with evidence of extensive debris flows. A similar debris flow in the future could cause significant damage to a poorly-placed pipeline. Protruding inter-canyon spurs offer lower-gradient options for ascending an escarpment but the vulnerability of periodic failure of these spurs is not well understood. Close collaboration between geoscientists, pipeline engineers, geotechnical engineers and of course the gas export pipeline operator guided the analyses and assignment of geocosts. Shorter route length, less severe slope angles, and geohazard avoidance were the primary drivers in identifying the most favourable route.

Keywords: geocost, geohazard, pipeline route determination, pipeline route optimisation, spatial analysis

Procedia PDF Downloads 384
456 Sensory Ethnography and Interaction Design in Immersive Higher Education

Authors: Anna-Kaisa Sjolund

Abstract:

The doctoral thesis examines interaction design and sensory ethnography as tools to create immersive education environments. In recent years, there has been increasing interest and discussions among researchers and educators on immersive education like augmented reality tools, virtual glasses and the possibilities to utilize them in education at all levels. Using virtual devices as learning environments it is possible to create multisensory learning environments. Sensory ethnography in this study refers to the way of the senses consider the impact on the information dynamics in immersive learning environments. The past decade has seen the rapid development of virtual world research and virtual ethnography. Christine Hine's Virtual Ethnography offers an anthropological explanation of net behavior and communication change. Despite her groundbreaking work, time has changed the users’ communication style and brought new solutions to do ethnographical research. The virtual reality with all its new potential has come to the fore and considering all the senses. Movie and image have played an important role in cultural research for centuries, only the focus has changed in different times and in a different field of research. According to Karin Becker, the role of image in our society is information flow and she found two meanings what the research of visual culture is. The images and pictures are the artifacts of visual culture. Images can be viewed as a symbolic language that allows digital storytelling. Combining the sense of sight, but also the other senses, such as hear, touch, taste, smell, balance, the use of a virtual learning environment offers students a way to more easily absorb large amounts of information. It offers also for teachers’ different ways to produce study material. In this article using sensory ethnography as research tool approaches the core question. Sensory ethnography is used to describe information dynamics in immersive environment through interaction design. Immersive education environment is understood as three-dimensional, interactive learning environment, where the audiovisual aspects are central, but all senses can be taken into consideration. When designing learning environments or any digital service, interaction design is always needed. The question what is interaction design is justified, because there is no simple or consistent idea of what is the interaction design or how it can be used as a research method or whether it is only a description of practical actions. When discussing immersive learning environments or their construction, consideration should be given to interaction design and sensory ethnography.

Keywords: immersive education, sensory ethnography, interaction design, information dynamics

Procedia PDF Downloads 118
455 Transformation of the Institutionality of International Cooperation in Ecuador from 2007 to 2017: 2017: A Case of State Identity Affirmation through Role Performance

Authors: Natalia Carolina Encalada Castillo

Abstract:

As part of an intended radical policy change compared to former administrations in Ecuador, the transformation of the institutionality of international cooperation during the period of President Rafael Correa was considered as a key element for the construction of the state of 'Good Living'. This intention led to several regulatory changes in the reception of cooperation for development, and even the departure of some foreign cooperation agencies. Moreover, Ecuador launched the initiative to become a donor of cooperation towards other developing countries through the ‘South-South Cooperation’ approach. All these changes were institutionalized through the Ecuadorian System of International Cooperation as a new framework to establish rules and policies that guarantee a sovereign management of foreign aid. Therefore, this research project has been guided by two questions: What were the factors that motivated the transformation of the institutionality of international cooperation in Ecuador from 2007 to 2017? and, what were the implications of this transformation in terms of the international role of the country? This paper seeks to answer these questions through Role Theory within a Constructivist meta-theoretical perspective, considering that in this case, changes at the institutional level in the field of cooperation, responded not only to material motivations but also to interests built on the basis of a specific state identity. The latter was only possible to affirm through specific roles such as ‘sovereign recipient of cooperation’ as well as ‘donor of international cooperation’. However, the performance of these roles was problematic as they were not easily accepted by the other actors in the international arena or in the domestic level. In terms of methodology, these dynamics are analyzed in a qualitative way mainly through interpretive analysis of the discourse of high-level decision-makers from Ecuador and other cooperation actors. Complementary to this, document-based research of relevant information as well as interviews have been conducted. Finally, it is concluded that even if material factors such as infrastructure needs, trade and investment interests, as well as reinforcement of state control and monitoring of cooperation flows, motivated the institutional transformation of international cooperation in Ecuador; the essential basis of these changes was the search for a new identity for the country to be projected in the international arena. This identity started to be built but continues to be unstable. Therefore, it is important to potentiate the achievements of the new international cooperation policies, and review their weaknesses, so that non-reimbursable cooperation funds received as well as ‘South-South cooperation’ actions, contribute effectively to national objectives.

Keywords: Ecuador, international cooperation, Role Theory, state identity

Procedia PDF Downloads 184
454 Nonlinear Finite Element Analysis of Concrete Filled Steel I-Girder Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura

Abstract:

Concrete filled steel I-girder (CFIG) bridge was proposed and the bending and shear strength was confirmed by experiments. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used to the intermediate support of a continuous girder. Three-dimensional finite element models were established to simulate the bending and shear behaviors of CFIG and to clarify the load transfer mechanism. Steel plates and filled concrete were modeled as a three-dimensional 8-node solid element and steel reinforcement bars as a three-dimensional 2-node truss element. The elements were mostly divided into the 50 x 50 mm mesh size. The non-linear stress-strain relation is assumed for concrete in compression including the softening effect after the peak, and the stress increases linearly for concrete in tension until concrete cracking but then decreases due to tension stiffening effect. The stress-strain relation for steel plates was tri-linear and that for reinforcements was bi-linear. The concrete and the steel plates were rigidly connected. The developed FEM model was applied to simulate and analysis the bending behaviors of the CFIG specimens. The vertical displacements and the strains of steel plates and the filled concrete obtained by FEM agreed very well with the test results until the yield load. The specimens collapsed when the upper flange buckled or the concrete spalled off. These phenomena cannot be properly analyzed by FEM, which produces a small discrepancy at the ultimate states. The FEM model was also applied to simulate and analysis the shear tests of the CFIG specimens. The vertical displacements and strains of steel and concrete calculated by FEM model agreed well with the test results. A truss action was confirmed by the FEM and the experiment, clarifying that shear forces were mainly resisted by the tension strut of the steel plate and the compression strut of the filled concrete acting in the diagonal direction. A trail design with the CFIG was carried out for a four-span continuous highway bridge and the design method was established. Construction cost was estimated about 12% lower than that of a conventional steel I-section girder.

Keywords: concrete filled steel I-girder, bending strength, FEM, limit states design, steel I-girder, shear strength

Procedia PDF Downloads 200
453 Use of Activated Carbon from Olive Stone for CO₂ Capture in Porous Mortars

Authors: A. González-Caro, A. M. Merino-Lechuga, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodríguez

Abstract:

Climate change is one of the most significant issues today. Since the 19th century, the rise in temperature has not only been due to natural change, but also to human activities, which have been the main cause of climate change, mainly due to the burning of fossil fuels such as coal, oil and gas. The boom in the construction sector in recent years is also one of the main contributors to CO₂ emissions into the atmosphere; for example, for every tonne of cement produced, 1 tonne of CO₂ is emitted into the atmosphere. Most of the research being carried out in this sector is focused on reducing the large environmental impact generated during the manufacturing process of building materials. In detail, this research focuses on the recovery of waste from olive oil mills. Spain is the world's largest producer of olive oil, and this sector generates a large amount of waste and by-products such as olive pits, “alpechín” or “alpeorujo”. This olive stone by means of a pyrosilisis process gives rise to the production of active carbon. The process causes the carbon to develop many internal spaces. This study is based on the manufacture of porous mortars with Portland cement and natural limestone sand, with an addition of 5% and 10% of activated carbon. Two curing environments were used: i) dry chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration (approximately 0.04%); ii) accelerated carbonation chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration of 5%. In addition to eliminating waste from an industry, the aim of this study is to reduce atmospheric CO₂. For this purpose, first, a physicochemical and mineralogical characterisation of all raw materials was carried out, using techniques such as fluorescence and X-ray diffraction. The particle size and specific surface area of the activated carbon were determined. Subsequently, tests were carried out on the hardened mortar, such as thermogravimetric analysis (to determine the percentage of CO₂ capture), as well as mechanical properties, density, porosity, and water absorption. It was concluded that the activated carbon acts as a sink for CO₂, causing it to be trapped inside the voids. This increases CO₂ capture by 300% with the addition of 10% activated carbon at 7 days of curing. There was an increase in compressive strength of 17.5% with the CO₂ chamber after 7 days of curing using 10% activated carbon compared to the dry chamber.

Keywords: olive stone, activated carbon, porous mortar, CO₂ capture, economy circular

Procedia PDF Downloads 37
452 Innovative Grafting of Polyvinylpyrrolidone onto Polybenzimidazole Proton Exchange Membranes for Enhanced High-Temperature Fuel Cell Performance

Authors: Zeyu Zhou, Ziyu Zhao, Xiaochen Yang, Ling AI, Heng Zhai, Stuart Holmes

Abstract:

As a promising sustainable alternative to traditional fossil fuels, fuel cell technology is highly favoured due to its enhanced working efficiency and reduced emissions. In the context of high-temperature fuel cells (operating above 100 °C), the most commonly used proton exchange membrane (PEM) is the Polybenzimidazole (PBI) doped phosphoric acid (PA) membrane. Grafting is a promising strategy to advance PA-doped PBI PEM technology. The existing grafting modification on PBI PEMs mainly focuses on grafting phosphate-containing or alkaline groups onto the PBI molecular chains. However, quaternary ammonium-based grafting approaches face a common challenge. To initiate the N-alkylation reaction, deacidifying agents such as NaH, NaOH, KOH, K2CO3, etc., can lead to ionic crosslinking between the quaternary ammonium group and PBI. Polyvinylpyrrolidone (PVP) is another widely used polymer, the N-heterocycle groups within PVP endow it with a significant ability to absorb PA. Recently, PVP has attracted substantial attention in the field of fuel cells due to its reduced environmental impact and impressive fuel cell performance. However, due to the the poor compatibility of PVP in PBI, few research apply PVP in PA-doped PBI PEMs. This work introduces an innovative strategy to graft PVP onto PBI to form a network-like polymer. Due to the absence of quaternary ammonium groups, PVP does not pose issues related to crosslinking with PBI. Moreover, the nitrogen-containing functional groups on PVP provide PBI with a robust phosphoric acid retention ability. The nuclear magnetic resonance (NMR) hydrogen spectrum analysis results indicate the successful completion of the grafting reaction where N-alkylation reactions happen on both sides of the grafting agent 1,4-bis(chloromethyl)benzene. On one side, the reaction takes place with the hydrogen atoms on the imidazole groups of PBI, while on the other side, it reacts with the terminal amino group of PVP. The XPS results provide additional evidence from the perspective of the element. On synthesized PBI-g-PVP surfaces, there is an absence of chlorine (chlorine in grafting agent 1,4-bis(chloromethyl)benzene is substituted) element but a presence of sulfur element (sulfur element in terminal amino PVP appears in PBI), which demonstrates the occurrence of the grafting reaction and PVP is successfully grafted onto PBI. Prepare these modified membranes into MEA. It was found that during the fuel cell operation, all the grafted membranes showed substantial improvement in maximum current density and peak power density compared to unmodified one. For PBI-g-PVP 30, with a grafting degree of 22.4%, the peak power density reaches 1312 mW cm⁻², marking a 59.6% enhancement compared to the pristine PBI membrane. The improvement is caused by the improved PA binding ability of the membrane after grafting. The AST test result shows that the grafting membranes have better long-term durability and performance than unmodified membranes attributed to the presence of added PA binding sites, which can effectively prevent the PA leaching caused by proton migration. In conclusion, the test results indicate that grafting PVP onto PBI is a promising strategy which can effectively improve the fuel cell performance.

Keywords: fuel cell, grafting modification, PA doping ability, PVP

Procedia PDF Downloads 54