Search results for: professional learning communities (PLCs)
5737 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions
Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams
Abstract:
The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.Keywords: architecture, central pavilions, classicism, machine learning
Procedia PDF Downloads 1445736 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images
Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor
Abstract:
Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.Keywords: foot disorder, machine learning, neural network, pes planus
Procedia PDF Downloads 3695735 Sociophonetic Conditioning of F0 Range Compression in Diasporic Nepali Communities
Authors: Neelam Chhetry, Indranil Dutta
Abstract:
The present study accounts for the fundamental frequency (f0) perturbations of stop types in Nepali spoken in the Maram region of Manipur, India. Two different experiments were performed on the speech of the native speakers of Nepali in order to investigate if the f0 perturbation following the stop types would be affected due to contact with tonal language, Maram. We found that the Nepali speakers maintained four way stop contrast: voiceless stop (VS), voiceless aspirated stop (VLAS), voiced stop (VS) and voiced aspirated stop (VAS) despite being in contact with Maramfor a very long time. We also found that the F0 range was greater for VAS leading to F0 compression for speakers with high level of proficiency (LOP) in Maram due to extensive language contact.Keywords: F0, sociophonetic, F0 range, sociophonetic
Procedia PDF Downloads 3275734 Professionals’ Collaboration on Strengthening the Teaching of History
Authors: L. B. Ni, N. S. Bt Rohadi, H. Bt Alfana, A. S. Bin Ali Hassan, J. Bin Karim, C. Bt Rasin
Abstract:
This paper discusses the shared effort of teaching history in K-12 schools, community colleges, four-year colleges and universities to develop students' understanding of the history and habits of thought history. This study presents and discusses the problems of K-12 schools in colleges and universities, and the establishment of secondary school principals. This study also shows that the changing nature of practice can define new trends and affect the history professional in the classroom. There are many problems that historians and teachers of college faculty share in the history of high school teachers. History teachers can and should do better to get students in the classroom. History provides valuable insights into the information and embedded solid-state analysis models that are conflicting on the planet and are quickly changing exceptionally valuable. The survey results can reflect the history teaching in Malaysia.Keywords: history issue, history teaching, school-university collaboration, history profession
Procedia PDF Downloads 3585733 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network
Authors: Pawan Kumar Mishra, Ganesh Singh Bisht
Abstract:
Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.Keywords: resolution, deep-learning, neural network, de-blurring
Procedia PDF Downloads 5195732 The Next Game Changer: 3-D Printed Musical Instruments
Authors: Leonardo Ko
Abstract:
In an era marked by rapid technological innovation, the classical instrument industry nonetheless has not seen significant change. Is this a matter of stubborn traditionalism, or do old, conventional instruments really sound better? Because of the widespread use of 3-D printing, it seems feasible to produce modern, 3-D printed instruments that adhere to the basic conventions of standard construction. This study aimed to design and create a practical, effective 3-D printed acoustic violin. A cost-benefit analysis of materials and design is presented in addition to a report on sound tests in which a pool of professional musicians compared the traditional violin to its synthetic counterpart with regard to acoustic properties. With a low-cost yet functional instrument, musicians of all levels would be able to afford instruments with much greater ease; the present study thus hopes to contribute to efforts to increase the accessibility of classical music education.Keywords: acoustic musical instrument, classical musical education, low-cost, 3-D printing
Procedia PDF Downloads 2335731 Understanding the Programming Techniques Using a Complex Case Study to Teach Advanced Object-Oriented Programming
Authors: M. Al-Jepoori, D. Bennett
Abstract:
Teaching Object-Oriented Programming (OOP) as part of a Computing-related university degree is a very difficult task; the road to ensuring that students are actually learning object oriented concepts is unclear, as students often find it difficult to understand the concept of objects and their behavior. This problem is especially obvious in advanced programming modules where Design Pattern and advanced programming features such as Multi-threading and animated GUI are introduced. Looking at the students’ performance at their final year on a university course, it was obvious that the level of students’ understanding of OOP varies to a high degree from one student to another. Students who aim at the production of Games do very well in the advanced programming module. However, the students’ assessment results of the last few years were relatively low; for example, in 2016-2017, the first quartile of marks were as low as 24.5 and the third quartile was 63.5. It is obvious that many students were not confident or competent enough in their programming skills. In this paper, the reasons behind poor performance in Advanced OOP modules are investigated, and a suggested practice for teaching OOP based on a complex case study is described and evaluated.Keywords: complex programming case study, design pattern, learning advanced programming, object oriented programming
Procedia PDF Downloads 2245730 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 1495729 An Investigation into the Use of an Atomistic, Hermeneutic, Holistic Approach in Education Relating to the Architectural Design Process
Authors: N. Pritchard
Abstract:
Within architectural education, students arrive fore-armed with; their life-experience; knowledge gained from subject-based learning; their brains and more specifically their imaginations. The learning-by-doing that they embark on in studio-based/project-based learning calls for supervision that allows the student to proactively undertake research and experimentation with design solution possibilities. The degree to which this supervision includes direction is subject to debate and differing opinion. It can be argued that if the student is to learn-by-doing, then design decision making within the design process needs to be instigated and owned by the student so that they have the ability to personally reflect on and evaluate those decisions. Within this premise lies the problem that the student's endeavours can become unstructured and unfocused as they work their way into a new and complex activity. A resultant weakness can be that the design activity is compartmented and not holistic or comprehensive, and therefore, the student's reflections are consequently impoverished in terms of providing a positive, informative feedback loop. The construct proffered in this paper is that a supportive 'armature' or 'Heuristic-Framework' can be developed that facilitates a holistic approach and reflective learning. The normal explorations of architectural design comprise: Analysing the site and context, reviewing building precedents, assimilating the briefing information. However, the student can still be compromised by 'not knowing what they need to know'. The long-serving triad 'Firmness, Commodity and Delight' provides a broad-brush framework of considerations to explore and integrate into good design. If this were further atomised in subdivision formed from the disparate aspects of architectural design that need to be considered within the design process, then the student could sieve through the facts more methodically and reflectively in terms of considering their interrelationship conflict and alliances. The words facts and sieve hold the acronym of the aspects that form the Heuristic-Framework: Function, Aesthetics, Context, Tectonics, Spatial, Servicing, Infrastructure, Environmental, Value and Ecological issues. The Heuristic could be used as a Hermeneutic Model with each aspect of design being focused on and considered in abstraction and then considered in its relation to other aspect and the design proposal as a whole. Importantly, the heuristic could be used as a method for gathering information and enhancing the design brief. The more poetic, mysterious, intuitive, unconscious processes should still be able to occur for the student. The Heuristic-Framework should not be seen as comprehensive prescriptive formulaic or inhibiting to the wide exploration of possibilities and solutions within the architectural design process.Keywords: atomistic, hermeneutic, holistic, approach architectural design studio education
Procedia PDF Downloads 2645728 Control the Flow of Big Data
Authors: Shizra Waris, Saleem Akhtar
Abstract:
Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.Keywords: computer, it community, industry, big data
Procedia PDF Downloads 1975727 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3445726 Empowering Girls and Youth in Bangladesh: Importance of Creating Safe Digital Space for Online Learning and Education
Authors: Md. Rasel Mia, Ashik Billah
Abstract:
The empowerment of girls and youth in Bangladesh is a demanding issue in today's digital age, where online learning and education have become integral to personal and societal development. This abstract explores the critical importance of creating a secure online environment for girls and youth in Bangladesh, emphasizing the transformative impact it can have on their access to education and knowledge. Bangladesh, like many developing nations, faces gender inequalities in education and access to digital resources. The creation of a safe digital space not only mitigates the gender digital divide but also fosters an environment where girls and youth can thrive academically and professionally. This manuscript draws attention to the efforts through a mixed-method study to assess the current digital landscape in Bangladesh, revealing disparities in phone and internet access, online practices, and awareness of cyber security among diverse demographic groups. Moreover, the study unveils the varying levels of familial support and barriers encountered by girls and youth in their quest for digital literacy. It emphasizes the need for tailored training programs that address specific learning needs while also advocating for enhanced internet accessibility, safe online practices, and inclusive online platforms. The manuscript culminates in a call for collaborative efforts among stakeholders, including NGOs, government agencies, and telecommunications companies, to implement targeted interventions that bridge the gender digital divide and pave the way for a brighter, more equitable future for girls and youth in Bangladesh. In conclusion, this research highlights the undeniable significance of creating a safe digital space as a catalyst for the empowerment of girls and youth in Bangladesh, ensuring that they not only access but excel in the online space, thereby contributing to their personal growth and the advancement of society as a whole.Keywords: collaboration, cyber security, digital literacy, digital resources, inclusiveness
Procedia PDF Downloads 645725 A Grounded Theory of Educational Leadership Development Using Generative Dialogue
Authors: Elizabeth Hartney, Keith Borkowsky, Jo Axe, Doug Hamilton
Abstract:
The aim of this research is to develop a grounded theory of educational leadership development, using an approach to initiating and maintaining professional growth in school principals and vice principals termed generative dialogue. The research was conducted in a relatively affluent, urban school district in Western Canada. Generative dialogue interviews were conducted by a team of consultants, and anonymous data in the form of handwritten notes were voluntarily submitted to the research team. The data were transcribed and analyzed using grounded theory. The results indicate that a key focus of educational leadership development is focused on navigating relationships within the school setting and that the generative dialogue process is helpful for principals and vice principals to explore how they might do this. Applicability and limitations of the study are addressed.Keywords: generative dialogue, school principals, grounded theory, leadership development
Procedia PDF Downloads 3615724 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process
Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand
Abstract:
This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping
Procedia PDF Downloads 565723 Gamification in Education: A Case Study on the Use of Serious Games
Authors: Maciej Zareba, Pawel Dawid
Abstract:
This article provides a case study exploring the use of serious games in educational settings, indicating their potential to transform conventional teaching methods into interactive and engaging learning experiences. By incorporating game elements such as points, leaderboards and progress indicators, serious games establish clear goals, provide real-time feedback and give a sense of progress. These elements enable students to solve complex problems in simulated environments, fostering critical thinking, creativity and contextual learning. The article provides a case study of the feasibility of using the 4FactryManager serious game in a selected educational context, demonstrating its effectiveness in increasing student motivation, improving academic performance and promoting knowledge consolidation. The study and presentation are based on the results of industrial research and development work conducted as part of the project titled (4FM) 4FACTORY Manager – an innovative simulation game for managing real production processes using a novel gameplay model based on the interaction between the virtual and real worlds, applying the Industry 4.0 concept (Project number: POIR.01.02.00-00-0057/19).Keywords: gamification, serious games, education, elearning
Procedia PDF Downloads 145722 Sustainable Tourism from a Multicriteria Analysis Perspective
Authors: Olga Blasco-Blasco, Vicente Liern
Abstract:
The development of tourism since the mid-20th century has raised problems of overcrowding, indiscriminate construction in seaside areas and gentrification. Increasingly, the World Tourism Organisation and public institutions are promoting policies that encourage sustainability. From the perspective of sustainability, three types of tourism can be established: traditional tourism, sustainable tourism and sustainable impact tourism. Measuring sustainability is complex due to its multiple dimensions of different relative importance and diversity in nature. In order to try to answer this problem and to identify the benefits of applying policies that promote sustainable tourism, a decision-making analysis will be carried out through the application of a multicriteria analysis method. The proposal is applied to hotel reservations and to the evaluation and management of tourism sustainability in the Spanish Autonomous Communities.Keywords: sustainable tourism, multicriteria analysis, flexible optimization, composite indicators
Procedia PDF Downloads 3175721 Prototyping Exercise for the Construction of an Ancestral Violentometer in Buenaventura, Valle Del Cauca
Authors: Mariana Calderón, Paola Montenegro, Diana Moreno
Abstract:
Through this study, it was possible to identify the different levels and types of violence, both individual and collective, experienced by women, girls, and the sexually diverse population of Buenaventura translated from the different tensions and threats against ancestrality and accounting for a social and political context of violence related to race and geopolitical location. These threats are related to: the stigma and oblivion imposed on practices and knowledge; the imposition of the hegemonic culture; the imposition of external customs as a way of erasing ancestrality; the singling out and persecution of those who practice it; the violence that the health system has exercised against ancestral knowledge and practices, especially in the case of midwives; the persecution of the Catholic religion against this knowledge and practices; the difficulties in maintaining the practices in the displacement from rural to urban areas; the use and control of ancestral knowledge and practices by the armed actors; the rejection and stigma exercised by the public forces; and finally, the murder of the wise women at the hands of the armed actors. This research made it possible to understand the importance of using tools such as the violence meter to support processes of resistance to violence against women, girls, and sexually diverse people; however, it is essential that these tools be adapted to the specific contexts of the people. In the analysis of violence, it was possible to identify that these not only affect women, girls, and sexually diverse people individually but also have collective effects that threaten the territory and the ancestral culture to which they belong. Ancestrality has been the object of violence, but at the same time, it has been the place from which resistance has been organized. The identification of the violence suffered by women, girls, and sexually diverse people is also an opportunity to make visible the forms of resistance of women and communities in the face of this violence. This study examines how women, girls, and sexually diverse people in Buenaventura have been exposed to sexism and racism, which historically have been translated into specific forms of violence, in addition to the other forms of violence already identified by the traditional models of the violentometer. A qualitative approach was used in the study. The study included the participation of more than 40 people and two women's organizations from Buenaventura. The participants came from both urban and rural areas of the municipality of Buenaventura and were over 15 years of age. The participation of such a diverse group allowed for the exchange of knowledge and experiences, particularly between younger and older people. The instrument used for the exercise was previously defined with the leaders of the organizations and consisted of four moments that referred to i) ancestry, ii) threats to ancestry, iii) identification of resistance and iv) construction of the ancestral violentometer.Keywords: violence against women, intersectionality, sexual and reproductive rights, black communities
Procedia PDF Downloads 835720 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 1495719 Effects of External and Internal Focus of Attention in Motor Learning of Children with Cerebral Palsy
Authors: Morteza Pourazar, Fatemeh Mirakhori, Fazlolah Bagherzadeh, Rasool Hemayattalab
Abstract:
The purpose of study was to examine the effects of external and internal focus of attention in the motor learning of children with cerebral palsy. The study involved 30 boys (7 to 12 years old) with CP type 1 who practiced throwing beanbags. The participants were randomly assigned to the internal focus, external focus, and control groups, and performed six blocks of 10-trial with attentional focus reminders during a practice phase and no reminders during retention and transfer tests. Analysis of variance (ANOVA) with repeated measures on the last factor was used. The results show that significant main effects were found for time and group. However, the interaction of time and group was not significant. Retention scores were significantly higher for the external focus group. The external focus group performed better than other groups; however, the internal focus and control groups’ performance did not differ. The study concluded that motor skills in Spastic Hemiparetic Cerebral Palsy (SHCP) children could be enhanced by external attention.Keywords: cerebral palsy, external attention, internal attention, throwing task
Procedia PDF Downloads 3185718 From Self-Regulation to Self-Efficacy: Student Empowerment in Translator Training
Authors: Paulina Pietrzak
Abstract:
The understanding of the role of the contemporary translator is fraught with contradictions and idealistic visions of individuals who, by definition, should be fully competent and versatile. In spite of the fact that lots of translation researchers have probed into the identification and exploration of the concept of translator competence, little study has been devoted to its metacognitive aspects. Due to the dynamic nature of the translator’s occupation, it is difficult to predict what specific skills will prove useful for novice translators in their professional career. Thus, it is crucial that the translator is self-regulated enough to adapt to changing job demands and effectively function in the contemporary, highly dynamic, translation market. The objective of the presentation is to investigate the role and nature of the translator’s self-regulation. It will also demonstrate the results of a pilot study into translation trainees’ self-regulatory skills and explore implications of these findings for translator training in relation to theories of student empowerment.Keywords: cognitive translation research, translator competence, self-regulatory skills, translator training
Procedia PDF Downloads 2105717 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna
Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo
Abstract:
The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system
Procedia PDF Downloads 425716 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting
Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos
Abstract:
Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning
Procedia PDF Downloads 1135715 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 1135714 A Study of Native Speaker Teachers’ Competency and Achievement of Thai Students
Authors: Pimpisa Rattanadilok Na Phuket
Abstract:
This research study aims to examine: 1) teaching competency of the native English-speaking teacher (NEST) 2) the English language learning achievement of Thai students, and 3) students’ perceptions toward their NEST. The population considered in this research was a group of 39 undergraduate students of the academic year 2013. The tools consisted of a questionnaire employed to measure the level of competency of NEST, pre-test and post-test used to examine the students’ achievement on English pronunciation, and an interview used to discover how participants perceived their NEST. The data was statistically analysed as percentage, mean, standard deviation and One-sample-t-test. In addition, the data collected by interviews was qualitatively analyzed. The research study found that the level of teaching competency of native speaker teachers of English was mostly low, the English pronunciation achievement of students had increased significantly at the level of 0.5, and the students’ perception toward NEST is combined. The students perceived their NEST as an English expertise, but they felt that NEST had not recognized students' linguistic difficulty and cultural differences.Keywords: competency, native English-speaking teacher (NET), English teaching, learning achievement
Procedia PDF Downloads 3785713 Studies on the Teaching Pedagogy and Effectiveness for the Multi-Channel Storytelling for Social Media, Cinema, Game, and Streaming Platform: Case Studies of Squid Game
Authors: Chan Ka Lok Sobel
Abstract:
The rapid evolution of digital media platforms has given rise to new forms of narrative engagement, particularly through multi-channel storytelling. This research focuses on exploring the teaching pedagogy and effectiveness of multi-channel storytelling for social media, cinema, games, and streaming platforms. The study employs case studies of the popular series "Squid Game" to investigate the diverse pedagogical approaches and strategies used in teaching multi-channel storytelling. Through qualitative research methods, including interviews, surveys, and content analysis, the research assesses the effectiveness of these approaches in terms of student engagement, knowledge acquisition, critical thinking skills, and the development of digital literacy. The findings contribute to understanding best practices for incorporating multi-channel storytelling into educational contexts and enhancing learning outcomes in the digital media landscape.Keywords: digital literacy, game-based learning, artificial intelligence, animation production, educational technology
Procedia PDF Downloads 1225712 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers
Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist
Abstract:
Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden
Procedia PDF Downloads 1175711 Detecting Hate Speech And Cyberbullying Using Natural Language Processing
Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão
Abstract:
Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning
Procedia PDF Downloads 2325710 Gender Difference in the Use of Request Strategies by Urdu/Punjabi Native Speakers
Authors: Muzaffar Hussain
Abstract:
Requests strategies are considered as a part of the speech acts, which are frequently used in everyday communication. Each language provides speech acts to the speakers; therefore, the selection of appropriate form seems more culture-specific rather than language. The present paper investigates the gender-based difference in the use of request strategies by native speakers of Urdu/Punjabi male and female who are learning English as a second language. The data for the present study were collected from 68 graduate students, who are learning English as an L2 in Pakistan. They were given an online close-ended questionnaire, based on Discourse Completion Test (DCT). After analyzing the data, it was found that the L1 male Urdu/Punjabi speakers were inclined to use more direct request strategies while the female Urdu/Punjabi speakers used indirect request strategies. This paper also found that in some situations female participants used more direct strategies than male participants. The present study concludes that the use of request strategies is influenced by culture, social status, and power distribution in a society.Keywords: gender variation, request strategies, face-threatening, second language pragmatics, language competence
Procedia PDF Downloads 1945709 Application of Multidimensional Model of Evaluating Organisational Performance in Moroccan Sport Clubs
Authors: Zineb Jibraili, Said Ouhadi, Jorge Arana
Abstract:
Introduction: Organizational performance is recognized by some theorists as one-dimensional concept, and by others as multidimensional. This concept, which is already difficult to apply in traditional companies, is even harder to identify, to measure and to manage when voluntary organizations are concerned, essentially because of the complexity of that form of organizations such as sport clubs who are characterized by the multiple goals and multiple constituencies. Indeed, the new culture of professionalization and modernization around organizational performance emerges new pressures from the state, sponsors, members and other stakeholders which have required these sport organizations to become more performance oriented, or to build their capacity in order to better manage their organizational performance. The evaluation of performance can be made by evaluating the input (e.g. available resources), throughput (e.g. processing of the input) and output (e.g. goals achieved) of the organization. In non-profit organizations (NPOs), questions of performance have become increasingly important in the world of practice. To our knowledge, most of studies used the same methods to evaluate the performance in NPSOs, but no recent study has proposed a club-specific model. Based on a review of the studies that specifically addressed the organizational performance (and effectiveness) of NPSOs at operational level, the present paper aims to provide a multidimensional framework in order to understand, analyse and measure organizational performance of sport clubs. This paper combines all dimensions founded in literature and chooses the most suited of them to our model that we will develop in Moroccan sport clubs case. Method: We propose to implicate our unified model of evaluating organizational performance that takes into account all the limitations found in the literature. On a sample of Moroccan sport clubs ‘Football, Basketball, Handball and Volleyball’, for this purpose we use a qualitative study. The sample of our study comprises data from sport clubs (football, basketball, handball, volleyball) participating on the first division of the professional football league over the period from 2011 to 2016. Each football club had to meet some specific criteria in order to be included in the sample: 1. Each club must have full financial data published in their annual financial statements, audited by an independent chartered accountant. 2. Each club must have sufficient data. Regarding their sport and financial performance. 3. Each club must have participated at least once in the 1st division of the professional football league. Result: The study showed that the dimensions that constitute the model exist in the field with some small modifications. The correlations between the different dimensions are positive. Discussion: The aim of this study is to test the unified model emerged from earlier and narrower approaches for Moroccan case. Using the input-throughput-output model for the sketch of efficiency, it was possible to identify and define five dimensions of organizational effectiveness applied to this field of study.Keywords: organisational performance, model multidimensional, evaluation organizational performance, sport clubs
Procedia PDF Downloads 3285708 Behavioural Intention to Use Learning Management System (LMS) among Postgraduate Students: An Application of Utaut Model
Authors: Kamaludeen Samaila, Khashyaullah Abdulfattah, Fahimi Ahmad Bin Amir
Abstract:
The study was conducted to examine the relationship between selected factors (performance expectancy, effort expectancy, social influence and facilitating condition) and students’ intention to use the learning management system (LMS), as well as investigating the factors predicting students’ intention to use the LMS. The study was specifically conducted at the Faculty of Educational Study of University Putra Malaysia. Questionnaires were distributed to 277 respondents using a random sampling technique. SPSS Version 22 was employed in analyzing the data; the findings of this study indicated that performance expectancy (r = .69, p < .01), effort expectancy (r=.60, p < .01), social influence (r = .61, p < .01), and facilitating condition (r=.42, p < .01), were significantly related to students’ intention to use the LMS. In addition, the result also revealed that performance expectancy (β = .436, p < .05), social influence (β=.232, p < .05), and effort expectancy (β = .193, p < .05) were strong predictors of students’ intention to use the LMS. The analysis further indicated that (R2) is 0.054 which means that 54% of variation in the dependent variable is explained by the entire predictor variables entered into the regression model. Understanding the factors that affect students’ intention to use the LMS could help the lecturers, LMS managers and university management to develop the policies that may attract students to use the LMS.Keywords: LMS, postgraduate students, PutraBlas, students’ intention, UPM, UTAUT model
Procedia PDF Downloads 516