Search results for: neural style transfer
258 Teacher Professional Development in Saudi Arabia through the Implementation of Universal Design for Learning
Authors: Majed A. Alsalem
Abstract:
Universal Design for Learning (UDL) is common theme in education across the US and an influential model and framework that enables students in general and particularly students who are deaf and hard of hearing (DHH) to access the general education curriculum. UDL helps teachers determine how information will be presented to students and how to keep students engaged. Moreover, UDL helps students to express their understanding and knowledge to others. UDL relies on technology to promote students' interaction with content and their communication of knowledge. This study included 120 DHH students who received daily instruction based on UDL principles. This study presents the results of the study and discusses its implications for the integration of UDL in day-to-day practice as well as in the country's education policy. UDL is a Western concept that began and grew in the US, and it has just begun to transfer to other countries such as Saudi Arabia. It will be very important to researchers, practitioners, and educators to see how UDL is being implemented in a new place with a different culture. UDL is a framework that is built to provide multiple means of engagement, representation, and action and expression that should be part of curricula and lessons for all students. The purpose of this study is to investigate the variables associated with the implementation of UDL in Saudi Arabian schools and identify the barriers that could prevent the implementation of UDL. Therefore, this study used a mixed methods design that use both quantitative and qualitative methods. More insights will be gained by including both quantitative and qualitative rather than using a single method. By having methods that different concepts and approaches, the databases will be enriched. This study uses levels of collecting date through two stages in order to insure that the data comes from multiple ways to mitigate validity threats and establishing trustworthiness in the findings. The rationale and significance of this study is that it will be the first known research that targets UDL in Saudi Arabia. Furthermore, it will deal with UDL in depth to set the path for further studies in the Middle East. From a perspective of content, this study considers teachers’ implementation knowledge, skills, and concerns of implementation. This study deals with effective instructional designs that have not been presented in any conferences, workshops, teacher preparation and professional development programs in Saudi Arabia. Specifically, Saudi Arabian schools are challenged to design inclusive schools and practices as well as to support all students’ academic skills development. The total participants in stage one were 336 teachers of DHH students. The results of the intervention indicated significant differences among teachers before and after taking the training sessions associated with their understanding and level of concern. Teachers have indicated interest in knowing more about UDL and adopting it into their practices; they reported that UDL has benefits that will enhance their performance for supporting student learning.Keywords: deaf and hard of hearing, professional development, Saudi Arabia, universal design for learning
Procedia PDF Downloads 432257 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data
Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora
Abstract:
Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.Keywords: drilling optimization, geological formations, machine learning, rate of penetration
Procedia PDF Downloads 131256 A Study on the Acquisition of Chinese Classifiers by Vietnamese Learners
Authors: Quoc Hung Le Pham
Abstract:
In the field of language study, classifier is an interesting research feature. In the world’s languages, some languages have classifier system, some do not. Mandarin Chinese and Vietnamese languages are a rich classifier system, however, because of the language system, the cognitive, cultural differences, so that the syntactic structure of classifier of them also dissimilar. When using Mandarin Chinese classifiers must collocate with nouns or verbs, in the lexical category it is not like nouns or verbs, belong to the open class. But some scholars believe that Mandarin Chinese measure words are similar to English and other Indo European languages. The word hanging on the structure and word formation (suffix), is a closed class. Compared to other languages, such as Chinese, Vietnamese, Thai and other Asian languages are still belonging to the classifier language’s second type, this type of language is classifier, it is in the majority of quantity must exist, and following deictic, anaphoric or quantity appearing together, not separation between its modified noun, also known as numeral classifier language. Main syntactic structure of Chinese classifiers are as follows: ‘quantity+measure+noun’, ‘pronoun+measure+noun’, ‘pronoun+quantity+measure+noun’, ‘prefix+quantity+measure +noun’, ‘quantity +adjective + measure +noun’, ‘ quantity (above 10 whole number), + duo (多)measure +noun’, ‘ quantity (around 10) + measure + duo (多) +noun’. Main syntactic structure of Vietnamese classifiers are: ‘quantity+measure+noun’, ‘ measure+noun+pronoun’, ‘quantity+measure+noun+pronoun’, ‘measure+noun+prefix+ quantity’, ‘quantity+measure+noun+adjective', ‘duo (多) +quanlity+measure+noun’, ‘quantity+measure+adjective+pronoun (quantity word could not be 1)’, ‘measure+adjective+pronoun’, ‘measure+pronoun’. In daily life, classifiers are commonly used, if Chinese learners failed to standardize this using catergory, because the negative impact might occur on their verbal communication. The richness of the Chinese classifier system contributes to the complexity in the study of the system by foreign learners, especially in the inter language of Vietnamese learners. As above mentioned, Vietnamese language also has a rich system of classifiers, however, the basic structure order of two languages are similar but both still have differences. These similarities and dissimilarities between Chinese and Vietnamese classifier systems contribute significantly to the common errors made by Vietnamese students while they acquire Chinese, which are distinct from the errors made by students from the other language background. This article from a comparative perspective of language, has an orientation towards Chinese and Vietnamese languages commonly used in classifiers semantics and structural form two aspects. This comparative study aims to identity Vietnamese students while learning Chinese classifiers may face some negative transference of mother language, beside that through the analysis of the classifiers questionnaire, find out the causes and patterns of the errors they made. As the preliminary analysis shows, Vietnamese students while learning Chinese classifiers made some errors such as: overuse classifier ‘ge’(个); misuse the other classifiers ‘*yi zhang ri ji’(yi pian ri ji), ‘*yi zuo fang zi’(yi jian fang zi), ‘*si zhang jin pai’(si mei jin pai); homonym words ‘dui, shuang, fu, tao’ (对、双、副、套), ‘ke, li’ (颗、粒).Keywords: acquisition, classifiers, negative transfer, Vietnamse learners
Procedia PDF Downloads 452255 Is Brain Death Reversal Possible in Near Future: Intrathecal Sodium Nitroprusside (SNP) Superfusion in Brain Death Patients=The 10,000 Fold Effect
Authors: Vinod Kumar Tewari, Mazhar Husain, Hari Kishan Das Gupta
Abstract:
Background: Primary or secondary brain death is also accompanied with vasospasm of the perforators other than tissue disruption & further exaggerates the anoxic damage, in the form of neuropraxia. In normal conditions the excitatory impulse propagates as anterograde neurotransmission (ANT) and at the level of synapse, glutamate activates NMDA receptors on postsynaptic membrane. Nitric oxide (NO) is produced by Nitric oxide Synthetase (NOS) in postsynaptic dendride or cell body and travels backwards across a chemical synapse to bind to the axon terminal of a presynaptic neuron for regulation of ANT this process is called as the retrograde neurotransmission (RNT). Thus the primary function of NO is RNT and the purpose of RNT is regulation of chemical neurotransmission at synapse. For this reason, RNT allows neural circuits to create feedback loops. The haem is the ligand binding site of NO receptor (sGC) at presynaptic membrane. The affinity of haem exhibits > 10,000-fold excess for NO than Oxygen (THE 10,000 FOLD EFFECT). In pathological conditions ANT, normal synaptic activity including RNT is absent. NO donors like sodium nitroprusside (SNP) releases NO by activating NOS at the level of postsynaptic area. NO now travels backwards across a chemical synapse to bind to the haem of NO receptor at axon terminal of a presynaptic neuron as in normal condition. NO now acts as impulse generator (at presynaptic membrane) thus bypasses the normal ANT. Also the arteriolar perforators are having Nitric Oxide Synthetase (NOS) at the adventitial side (outer border) on which sodium nitroprusside (SNP) acts; causing release of Nitric Oxide (NO) which vasodilates the perforators causing gush of blood in brain’s tissue and reversal of brain death. Objective: In brain death cases we only think for various transplantations but this study being a pilot study reverses some criteria of brain death by vasodilating the arteriolar perforators. To study the effect of intrathecal sodium nitroprusside (IT SNP) in cases of brain death in which: 1. Retrograde transmission = assessed by the hyperacute timings of reversal 2. The arteriolar perforator vasodilatation caused by NO and the maintenance of reversal of brain death reversal. Methods: 35 year old male, who became brain death after head injury and has not shown any signs of improvement after every maneuver for 6 hours, a single superfusion done by SNP via transoptic canal route for quadrigeminal cistern and cisternal puncture for IV ventricular with SNP done. Results: He showed spontaneous respiration (7 bouts) with TCD studies showing start of pulsations of various branches of common carotid arteries. Conclusions: In future we can give this SNP via transoptic canal route and in IV ventricle before declaring the body to be utilized for transplantations or dead or in broader way we can say that in near future it is possible to revert back from brain death or we have to modify our criterion.Keywords: brain death, intrathecal sodium nitroprusside, TCD studies, perforators, vasodilatations, retrograde transmission, 10, 000 fold effect
Procedia PDF Downloads 402254 Applying the View of Cognitive Linguistics on Teaching and Learning English at UFLS - UDN
Authors: Tran Thi Thuy Oanh, Nguyen Ngoc Bao Tran
Abstract:
In the view of Cognitive Linguistics (CL), knowledge and experience of things and events are used by human beings in expressing concepts, especially in their daily life. The human conceptual system is considered to be fundamentally metaphorical in nature. It is also said that the way we think, what we experience, and what we do everyday is very much a matter of language. In fact, language is an integral factor of cognition in that CL is a family of broadly compatible theoretical approaches sharing the fundamental assumption. The relationship between language and thought, of course, has been addressed by many scholars. CL, however, strongly emphasizes specific features of this relation. By experiencing, we receive knowledge of lives. The partial things are ideal domains, we make use of all aspects of this domain in metaphorically understanding abstract targets. The paper refered to applying this theory on pragmatics lessons for major English students at University of Foreign Language Studies - The University of Da Nang, Viet Nam. We conducted the study with two third – year students groups studying English pragmatics lessons. To clarify this study, the data from these two classes were collected for analyzing linguistic perspectives in the view of CL and traditional concepts. Descriptive, analytic, synthetic, comparative, and contrastive methods were employed to analyze data from 50 students undergoing English pragmatics lessons. The two groups were taught how to transfer the meanings of expressions in daily life with the view of CL and one group used the traditional view for that. The research indicated that both ways had a significant influence on students' English translating and interpreting abilities. However, the traditional way had little effect on students' understanding, but the CL view had a considerable impact. The study compared CL and traditional teaching approaches to identify benefits and challenges associated with incorporating CL into the curriculum. It seeks to extend CL concepts by analyzing metaphorical expressions in daily conversations, offering insights into how CL can enhance language learning. The findings shed light on the effectiveness of applying CL in teaching and learning English pragmatics. They highlight the advantages of using metaphorical expressions from daily life to facilitate understanding and explore how CL can enhance cognitive processes in language learning in general and teaching English pragmatics to third-year students at the UFLS - UDN, Vietnam in personal. The study contributes to the theoretical understanding of the relationship between language, cognition, and learning. By emphasizing the metaphorical nature of human conceptual systems, it offers insights into how CL can enrich language teaching practices and enhance students' comprehension of abstract concepts.Keywords: cognitive linguisitcs, lakoff and johnson, pragmatics, UFLS
Procedia PDF Downloads 36253 The Value of Computerized Corpora in EFL Textbook Design: The Case of Modal Verbs
Authors: Lexi Li
Abstract:
This study aims to contribute to the field of how computer technology can be exploited to enhance EFL textbook design. Specifically, the study demonstrates how computerized native and learner corpora can be used to enhance modal verb treatment in EFL textbooks. The linguistic focus is will, would, can, could, may, might, shall, should, must. The native corpus is the spoken component of BNC2014 (hereafter BNCS2014). The spoken part is chosen because the pedagogical purpose of the textbooks is communication-oriented. Using the standard query option of CQPweb, 5% of each of the nine modals was sampled from BNCS2014. The learner corpus is the POS-tagged Ten-thousand English Compositions of Chinese Learners (TECCL). All the essays under the “secondary school” section were selected. A series of five secondary coursebooks comprise the textbook corpus. All the data in both the learner and the textbook corpora are retrieved through the concordance functions of WordSmith Tools (version, 5.0). Data analysis was divided into two parts. The first part compared the patterns of modal verbs in the textbook corpus and BNC2014 with respect to distributional features, semantic functions, and co-occurring constructions to examine whether the textbooks reflect the authentic use of English. Secondly, the learner corpus was compared with the textbook corpus in terms of the use (distributional features, semantic functions, and co-occurring constructions) in order to examine the degree of influence of the textbook on learners’ use of modal verbs. Moreover, the learner corpus was analyzed for the misuse (syntactic errors, e.g., she can sings*.) of the nine modal verbs to uncover potential difficulties that confront learners. The results indicate discrepancies between the textbook presentation of modal verbs and authentic modal use in natural discourse in terms of distributions of frequencies, semantic functions, and co-occurring structures. Furthermore, there are consistent patterns of use between the learner corpus and the textbook corpus with respect to the three above-mentioned aspects, except could, will and must, partially confirming the correlation between the frequency effects and L2 grammar acquisition. Further analysis reveals that the exceptions are caused by both positive and negative L1 transfer, indicating that the frequency effects can be intercepted by L1 interference. Besides, error analysis revealed that could, would, should and must are the most difficult for Chinese learners due to both inter-linguistic and intra-linguistic interference. The discrepancies between the textbook corpus and the native corpus point to a need to adjust the presentation of modal verbs in the textbooks in terms of frequencies, different meanings, and verb-phrase structures. Along with the adjustment of modal verb treatment based on authentic use, it is important for textbook writers to take into consideration the L1 interference as well as learners’ difficulties in their use of modal verbs. The present study is a methodological showcase of the combination both native and learner corpora in the enhancement of EFL textbook language authenticity and appropriateness for learners.Keywords: EFL textbooks, learner corpus, modal verbs, native corpus
Procedia PDF Downloads 124252 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 30251 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network
Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu
Abstract:
Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning
Procedia PDF Downloads 130250 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk
Authors: Moses Jenkins
Abstract:
Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.Keywords: insulation, condensation, masonry, historic
Procedia PDF Downloads 173249 Modification of Magneto-Transport Properties of Ferrimagnetic Mn₄N Thin Films by Ni Substitution and Their Magnetic Compensation
Authors: Taro Komori, Toshiki Gushi, Akihito Anzai, Taku Hirose, Kaoru Toko, Shinji Isogami, Takashi Suemasu
Abstract:
Ferrimagnetic antiperovskite Mn₄₋ₓNiₓN thin film exhibits both small saturation magnetization and rather large perpendicular magnetic anisotropy (PMA) when x is small. Both of them are suitable features for application to current induced domain wall motion devices using spin transfer torque (STT). In this work, we successfully grew antiperovskite 30-nm-thick Mn₄₋ₓNiₓN epitaxial thin films on MgO(001) and STO(001) substrates by MBE in order to investigate their crystalline qualities and magnetic and magneto-transport properties. Crystalline qualities were investigated by X-ray diffraction (XRD). The magnetic properties were measured by vibrating sample magnetometer (VSM) at room temperature. Anomalous Hall effect was measured by physical properties measurement system. Both measurements were performed at room temperature. Temperature dependence of magnetization was measured by VSM-Superconducting quantum interference device. XRD patterns indicate epitaxial growth of Mn₄₋ₓNiₓN thin films on both substrates, ones on STO(001) especially have higher c-axis orientation thanks to greater lattice matching. According to VSM measurement, PMA was observed in Mn₄₋ₓNiₓN on MgO(001) when x ≤ 0.25 and on STO(001) when x ≤ 0.5, and MS decreased drastically with x. For example, MS of Mn₃.₉Ni₀.₁N on STO(001) was 47.4 emu/cm³. From the anomalous Hall resistivity (ρAH) of Mn₄₋ₓNiₓN thin films on STO(001) with the magnetic field perpendicular to the plane, we found out Mr/MS was about 1 when x ≤ 0.25, which suggests large magnetic domains in samples and suitable features for DW motion device application. In contrast, such square curves were not observed for Mn₄₋ₓNiₓN on MgO(001), which we attribute to difference in lattice matching. Furthermore, it’s notable that although the sign of ρAH was negative when x = 0 and 0.1, it reversed positive when x = 0.25 and 0.5. The similar reversal occurred for temperature dependence of magnetization. The magnetization of Mn₄₋ₓNiₓN on STO(001) increases with decreasing temperature when x = 0 and 0.1, while it decreases when x = 0.25. We considered that these reversals were caused by magnetic compensation which occurred in Mn₄₋ₓNiₓN between x = 0.1 and 0.25. We expect Mn atoms of Mn₄₋ₓNiₓN crystal have larger magnetic moments than Ni atoms do. The temperature dependence stated above can be explained if we assume that Ni atoms preferentially occupy the corner sites, and their magnetic moments have different temperature dependence from Mn atoms at the face-centered sites. At the compensation point, Mn₄₋ₓNiₓN is expected to show very efficient STT and ultrafast DW motion with small current density. What’s more, if angular momentum compensation is found, the efficiency will be best optimized. In order to prove the magnetic compensation, X-ray magnetic circular dichroism will be performed. Energy dispersive X-ray spectrometry is a candidate method to analyze the accurate composition ratio of samples.Keywords: compensation, ferrimagnetism, Mn₄N, PMA
Procedia PDF Downloads 134248 The Politics of Foreign Direct Investment for Socio-Economic Development in Nigeria: An Assessment of the Fourth Republic Strategies (1999 - 2014)
Authors: Muritala Babatunde Hassan
Abstract:
In the contemporary global political economy, foreign direct investment (FDI) is gaining currency on daily basis. Notably, the end of the Cold War has brought about the dominance of neoliberal ideology with its mantra of private-sector-led economy. As such, nation-states now see FDI attraction as an important element in their approach to national development. Governments and policy makers are preoccupying themselves with unraveling the best strategies to not only attract more FDI but also to attain the desired socio-economic development status. In Nigeria, the perceived development potentials of FDI have brought about aggressive hunt for foreign investors, most especially since transition to civilian rule in May 1999. Series of liberal and market oriented strategies are being adopted not only to attract foreign investors but largely to stimulate private sector participation in the economy. It is on this premise that this study interrogates the politics of FDI attraction for domestic development in Nigeria between 1999 and 2014, with the ultimate aim of examining the nexus between regime type and the ability of a state to attract and benefit from FDI. Building its analysis within the framework of institutional utilitarianism, the study posits that the essential FDI strategies for achieving the greatest happiness for the greatest number of Nigerians are political not economic. Both content analysis and descriptive survey methodology were employed in carrying out the study. Content analysis involves desk review of literatures that culminated in the development of the study’s conceptual and theoretical framework of analysis. The study finds no significant relationship between transition to democracy and FDI inflows in Nigeria, as most of the attracted investments during the period of the study were market and resource seeking as was the case during the military regime, thereby contributing minimally to the socio-economic development of the country. It is also found that the country placed much emphasis on liberalization and incentives for FDI attraction at the neglect of improving the domestic investment environment. Consequently, poor state of infrastructure, weak institutional capability and insecurity were identified as the major factors seriously hindering the success of Nigeria in exploiting FDI for domestic development. Given the reality of the currency of FDI as a vector of economic globalization and that Nigeria is trailing the line of private-sector-led approach to development, it is recommended that emphasis should be placed on those measures aimed at improving the infrastructural facilities, building solid institutional framework, enhancing skill and technological transfer and coordinating FDI promotion activities by different agencies and at different levels of government.Keywords: foreign capital, politics, socio-economic development, FDI attraction strategies
Procedia PDF Downloads 164247 Exploring the Application of IoT Technology in Lower Limb Assistive Devices for Rehabilitation during the Golden Period of Stroke Patients with Hemiplegia
Authors: Ching-Yu Liao, Ju-Joan Wong
Abstract:
Recent years have shown a trend of younger stroke patients and an increase in ischemic strokes with the rise in stroke incidence. This has led to a growing demand for telemedicine, particularly during the COVID-19 pandemic, which has made the need for telemedicine even more urgent. This shift in healthcare is also closely related to advancements in Internet of Things (IoT) technology. Stroke-induced hemiparesis is a significant issue for patients. The medical community believes that if intervention occurs within three to six months of stroke onset, 80% of the residual effects can be restored to normal, a period known as the stroke golden period. During this time, patients undergo treatment and rehabilitation, and neural plasticity is at its best. Lower limb rehabilitation for stroke generally includes exercises such as support standing and walking posture, typically involving the healthy limb to guide the affected limb to achieve rehabilitation goals. Existing gait training aids in hospitals usually involve balance gait, sitting posture training, and precise muscle control, effectively addressing issues of poor gait, insufficient muscle activity, and inability to train independently during recovery. However, home training aids, such as braced and wheeled devices, often rely on the healthy limb to pull the affected limb, leading to lower usage of the affected limb, worsening circular walking, and compensatory movement issues. IoT technology connects devices via the internet to record, receive data, provide feedback, and adjust equipment for intelligent effects. Therefore, this study aims to explore how IoT can be integrated into existing gait training aids to monitor and sensor home rehabilitation movements, improve gait training compensatory issues through real-time feedback, and enable healthcare professionals to quickly understand patient conditions and enhance medical communication. To understand the needs of hemiparetic patients, a review of relevant literature from the past decade will be conducted. From the perspective of user experience, participant observation will be used to explore the use of home training aids by stroke patients and therapists, and interviews with physical therapists will be conducted to obtain professional opinions and practical experiences. Design specifications for home training aids for hemiparetic patients will be summarized. Applying IoT technology to lower limb training aids for stroke hemiparesis can help promote walking function recovery in hemiparetic patients, reduce muscle atrophy, and allow healthcare professionals to immediately grasp patient conditions and adjust gait training plans based on collected and analyzed information. Exploring these potential development directions provides a valuable reference for the further application of IoT technology in the field of medical rehabilitation.Keywords: stroke, hemiplegia, rehabilitation, gait training, internet of things technology
Procedia PDF Downloads 29246 An Appraisal of Mitigation and Adaptation Measures under Paris Agreement 2015: Developing Nations' Pie
Authors: Olubisi Friday Oluduro
Abstract:
The Paris Agreement 2015, the result of negotiations under the United Nations Framework Convention on Climate Change (UNFCCC), after Kyoto Protocol expiration, sets a long-term goal of limiting the increase in the global average temperature to well below 2 degrees Celsius above pre-industrial levels, and of pursuing efforts to limiting this temperature increase to 1.5 degrees Celsius. An advancement on the erstwhile Kyoto Protocol which sets commitments to only a limited number of Parties to reduce their greenhouse gas (GHGs) emissions, it includes the goal to increase the ability to adapt to the adverse impacts of climate change and to make finance flows consistent with a pathway towards low GHGs emissions. For it achieve these goals, the Agreement requires all Parties to undertake efforts towards reaching global peaking of GHG emissions as soon as possible and towards achieving a balance between anthropogenic emissions by sources and removals by sinks in the second half of the twenty-first century. In addition to climate change mitigation, the Agreement aims at enhancing adaptive capacity, strengthening resilience and reducing the vulnerability to climate change in different parts of the world. It acknowledges the importance of addressing loss and damage associated with the adverse of climate change. The Agreement also contains comprehensive provisions on support to be provided to developing countries, which includes finance, technology transfer and capacity building. To ensure that such supports and actions are transparent, the Agreement contains a number reporting provisions, requiring parties to choose the efforts and measures that mostly suit them (Nationally Determined Contributions), providing for a mechanism of assessing progress and increasing global ambition over time by a regular global stocktake. Despite the somewhat global look of the Agreement, it has been fraught with manifold limitations threatening its very existential capability to produce any meaningful result. Considering these obvious limitations some of which were the very cause of the failure of its predecessor—the Kyoto Protocol—such as the non-participation of the United States, non-payment of funds into the various coffers for appropriate strategic purposes, among others. These have left the developing countries largely threatened eve the more, being more vulnerable than the developed countries, which are really responsible for the climate change scourge. The paper seeks to examine the mitigation and adaptation measures under the Paris Agreement 2015, appraise the present situation since the Agreement was concluded and ascertain whether the developing countries have been better or worse off since the Agreement was concluded, and examine why and how, while projecting a way forward in the present circumstance. It would conclude with recommendations towards ameliorating the situation.Keywords: mitigation, adaptation, climate change, Paris agreement 2015, framework
Procedia PDF Downloads 157245 The Effect of Lead(II) Lone Electron Pair and Non-Covalent Interactions on the Supramolecular Assembly and Fluorescence Properties of Pb(II)-Pyrrole-2-Carboxylato Polymer
Authors: M. Kowalik, J. Masternak, K. Kazimierczuk, O. V. Khavryuchenko, B. Kupcewicz, B. Barszcz
Abstract:
Recently, the growing interest of chemists in metal-organic coordination polymers (MOCPs) is primarily derived from their intriguing structures and potential applications in catalysis, gas storage, molecular sensing, ion exchanges, nonlinear optics, luminescence, etc. Currently, we are devoting considerable effort to finding the proper method of synthesizing new coordination polymers containing S- or N-heteroaromatic carboxylates as linkers and characterizing the obtained Pb(II) compounds according to their structural diversity, luminescence, and thermal properties. The choice of Pb(II) as the central ion of MOCPs was motivated by several reasons mentioned in the literature: i) a large ionic radius allowing for a wide range of coordination numbers, ii) the stereoactivity of the 6s2 lone electron pair leading to a hemidirected or holodirected geometry, iii) a flexible coordination environment, and iv) the possibility to form secondary bonds and unusual non-covalent interactions, such as classic hydrogen bonds and π···π stacking interactions, as well as nonconventional hydrogen bonds and rarely reported tetrel bonds, Pb(lone pair)···π interactions, C–H···Pb agostic-type interactions or hydrogen bonds, and chelate ring stacking interactions. Moreover, the construction of coordination polymers requires the selection of proper ligands acting as linkers, because we are looking for materials exhibiting different network topologies and fluorescence properties, which point to potential applications. The reaction of Pb(NO₃)₂ with 1H-pyrrole-2-carboxylic acid (2prCOOH) leads to the formation of a new four-nuclear Pb(II) polymer, [Pb4(2prCOO)₈(H₂O)]ₙ, which has been characterized by CHN, FT-IR, TG, PL and single-crystal X-ray diffraction methods. In view of the primary Pb–O bonds, Pb1 and Pb2 show hemidirected pentagonal pyramidal geometries, while Pb2 and Pb4 display hemidirected octahedral geometries. The topology of the strongest Pb–O bonds was determined as the (4·8²) fes topology. Taking the secondary Pb–O bonds into account, the coordination number of Pb centres increased, Pb1 exhibited a hemidirected monocapped pentagonal pyramidal geometry, Pb2 and Pb4 exhibited a holodirected tricapped trigonal prismatic geometry, and Pb3 exhibited a holodirected bicapped trigonal prismatic geometry. Moreover, the Pb(II) lone pair stereoactivity was confirmed by DFT calculations. The 2D structure was expanded into 3D by the existence of non-covalent O/C–H···π and Pb···π interactions, which was confirmed by the Hirshfeld surface analysis. The above mentioned interactions improve the rigidity of the structure and facilitate the charge and energy transfer between metal centres, making the polymer a promising luminescent compound.Keywords: coordination polymers, fluorescence properties, lead(II), lone electron pair stereoactivity, non-covalent interactions
Procedia PDF Downloads 145244 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media
Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani
Abstract:
The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction
Procedia PDF Downloads 147243 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique
Authors: Stefano Iannello, Massimiliano Materazzi
Abstract:
Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray
Procedia PDF Downloads 172242 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center
Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael
Abstract:
Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency
Procedia PDF Downloads 33241 Funding Innovative Activities in Firms: The Ownership Structure and Governance Linkage - Evidence from Mongolia
Authors: Ernest Nweke, Enkhtuya Bavuudorj
Abstract:
The harsh realities of the scandalous failure of several notable corporations in the past two decades have inextricably resulted in a surge in corporate governance studies. Nevertheless, little or no attention has been paid to corporate governance studies in Mongolian firms and much less to the comprehension of the correlation among ownership structure, corporate governance mechanisms and trend of innovative activities. Innovation is the bed rock of enterprise success. However, the funding and support for innovative activities in many firms are to a great extent determined by the incentives provided by the firm’s internal and external governance mechanisms. Mongolia is an East Asian country currently undergoing a fast-paced transition from socialist to democratic system and it is a widely held view that private ownership as against public ownership fosters innovation. Hence, following the privatization policy of Mongolian Government which has led to the transfer of the ownership of hitherto state controlled and state directed firms to private individuals and organizations, expectations are high that sufficient motivation would be provided for firm managers to engage in innovative activities. This research focuses on the relationship between ownership structure, corporate governance on one hand and the level of innovation on the hand. The paper is empirical in nature and derives data from both reliable secondary and primary sources. Secondary data for the study was in respect of ownership structure of Mongolian listed firms and innovation trend in Mongolia generally. These were analyzed using tables, charts, bars and percentages. Personal interviews and surveys were held to collect primary data. Primary data was in respect of corporate governance practices in Mongolian firms and were collected using structured questionnaire. Out of a population of three hundred and twenty (320) companies listed on the Mongolian Stock Exchange (MSE), a sample size of thirty (30) randomly selected companies was utilized for the study. Five (5) management level employees were surveyed in each selected firm giving a total of one hundred and fifty (150) respondents. Data collected were analyzed and research hypotheses tested using Chi-Square test statistic. Research results showed that corporate governance mechanisms were better and have significantly improved overtime in privately held as opposed to publicly owned firms. Consequently, the levels of innovation in privately held firms were considerably higher. It was concluded that a significant and positive relationship exists between private ownership and good corporate governance on one hand and the level of funding provided for innovative activities in Mongolian firms on the other hand.Keywords: corporate governance, innovation, ownership structure, stock exchange
Procedia PDF Downloads 195240 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms
Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee
Abstract:
Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences
Procedia PDF Downloads 272239 The Implementation of Science Park Policy and Their Impacts on Regional Economic Development in Emerging Economy Country: Case of Thailand
Authors: Muttamas Wongwanich, John R. Bryson, Catherine E. Harris
Abstract:
Science parks are an essential component of localized innovation ecosystems. Science Parks have played a critical role in enhancing local innovation ecosystems in developed market economies. Attempts have been made to replicate best practice in other national contexts. To our best knowledge, the study about the development of Science Parks has not been undertaken on the economic impact on the developing countries. Further research is required to understand the adoption of Science Park policies in developing and emerging economies. This study explores the implementation of Science Park policy and its impacts on economic growth and development in Thailand, focusing on the relationship between universities and businesses. The Thailand context is essential. Thailand’s economy is dominated by agriculture and tourism. The Science Park policy is trying to develop an agriculturally orientated innovative ecosystem. Thailand established four Science Parks based on a policy that highlighted the importance of cooperation between government, HEIs, and businesses. These Science Parks are intended to increase small and medium enterprises’ (SMEs) innovativeness, employment, and regional economic growth by promoting collaboration and knowledge transfer between HEIs and the private sector. This study explores one regional Science Park in Thailand with an emphasis on understanding the implementation and operation of a triple helix innovation policy. The analysis explores the establishment of the Science Park and its impacts on firms and the regional economy through interviews with Science Parks directors, firms, academics, universities, and government officials. The analysis will inform Science Park policy development in Thailand to support the national objective to develop an innovation ecosystem based on the integration of technology with innovation policy, supporting technology-based SMEs in the creation of local jobs. The finding shows that the implementation of the Science Park policy in Thailand requires support and promotion from the government. The regional development plan must be related to the regional industry development strategy, considering the strengths and weaknesses of local entrepreneurs. The long time in granting a patent is the major obstacle in achieving the government’s aim in encouraging local economic activity. The regional Science Parks in Thailand are at the early stage of the operation plan. Thus, the impact on the regional economy cannot be measured and need further investigation in a more extended period. However, local businesses realize the vital of research and development (R&D). There have been more requests for funding support in doing R&D. Furthermore, there is the creation of linkages between businesses, HEIs, and government authorities as expected.Keywords: developing country, emerging economy, regional development, science park, Thailand, triple helix
Procedia PDF Downloads 152238 Cicadas: A Clinician-assisted, Closed-loop Technology, Mobile App for Adolescents with Autism Spectrum Disorders
Authors: Bruno Biagianti, Angela Tseng, Kathy Wannaviroj, Allison Corlett, Megan DuBois, Kyu Lee, Suma Jacob
Abstract:
Background: ASD is characterized by pervasive Sensory Processing Abnormalities (SPA) and social cognitive deficits that persist throughout the course of the illness and have been linked to functional abnormalities in specific neural systems that underlie the perception, processing, and representation of sensory information. SPA and social cognitive deficits are associated with difficulties in interpersonal relationships, poor development of social skills, reduced social interactions and lower academic performance. Importantly, they can hamper the effects of established evidence-based psychological treatments—including PEERS (Program for the Education and Enrichment of Relationship Skills), a parent/caregiver-assisted, 16-weeks social skills intervention—which nonetheless requires a functional brain capable of assimilating and retaining information and skills. As a matter of fact, some adolescents benefit from PEERS more than others, calling for strategies to increase treatment response rates. Objective: We will present interim data on CICADAS (Care Improving Cognition for ADolescents on the Autism Spectrum)—a clinician-assisted, closed-loop technology mobile application for adolescents with ASD. Via ten mobile assessments, CICADAS captures data on sensory processing abnormalities and associated cognitive deficits. These data populate a machine learning algorithm that tailors the delivery of ten neuroplasticity-based social cognitive training (NB-SCT) exercises targeting sensory processing abnormalities. Methods: In collaboration with the Autism Spectrum and Neurodevelopmental Disorders Clinic at the University of Minnesota, we conducted a fully remote, three-arm, randomized crossover trial with adolescents with ASD to document the acceptability of CICADAS and evaluate its potential as a stand-alone treatment or as a treatment enhancer of PEERS. Twenty-four adolescents with ASD (ages 11-18) have been initially randomized to 16 weeks of PEERS + CICADAS (Arm A) vs. 16 weeks of PEERS + computer games vs. 16 weeks of CICADAS alone (Arm C). After 16 weeks, the full battery of assessments has been remotely administered. Results: We have evaluated the acceptability of CICADAS by examining adherence rates, engagement patterns, and exit survey data. We found that: 1) CICADAS is able to serve as a treatment enhancer for PEERS, inducing greater improvements in sensory processing, cognition, symptom reduction, social skills and behaviors, as well as the quality of life compared to computer games; 2) the concurrent delivery of PEERS and CICADAS induces greater improvements in study outcomes compared to CICADAS only. Conclusion: While preliminary, our results indicate that the individualized assessment and treatment approach designed in CICADAS seems effective in inducing adaptive long-term learning about social-emotional events. CICADAS-induced enhancement of processing and cognition facilitates the application of PEERS skills in the environment of adolescents with ASD, thus improving their real-world functioning.Keywords: ASD, social skills, cognitive training, mobile app
Procedia PDF Downloads 213237 The Effect of Disseminating Basic Knowledge on Radiation in Emergency Distance Learning of COVID-19
Authors: Satoko Yamasaki, Hiromi Kawasaki, Kotomi Yamashita, Susumu Fukita, Kei Sounai
Abstract:
People are susceptible to rumors when the cause of their health problems is unknown or invisible. In order for individuals to be unaffected by rumors, they need basic knowledge and correct information. Community health nursing classes use cases where basic knowledge of radiation can be utilized on a regular basis, thereby teaching that basic knowledge is important in preventing anxiety caused by rumors. Nursing students need to learn that preventive activities are essential for public health nursing care. This is the same methodology used to reduce COVID-19 anxiety among individuals. This study verifies the learning effect concerning the basic knowledge of radiation necessary for case consultation by emergency distance learning. Sixty third-year nursing college students agreed to participate in this research. The knowledge tests conducted before and after classes were compared, with the chi-square test used for testing. There were five knowledge questions regarding distance lessons. This was considered to be 5% significant. The students’ reports which describe the results of responding to health consultations, were analyzed qualitatively and descriptively. In this case study, a person living in an area not affected by radiation was anxious about drinking water and, thus, consulted with a student. The contents of the lecture were selected the minimum amount of knowledge used for the answers of the consultant; specifically hot spots, internal exposure risk, food safety, characteristics of cesium-137, and precautions for counselors. Before taking the class, the most correctly answered question by students concerned daily behavior at risk of internal exposure (52.2%). The question with the fewest correct answers was the selection of places that are likely to be hot spots (3.4%). All responses increased significantly after taking the class (p < 0.001). The answers to the counselors, as written by the students, were 'Cesium is strongly bound to the soil, so it is difficult to transfer to water' and 'Water quality test results of tap water are posted on the city's website.' These were concrete answers obtained by using specialized knowledge. Even in emergency distance learning, the students gained basic knowledge regarding radiation and created a document to utilize said knowledge while assuming the situation concretely. It was thought that the flipped classroom method, even if conducted remotely, could maintain students' learning. It was thought that setting specific knowledge and scenes to be used would enhance the learning effect. By changing the case to concern that of the anxiety caused by infectious diseases, students may be able to effectively gain the basic knowledge to decrease the anxiety of residents due to infectious diseases.Keywords: effect of class, emergency distance learning, nursing student, radiation
Procedia PDF Downloads 114236 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations
Authors: Zhao Gao, Eran Edirisinghe
Abstract:
The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.Keywords: RNN, GAN, NLP, facial composition, criminal investigation
Procedia PDF Downloads 161235 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 105234 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning
Authors: R. Abdulrahman, A. Eardley, A. Soliman
Abstract:
The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.Keywords: mobile learning, nursing institute students’ acceptance of m-learning activity in Saudi Arabia, unified theory of acceptance and use of technology model (UTAUT), structural equation modelling (SEM)
Procedia PDF Downloads 186233 How Does Paradoxical Leadership Enhance Organizational Success?
Authors: Wageeh A. Nafei
Abstract:
This paper explores the role of Paradoxical Leadership (PL) in enhancing Organizational Success (OS) at private hospitals in Egypt. Based on the collected data from employees in private hospitals (doctors, nursing staff, and administrative staff). The researcher has adopted a sampling method to collect data for the study. The appropriate statistical methods, such as Alpha Correlation Coefficient (ACC), Confirmatory Factor Analysis (CFA), and Multiple Regression Analysis (MRA), are used to analyze the data and test the hypotheses. The research has reached a number of results, the most important of which are (1) there is a statistical relationship between the independent variable represented by PL and the dependent variable represented by Organizational Success (OS). The paradoxical leader encourages employees to express their opinions and builds a work environment characterized by flexibility and independence. Also, the paradoxical leader works to support specialized work teams, which leads to the creation of new ideas, on the one hand, and contributes to the achievement of outstanding performance on the other hand. (2) the mentality of the paradoxical leader is flexible and capable of absorbing all suggestions from all employees. Also, the paradoxical leader is interested in enhancing cooperation among them and provides an opportunity to transfer experience and increase knowledge-sharing. Also, the sharing of knowledge creates the necessary diversity that helps the organization to obtain rich external information and enables the organization to deal with a rapidly changing environment. (3) The PL approach helps in facing the paradoxical demands of employees. A paradoxical leader plays an important role in reducing the feeling of instability in the work environment and lack of job security, reducing negative feelings for employees, restoring balance in the work environment, improving the well-being of employees, and increasing the degree of job satisfaction of employees in the organization. The study referred to a number of recommendations, the most important of which are (1) the leaders of the organizations must listen to the views of employees and their needs and move away from the official method of control. The leader should give sufficient freedom to employees to participate in decision-making and maintain enough space among them. The treatment between the leaders and employees must be based on friendliness, (2) the need for organizational leaders to pay attention to sharing knowledge among employees through training courses. The leader should make sure that every information provided by the employee is valuable and useful, which can be used to solve a problem that may face his/her colleagues at work, (3) the need for organizational leaders to pay attention to sharing knowledge among employees through brainstorming sessions. The leader should ensure that employees obtain knowledge from their colleagues and share ideas and information among them. This is in addition to motivating employees to complete their work in a new creative way, which leads to employees’ not feeling bored of repeating the same routine procedures in the organization.Keywords: paradoxical leadership, organizational success, human resourece, management
Procedia PDF Downloads 58232 Modeling Taxane-Induced Peripheral Neuropathy Ex Vivo Using Patient-Derived Neurons
Authors: G. Cunningham, E. Cantor, X. Wu, F. Shen, G. Jiang, S. Philips, C. Bales, Y. Xiao, T. R. Cummins, J. C. Fehrenbacher, B. P. Schneider
Abstract:
Background: Taxane-induced peripheral neuropathy (TIPN) is the most devastating survivorship issue for patients receiving therapy. Dose reductions due to TIPN in the curative setting lead to inferior outcomes for African American patients, as prior research has shown that this group is more susceptible to developing severe neuropathy. The mechanistic underpinnings of TIPN, however, have not been entirely elucidated. While it would be appealing to use primary tissue to study the development of TIPN, procuring nerves from patients is not realistically feasible, as nerve biopsies are painful and may result in permanent damage. Therefore, our laboratory has investigated paclitaxel-induced neuronal morphological and molecular changes using an ex vivo model of human-induced pluripotent stem cell (iPSC)-derived neurons. Methods: iPSCs are undifferentiated and endlessly dividing cells that can be generated from a patient’s somatic cells, such as peripheral blood mononuclear cells (PBMCs). We successfully reprogrammed PBMCs into iPSCs using the Erythroid Progenitor Reprograming Kit (STEMCell Technologiesᵀᴹ); pluripotency was verified by flow cytometry analysis. iPSCs were then induced into neurons using a differentiation protocol that bypasses the neural progenitor stage and uses selected small-molecule modulators of key signaling pathways (SMAD, Notch, FGFR1 inhibition, and Wnt activation). Results: Flow cytometry analysis revealed expression of core pluripotency transcription factors Nanog, Oct3/4 and Sox2 in iPSCs overlaps with commercially purchased pluripotent cell line UCSD064i-20-2. Trilineage differentiation of iPSCs was confirmed with immunofluorescent imaging with germ-layer-specific markers; Sox17 and ExoA2 for ectoderm, Nestin, and Pax6 for mesoderm, and Ncam and Brachyury for endoderm. Sensory neuron markers, β-III tubulin, and Peripherin were applied to stain the cells for the maturity of iPSC-derived neurons. Patch-clamp electrophysiology and calcitonin gene-related peptide (CGRP) release data supported the functionality of the induced neurons and provided insight into the timing for which downstream assays could be performed (week 4 post-induction). We have also performed a cell viability assay and fluorescence-activated cell sorting (FACS) using four cell-surface markers (CD184, CD44, CD15, and CD24) to select a neuronal population. At least 70% of the cells were viable in the isolated neuron population. Conclusion: We have found that these iPSC-derived neurons recapitulate mature neuronal phenotypes and demonstrate functionality. Thus, this represents a patient-derived ex vivo neuronal model to investigate the molecular mechanisms of clinical TIPN.Keywords: chemotherapy, iPSC-derived neurons, peripheral neuropathy, taxane, paclitaxel
Procedia PDF Downloads 122231 Connectomic Correlates of Cerebral Microhemorrhages in Mild Traumatic Brain Injury Victims with Neural and Cognitive Deficits
Authors: Kenneth A. Rostowsky, Alexander S. Maher, Nahian F. Chowdhury, Andrei Irimia
Abstract:
The clinical significance of cerebral microbleeds (CMBs) due to mild traumatic brain injury (mTBI) remains unclear. Here we use magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) and connectomic analysis to investigate the statistical association between mTBI-related CMBs, post-TBI changes to the human connectome and neurological/cognitive deficits. This study was undertaken in agreement with US federal law (45 CFR 46) and was approved by the Institutional Review Board (IRB) of the University of Southern California (USC). Two groups, one consisting of 26 (13 females) mTBI victims and another comprising 26 (13 females) healthy control (HC) volunteers were recruited through IRB-approved procedures. The acute Glasgow Coma Scale (GCS) score was available for each mTBI victim (mean µ = 13.2; standard deviation σ = 0.4). Each HC volunteer was assigned a GCS of 15 to indicate the absence of head trauma at the time of enrollment in our study. Volunteers in the HC and mTBI groups were matched according to their sex and age (HC: µ = 67.2 years, σ = 5.62 years; mTBI: µ = 66.8 years, σ = 5.93 years). MRI [including T1- and T2-weighted volumes, gradient recalled echo (GRE)/susceptibility weighted imaging (SWI)] and gradient echo (GE) DWI volumes were acquired using the same MRI scanner type (Trio TIM, Siemens Corp.). Skull-stripping and eddy current correction were implemented. DWI volumes were processed in TrackVis (http://trackvis.org) and 3D Slicer (http://www.slicer.org). Tensors were fit to DWI data to perform DTI, and tractography streamlines were then reconstructed using deterministic tractography. A voxel classifier was used to identify image features as CMB candidates using Microbleed Anatomic Rating Scale (MARS) guidelines. For each peri-lesional DTI streamline bundle, the null hypothesis was formulated as the statement that there was no neurological or cognitive deficit associated with between-scan differences in the mean FA of DTI streamlines within each bundle. The statistical significance of each hypothesis test was calculated at the α = 0.05 level, subject to the family-wise error rate (FWER) correction for multiple comparisons. Results: In HC volunteers, the along-track analysis failed to identify statistically significant differences in the mean FA of DTI streamline bundles. In the mTBI group, significant differences in the mean FA of peri-lesional streamline bundles were found in 21 out of 26 volunteers. In those volunteers where significant differences had been found, these differences were associated with an average of ~47% of all identified CMBs (σ = 21%). In 12 out of the 21 volunteers exhibiting significant FA changes, cognitive functions (memory acquisition and retrieval, top-down control of attention, planning, judgment, cognitive aspects of decision-making) were found to have deteriorated over the six months following injury (r = -0.32, p < 0.001). Our preliminary results suggest that acute post-TBI CMBs may be associated with cognitive decline in some mTBI patients. Future research should attempt to identify mTBI patients at high risk for cognitive sequelae.Keywords: traumatic brain injury, magnetic resonance imaging, diffusion tensor imaging, connectomics
Procedia PDF Downloads 170230 Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation
Authors: Alan N. A. Heberle, Salatiel W. Da Silva, Valentin Perez-Herranz, Andrea M. Bernardes
Abstract:
Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface.Keywords: contaminants of emerging concern, advanced electrochemical oxidation, atenolol, cationic membrane, double compartment reactor
Procedia PDF Downloads 136229 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 205