Search results for: PV generation system
14958 Adaptive Auth - Adaptive Authentication Based on User Attributes for Web Application
Authors: Senthuran Manoharan, Rathesan Sivagananalingam
Abstract:
One of the main issues in system security is Authentication. Authentication can be defined as the process of recognizing the user's identity and it is the most important step in the access control process to safeguard data/resources from being accessed by unauthorized users. The static method of authentication cannot ensure the genuineness of the user. Due to this reason, more innovative authentication mechanisms came into play. At first two factor authentication was introduced and later, multi-factor authentication was introduced to enhance the security of the system. It also had some issues and later, adaptive authentication was introduced. In this research paper, the design of an adaptive authentication engine was put forward. The user risk profile was calculated based on the user parameters and then the user was challenged with a suitable authentication method.Keywords: authentication, adaptive authentication, machine learning, security
Procedia PDF Downloads 25914957 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling
Authors: Danlei Yang, Luofeng Huang
Abstract:
The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence
Procedia PDF Downloads 2114956 High-Speed Cutting of Inconel 625 Using Carbide Ball End Mill
Authors: Kazumasa Kawasaki, Katsuya Fukazawa
Abstract:
Nickel-based superalloys are an important class of engineering material within the aerospace and power generation, due to their excellent combination of corrosion resistance and mechanical properties, including high-temperature applications Inconel 625 is one of such superalloys and difficult-to-machine material. In cutting of Inconel 625 superalloy with a ball end mill, the problem of adhesive wear often occurs. However, the proper cutting conditions are not known so much because of lack of study examples. In this study, the experiments using ball end mills made of carbide tools were tried to find the best cutting conditions out following qualifications. Using Inconel 625 superalloy as a work material, three kinds of experiment, with the revolution speed of 5000 rpm, 8000 rpm, and 10000 rpm, were performed under dry cutting conditions in feed speed per tooth of 0.045 mm/ tooth, depth of cut of 0.1 mm. As a result, in the case of 8000 rpm, it was successful to cut longest with the least wear.Keywords: Inconel 625, ball end mill, carbide tool, high speed cutting, tool wear
Procedia PDF Downloads 21814955 Integration Multi-Layer Security Modeling with Fuzzy Logic in Service-Oriented Architectures
Authors: Zeinab Ranjbar
Abstract:
Service-oriented architecture in the world today, it is proposed to exchange information and services of interest to those such as IT managers, business managers, designers and system builders scene. The basic architecture of the software used to provide service to all users.the worries of all people (managers, business managers, designers, and system builders scene) effectiveness of this model, how reliable it is in security transactions.To increase the reliability of multi-layer fuzzy logic Architectures used.Keywords: SOA, service oriented architecture, fuzzy logic, multi layer, SOA security
Procedia PDF Downloads 38914954 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages
Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson
Abstract:
Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.Keywords: electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage
Procedia PDF Downloads 25814953 Guidelines for Sustainable Urban Mobility in Historic Districts from International Experiences
Authors: Tamer ElSerafi
Abstract:
In recent approaches to heritage conservation, the whole context of historic areas becomes as important as the single historic building. This makes the provision of infrastructure and network of mobility an effective element in the urban conservation. Sustainable urban conservation projects consider the high density of activities, the need for a good quality access system to the transit system, and the importance of the configuration of the mobility network by identifying the best way to connect the different districts of the urban area through a complex unique system that helps the synergic development to achieve a sustainable mobility system. A sustainable urban mobility is a key factor in maintaining the integrity between socio-cultural aspects and functional aspects. This paper illustrates the mobility aspects, mobility problems in historic districts, and the needs of the mobility systems in the first part. The second part is a practical analysis for different mobility plans. It is challenging to find innovative and creative conservation solutions fitting modern uses and needs without risking the loss of inherited built resources. Urban mobility management is becoming an essential and challenging issue in the urban conservation projects. Depending on literature review and practical analysis, this paper tries to define and clarify the guidelines for mobility management in historic districts as a key element in sustainability of urban conservation and development projects. Such rules and principles could control the conflict between the socio–cultural and economic activities, and the different needs for mobility in these districts in a sustainable way. The practical analysis includes a comparison between mobility plans which have been implemented in four different cities; Freiburg in Germany, Zurich in Switzerland and Bray Town in Ireland. This paper concludes with a matrix of guidelines that considers both principles of sustainability and livability factors in urban historic districts.Keywords: sustainable mobility, urban mobility, mobility management, historic districts
Procedia PDF Downloads 16414952 Applying the Information System to Enhance the Management of Perioperative Nursing
Authors: Ya-Yi Yen
Abstract:
The operating room is a medical environment full of high-risk, high-complexity and high-cost. In addition to assuring patient safety, the operating room should effort on the efficient and safe medical quality for the surgical patients of high risk, elders, and children. If the nursing staffs of operation room carry on the pre-operative visiting prior to surgery, the patient's anxiety and complications are expected to be alleviated, and the hospitalization days may also be shortened. Purpose: Applying the information system to enhance pre-operative visiting, case tracking, and effectiveness recording Method: (I) Application the information system to screen cases by integrating the operation scheduling, and linking the severe surgery codes, for to shorten the time to track cases of operative visiting. Through the improvement, the time required decreased to 1.5 minutes per day from 20 minutes per day, and nursing staffs’ satisfaction with satisfaction for tracking and visiting procedure of case increased to 86% from 54%. (II)The electronic establishment of the operative visiting record enhanced the integrity of the operative visiting record. The integrity rate was rise to 92% from 66%, while nursing staffs’ satisfaction with the visiting record increased to 82% from 61.3%. Since information technology continues evolving, the application of information technology is helpful to the integration of nursing information, simplification of processes, and saving of man-hours. This article introduces the application of information systems to simplify the processes and improve the effectiveness of operation visiting and tracking, including the saving of time, improving the integrity rate of record, and improving the satisfaction of nursing staffs.Keywords: effectiveness, information system, perioperative nursing, pre-operative visiting
Procedia PDF Downloads 14614951 The Influence of Polymorphisms of NER System Genes on the Risk of Colorectal Cancer in the Polish Population
Authors: Ireneusz Majsterek, Karolina Przybylowska, Lukasz Dziki, Adam Dziki, Jacek Kabzinski
Abstract:
Colorectal cancer (CRC) is one of the deadliest cancers. Every year we see an increase in the number of cases, and in spite of intensive research etiology of the disease remains unknown. For many years, researchers are seeking to associate genetic factors with an increased risk of CRC, so far it has proved to be a compelling link between the MMR system of DNA repair and hereditary nonpolyposis colorectal cancers (HNPCC). Currently, research is focused on finding the relationship between the remaining DNA repair systems and an increased risk of developing colorectal cancer. The aim of the study was to determine the relationship between gene polymorphisms Ser835Ser of XPF gene and Gly23Ala of XPA gene–elements of NER DNA repair system, and modulation of the risk of colorectal cancer in the Polish population. Determination of the molecular basis of carcinogenesis process and predicting increased risk will allow qualifying patients to increased risk group and including them in preventive program. We used blood collected from 110 patients diagnosed with colorectal cancer. The control group consisted of equal number of healthy people. Genotyping was performed by TaqMan method. The obtained results indicate that the genotype 23Gly/Ala of XPA gene is associated with an increased risk of colorectal cancer, while 23Ala/Ala as well as TCT allele of Ser835Ser of XPF gene may reduce the risk of CRC.Keywords: NER, colorectal cancer, XPA, XPF, polymorphisms
Procedia PDF Downloads 57114950 Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon
Authors: A. Hamieh, Z. Olama, H. Holail
Abstract:
Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production.Keywords: biofilm, cell free supernatant, distribution system, drinking water, lactobacillus acidophilus, streptomyces sp, adhesion
Procedia PDF Downloads 43614949 Developing an Active Leisure Wear Range: A Dilemma for Khanna Enterprises
Authors: Jagriti Mishra, Vasundhara Chaudhary
Abstract:
Introduction: The case highlights various issues and challenges faced by Khanna Enterprises while conceptualizing and execution of launching Active Leisure wear in the domestic market, where different steps involved in the range planning and production have been elaborated. Although Khanna Enterprises was an established company which dealt in the production of knitted and woven garments, they took the risk of launching a new concept- Active Leisure wear for Millennials. Methodology: It is based on primary and secondary research where data collection has been done through survey, in-depth interviews and various reports, forecasts, and journals. Findings: The research through primary and secondary data and execution of active leisure wear substantiated the acceptance, not only by the millennials but also by the generation X. There was a demand of bigger sizes as well as more muted colours. Conclusion: The sales data paved the way for future product development in tune with the strengths of Khanna Enterprises.Keywords: millennials, range planning, production, active leisure wear
Procedia PDF Downloads 21314948 Protective Effect of Herniarin on Ionizing Radiation-Induced Impairments in Brain
Authors: Sophio Kalmakhelidze, Eka Shekiladze, Tamar Sanikidze, Mikheil Gogebashvili, Nazi Ivanishvili
Abstract:
Radiation-induced various degrees of brain injury and cognitive impairment have been described after cranial radiotherapy of brain tumors. High doses of ionizing radiation have a severe impact on the central nervous system, resulting in morphological and behavioral impairments. Structures of the limbic system are especially sensitive to radiation exposure. Hence, compounds or drugs that can reduce radiation-induced impairments can be used as promising antioxidants or radioprotectors. In our study Mice whole-body irradiation with 137Cs was performed at a dose rate of 1,1 Gy/min for a total dose of 5 Gy with a “Gamma-capsule-2”. Irradiated mice were treated with Herniarin (20 mg/kg) for five days before irradiation and the same dose was administrated after one hour of irradiation. The immediate and delayed effects of ionizing radiation, as well as, protective effect of Herniarin was evaluated during early and late post-irradiation periods. The results reveal that ionizing radiation (5 Gy) alters the structure of the hippocampus in adult mice during the late post-irradiation period resulting in the decline of memory formation and learning process. Furthermore, Simple Coumarin-Herniarin reveals a radiosensitizing effect reducing morphological and behavioral alterations.Keywords: ionizing radiation, cognitive impairments, hippocampus, limbic system, Herniarin
Procedia PDF Downloads 7814947 Contact-Impact Analysis of Continuum Compliant Athletic Systems
Authors: Theddeus Tochukwu Akano, Omotayo Abayomi Fakinlede
Abstract:
Proper understanding of the behavior of compliant mechanisms use by athletes is important in order to avoid catastrophic failure. Such compliant mechanisms like the flex-run require the knowledge of their dynamic response and deformation behavior under quickly varying loads. The modeling of finite deformations of the compliant athletic system is described by Neo-Hookean model under contact-impact conditions. The dynamic impact-contact governing equations for both the target and impactor are derived based on the updated Lagrangian approach. A method where contactor and target are considered as a united body is applied in the formulation of the principle of virtual work for the bodies. In this paper, methods of continuum mechanics and nonlinear finite element method were deployed to develop a model that could capture the behavior of the compliant athletic system under quickly varying loads. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were employed, leveraging both ease of use and computational efficiency. The simulated results reveal the effect of the various contact-impact conditions on the deformation behavior of the impacting compliant mechanism.Keywords: eigenvalue problems, finite element method, robin boundary condition, sturm-liouville problem
Procedia PDF Downloads 47714946 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images
Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn
Abstract:
The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing
Procedia PDF Downloads 58314945 Development of Modular Shortest Path Navigation System
Authors: Nalinee Sophatsathit
Abstract:
This paper presents a variation of navigation systems which tallies every node along the shortest path from start to destination nodes. The underlying technique rests on the well-established Dijkstra Algorithm. The ultimate goal is to serve as a user navigation guide that furnishes stop over cost of every node along this shortest path, whereby users can decide whether or not to visit any specific nodes. The output is an implementable module that can be further refined to run on the Internet and smartphone technology. This will benefit large organizations having physical installations spreaded over wide area such as hospitals, universities, etc. The savings on service personnel, let alone lost time and unproductive work, are attributive to innovative navigation system management.Keywords: navigation systems, shortest path, smartphone technology, user navigation guide
Procedia PDF Downloads 34314944 Agricultural Knowledge Management System Design, Use, and Consequence for Knowledge Sharing and Integration
Authors: Dejen Alemu, Murray E. Jennex, Temtim Assefa
Abstract:
This paper is investigated to understand the design, the use, and the consequence of Knowledge Management System (KMS) for knowledge systems sharing and integration. A KMS for knowledge systems sharing and integration is designed to meet the challenges raised by knowledge management researchers and practitioners: the technical, the human, and social factors. Agricultural KMS involves various members coming from different Communities of Practice (CoPs) who possess their own knowledge of multiple practices which need to be combined in the system development. However, the current development of the technology ignored the indigenous knowledge of the local communities, which is the key success factor for agriculture. This research employed the multi-methodological approach to KMS research in action research perspective which consists of four strategies: theory building, experimentation, observation, and system development. Using the KMS development practice of Ethiopian agricultural transformation agency as a case study, this research employed an interpretive analysis using primary qualitative data acquired through in-depth semi-structured interviews and participant observations. The Orlikowski's structuration model of technology has been used to understand the design, the use, and the consequence of the KMS. As a result, the research identified three basic components for the architecture of the shared KMS, namely, the people, the resources, and the implementation subsystems. The KMS were developed using web 2.0 tools to promote knowledge sharing and integration among diverse groups of users in a distributed environment. The use of a shared KMS allows users to access diverse knowledge from a number of users in different groups of participants, enhances the exchange of different forms of knowledge and experience, and creates high interaction and collaboration among participants. The consequences of a shared KMS on the social system includes, the elimination of hierarchical structure, enhance participation, collaboration, and negotiation among users from different CoPs having common interest, knowledge and skill development, integration of diverse knowledge resources, and the requirement of policy and guideline. The research contributes methodologically for the application of system development action research for understanding a conceptual framework for KMS development and use. The research have also theoretical contribution in extending structuration model of technology for the incorporation of variety of knowledge and practical implications to provide management understanding in developing strategies for the potential of web 2.0 tools for sharing and integration of indigenous knowledge.Keywords: communities of practice, indigenous knowledge, participation, structuration model of technology, Web 2.0 tools
Procedia PDF Downloads 25814943 Applications Using Geographic Information System for Planning and Development of Energy Efficient and Sustainable Living for Smart-Cities
Authors: Javed Mohammed
Abstract:
As urbanization process has been and will be happening in an unprecedented scale worldwide, strong requirements from academic research and practical fields for smart management and intelligent planning of cities are pressing to handle increasing demands of infrastructure and potential risks of inhabitants agglomeration in disaster management. Geo-spatial data and Geographic Information System (GIS) are essential components for building smart cities in a basic way that maps the physical world into virtual environment as a referencing framework. On higher level, GIS has been becoming very important in smart cities on different sectors. In the digital city era, digital maps and geospatial databases have long been integrated in workflows in land management, urban planning and transportation in government. People have anticipated GIS to be more powerful not only as an archival and data management tool but also as spatial models for supporting decision-making in intelligent cities. The purpose of this project is to offer observations and analysis based on a detailed discussion of Geographic Information Systems( GIS) driven Framework towards the development of Smart and Sustainable Cities through high penetration of Renewable Energy Technologies.Keywords: digital maps, geo-spatial, geographic information system, smart cities, renewable energy, urban planning
Procedia PDF Downloads 53014942 A Comparative Study on Software Patent: The Meaning of 'Use' in Direct Infringement
Authors: Tien Wei Daniel Hwang
Abstract:
The computer program inventors, particularly in Fintech, are unwilling to apply for patents in Taiwan after 2014. Passing the ‘statutory subject matter eligibility’ test and becoming the system patent are not the only cause to the reduction in the number of application. Taiwanese court needs to resolve whether the defendants had ‘used’ that software patent in patent direct infringement suit. Both 35 U.S.C. § 271(a) and article 58 paragraph 2 of Taiwan Patent Law don’t define the meaning of ‘use’ in the statutes. Centillion Data Sys., LLC v. Qwest Commc’ns Int’l, Inc. reconsidered the meaning of ‘use’ in system patent infringement, and held that ‘a party must put the invention into service, i.e., control the system as a whole and obtain benefit from it.’ In Taiwan, Intellectual Property Office, Ministry of Economic Affairs, has explained that ‘using’ the patent is ‘achieving the technical effect of the patent.’ Nonetheless, this definition is too broad to apply to not only the software patent but also the traditional patent. To supply the friendly environment for Fintech corporations, this article aims to let Taiwanese court realize why and how United States District Court, S.D. Indiana, Indianapolis Division and United States Court of Appeals, Federal Circuit defined the meaning of ‘use’ in 35 U.S.C. § 271(a). However, this definition is so lax and confuses many defendants in United States. Accordingly, this article indicates the elements in Taiwan Patent Law are different with 35 U.S.C. § 271(a), so Taiwanese court can follow the interpretation of ‘use’ in Centillion Data case without the same obstacle.Keywords: direct infringement, FinTech, software patent, use
Procedia PDF Downloads 30614941 Ahmad Sabzi Balkhkanloo, Motahareh Sadat Hashemi, Seyede Marzieh Hosseini, Saeedeh Shojaee-Aliabadi, Leila Mirmoghtadaie
Authors: Elyria Kemp, Kelly Cowart, My Bui
Abstract:
According to the National Institute of Mental Health, an estimated 31.9% of adolescents have had an anxiety disorder. Several environmental factors may help to contribute to high levels of anxiety and depression in young people (i.e., Generation Z, Millennials). However, as young people negotiate life on social media, they may begin to evaluate themselves using excessively high standards and adopt self-perfectionism tendencies. Broadly defined, self-perfectionism involves very critical evaluations of the self. Perfectionism may also come from others and may manifest as socially prescribed perfectionism, and young adults are reporting higher levels of socially prescribed perfectionism than previous generations. This rising perfectionism is also associated with anxiety, greater physiological reactivity, and a sense of social disconnection. However, theories from psychology suggest that improvement in emotion regulation can contribute to enhanced psychological and emotional well-being. Emotion regulation refers to the ways people manage how and when they experience and express their emotions. Cognitive reappraisal and expressive suppression are common emotion regulation strategies. Cognitive reappraisal involves changing the meaning of a stimulus that involves construing a potentially emotion-eliciting situation in a way that changes its emotional impact. By contrast, expressive suppression involves inhibiting the behavioral expression of emotion. The purpose of this research is to examine the efficacy of social marketing initiatives which promote emotion regulation strategies to help young adults regulate their emotions. In Study 1 a single factor (emotional regulation strategy: a cognitive reappraisal, expressive, control) between-subjects design was conducted using an online, non-student consumer panel (n=96). Sixty-eight percent of participants were male, and 32% were female. Study participants belonged to the Millennial and Gen Z cohort, ranging in age from 22 to 35 (M=27). Participants were first told to spend at least three minutes writing about a public speaking appearance which made them anxious. The purpose of this exercise was to induce anxiety. Next, participants viewed one of three advertisements (randomly assigned) which promoted an emotion regulation strategy—cognitive reappraisal, expressive suppression, or an advertisement non-emotional in nature. After being exposed to one of the ads, participants responded to a measure composed of two items to access their emotional state and the efficacy of the messages in fostering emotion management. Findings indicated that individuals in the cognitive reappraisal condition (M=3.91) exhibited the most positive feelings and more effective emotion regulation than the expressive suppression (M=3.39) and control conditions (M=3.72, F(1,92) = 3.3, p<.05). Results from this research can be used by institutions (e.g., schools) in taking a leadership role in attacking anxiety and other mental health issues. Social stigmas regarding mental health can be removed and a more proactive stance can be taken in promoting healthy coping behaviors and strategies to manage negative emotions.Keywords: emotion regulation, anxiety, social marketing, generation z
Procedia PDF Downloads 21014940 Optimization of the Performance of a Solar Concentrator System with a Cavity Receiver Using the Genetic Algorithm
Authors: Foozhan Gharehkhani
Abstract:
The use of solar energy as a sustainable renewable energy source has gained significant attention in recent years. Solar concentrating systems (CSP), which direct solar radiation onto a receiver, are an effective means of producing high-temperature thermal energy. Cavity receivers, known for their high thermal efficiency and reduced heat losses, are particularly noteworthy in these systems. Optimizing their design can enhance energy efficiency and reduce costs. This study leverages the genetic algorithm, a powerful optimization tool inspired by natural evolution, to optimize the performance of a solar concentrator system with a cavity receiver, aiming for a more efficient and cost-effective design. In this study, a system consisting of a solar concentrator and a cavity receiver was analyzed. The concentrator was designed as a parabolic dish, and the receiver had a cylindrical cavity with a helical structure. The primary parameters were defined as the cavity diameter (D), the receiver height (h), and the helical pipe diameter (d). Initially, the system was optimized to achieve the maximum heat flux, and the optimal parameter values along with the maximum heat flux were obtained. Subsequently, a multi-objective optimization approach was applied, aiming to maximize the heat flux while minimizing the system construction cost. The optimization process was conducted using the genetic algorithm implemented in MATLAB with precise execution. The results of this study revealed that the optimal dimensions of the receiver, including the cavity diameter (D), receiver height (h), and helical pipe diameter (d), were determined to be 0.142 m, 0.1385 m, and 0.011 m, respectively. This optimization resulted in improvements of 3% in the cavity diameter, 8% in the height, and 5% in the helical pipe diameter. Furthermore, the results indicated that the primary focus of this research was the accurate thermal modeling of the solar collection system. The simulations and the obtained results demonstrated that the optimization applied to this system maximized its thermal performance and elevated its energy efficiency to a desirable level. Moreover, this study successfully modeled and controlled effective temperature variations at different angles of solar irradiation, highlighting significant improvements in system efficiency. The significance of this research lies in leveraging solar energy as one of the prominent renewable energy sources, playing a key role in replacing fossil fuels. Considering the environmental and economic challenges associated with the excessive use of fossil resources—such as increased greenhouse gas emissions, environmental degradation, and the depletion of fossil energy reserves—developing technologies related to renewable energy has become a vital priority. Among these, solar concentrating systems, capable of achieving high temperatures, are particularly important for industrial and heating applications. This research aims to optimize the performance of such systems through precise design and simulation, making a significant contribution to the advancement of advanced technologies and the efficient utilization of solar energy in Iran, thereby addressing the country's future energy needs effectively.Keywords: cavity receiver, genetic algorithm, optimization, solar concentrator system performance
Procedia PDF Downloads 1514939 A Research on Tourism Market Forecast and Its Evaluation
Authors: Min Wei
Abstract:
The traditional prediction methods of the forecast for tourism market are paid more attention to the accuracy of the forecasts, ignoring the results of the feasibility of forecasting and predicting operability, which had made it difficult to predict the results of scientific testing. With the application of Linear Regression Model, this paper attempts to construct a scientific evaluation system for predictive value, both to ensure the accuracy, stability of the predicted value, and to ensure the feasibility of forecasting and predicting the results of operation. The findings show is that a scientific evaluation system can implement the scientific concept of development, the harmonious development of man and nature co-ordinate.Keywords: linear regression model, tourism market, forecast, tourism economics
Procedia PDF Downloads 33514938 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices
Authors: Amani Abdallah, Isam Shahrour
Abstract:
The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.Keywords: distribution system, drinking water, refraction index, sensor, real-time
Procedia PDF Downloads 36114937 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System
Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta
Abstract:
This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.Keywords: subcontracting, optimal control, deterioration, simulation, production planning
Procedia PDF Downloads 58514936 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework
Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles
Procedia PDF Downloads 2214935 Open Fields' Dosimetric Verification for a Commercially-Used 3D Treatment Planning System
Authors: Nashaat A. Deiab, Aida Radwan, Mohamed Elnagdy, Mohamed S. Yahiya, Rasha Moustafa
Abstract:
This study is to evaluate and investigate the dosimetric performance of our institution's 3D treatment planning system, Elekta PrecisePLAN, for open 6MV fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields guided by the recommended QA tests prescribed in AAPM TG53, NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Seven different tests were done applied on solid water equivalent phantom along with 2D array dose detection system, the calculated doses using 3D treatment planning system PrecisePLAN, compared with measured doses to make sure that the dose calculations are accurate for open fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields. The QA results showed dosimetric accuracy of the TPS for open fields within the specified tolerance limits. However large square (25cm x 25cm) and rectangular fields (20cm x 5cm) some points were out of tolerance in penumbra region (11.38 % and 10.9 %, respectively). For the test of SSD variation, the large field resulted from SSD 125 cm for 10cm x 10cm filed the results recorded an error of 0.2% at the central axis and 1.01% in penumbra. The results yielded differences within the accepted tolerance level as recommended. Large fields showed variations in penumbra. These differences between dose values predicted by the TPS and the measured values at the same point may result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.Keywords: quality assurance, dose calculation, 3D treatment planning system, photon beam
Procedia PDF Downloads 51714934 Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations
Authors: Ting-Yu Hsu, Shyu-Yu Wu, Shieh-Kung Huang, Hung-Wei Chiang, Kung-Chun Lu, Pei-Yang Lin, Kuo-Liang Wen
Abstract:
Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest.Keywords: earthquake early warning, on-site, seismometer location, support vector machine
Procedia PDF Downloads 24714933 Developing Motorized Spectroscopy System for Tissue Scanning
Authors: Tuba Denkceken, Ayse Nur Sarı, Volkan Ihsan Tore, Mahmut Denkceken
Abstract:
The aim of the presented study was to develop a newly motorized spectroscopy system. Our system is composed of probe and motor parts. The probe part consists of bioimpedance and fiber optic components that include two platinum wires (each 25 micrometer in diameter) and two fiber cables (each 50 micrometers in diameter) respectively. Probe was examined on tissue phantom (polystyrene microspheres with different diameters). In the bioimpedance part of the probe current was transferred to the phantom and conductivity information was obtained. Adjacent two fiber cables were used in the fiber optic part of the system. Light was transferred to the phantom by fiber that was connected to the light source and backscattered light was collected with the other adjacent fiber for analysis. It is known that the nucleus expands and the nucleus-cytoplasm ratio increases during the cancer progression in the cell and this situation is one of the most important criteria for evaluating the tissue for pathologists. The sensitivity of the probe to particle (nucleus) size in phantom was tested during the study. Spectroscopic data obtained from our system on phantom was evaluated by multivariate statistical analysis. Thus the information about the particle size in the phantom was obtained. Bioimpedance and fiber optic experiments results which were obtained from polystyrene microspheres showed that the impedance value and the oscillation amplitude were increasing while the size of particle was enlarging. These results were compatible with the previous studies. In order to motorize the system within the motor part, three driver electronic circuits were designed primarily. In this part, supply capacitors were placed symmetrically near to the supply inputs which were used for balancing the oscillation. Female capacitors were connected to the control pin. Optic and mechanic switches were made. Drivers were structurally designed as they could command highly calibrated motors. It was considered important to keep the drivers’ dimension as small as we could (4.4x4.4x1.4 cm). Then three miniature step motors were connected to each other along with three drivers. Since spectroscopic techniques are quantitative methods, they yield more objective results than traditional ones. In the future part of this study, it is planning to get spectroscopic data that have optic and impedance information from the cell culture which is normal, low metastatic and high metastatic breast cancer. In case of getting high sensitivity in differentiated cells, it might be possible to scan large surface tissue areas in a short time with small steps. By means of motorize feature of the system, any region of the tissue will not be missed, in this manner we are going to be able to diagnose cancerous parts of the tissue meticulously. This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through 3001 project (115E662).Keywords: motorized spectroscopy, phantom, scanning system, tissue scanning
Procedia PDF Downloads 19214932 Backstepping Sliding Mode Control
Authors: Othmane Boughazi, Abdelmadjid Boumedienne, Hachemi Glaoui
Abstract:
This work treats the modeling and simulation of non-linear system behavior of an induction motor using backstepping sliding mode control. First, the direct field oriented control IM is derived. Then, a sliding for direct field oriented control is proposed to compensate the uncertainties, which occur in the control.Finally, the study of Backstepping sliding controls strategy of the induction motor drive. Our non linear system is simulated in MATLAB SIMULINK environment, the results obtained illustrate the efficiency of the proposed control with no overshoot, and the rising time is improved with good disturbances rejections comparing with the classical control law.Keywords: induction motor, proportional-integral, sliding mode control, backstepping sliding mode control
Procedia PDF Downloads 48914931 Advancements in Autonomous Drones for Enhanced Healthcare Logistics
Authors: Bhaargav Gupta P., Vignesh N., Nithish Kumar R., Rahul J., Nivetha Ruvah D.
Abstract:
Delivering essential medical supplies to rural and underserved areas is challenging due to infrastructure limitations and logistical barriers, often resulting in inefficiencies and delays. Traditional delivery methods are hindered by poor road networks, long distances, and difficult terrains, compromising timely access to vital resources, especially in emergencies. This paper introduces an autonomous drone system engineered to optimize last-mile delivery. By utilizing advanced navigation and object-detection algorithms, such as region-based convolutional neural networks (R-CNN), our drones efficiently avoid obstacles, identify safe landing zones, and adapt dynamically to varying environments. Equipped with high-precision GPS and autonomous capabilities, the drones effectively navigate complex, remote areas with minimal dependence on established infrastructure. The system includes a dedicated mobile application for secure order placement and real-time tracking, and a secure payload box with OTP verification ensures tamper-resistant delivery to authorized recipients. This project demonstrates the potential of automated drone technology in healthcare logistics, offering a scalable and eco-friendly approach to enhance accessibility and service delivery in underserved regions. By addressing logistical gaps through advanced automation, this system represents a significant advancement toward sustainable, accessible healthcare in remote areas.Keywords: region-based convolutional neural network, one time password, global positioning system, autonomous drones, healthcare logistics
Procedia PDF Downloads 2014930 Gluteal Augmentation: A Historical Perspective on Society's Fascination with Buttock Size
Authors: Shane R. Jackson
Abstract:
Gluteal augmentation with fat grafting, commonly referred to as the Brazilian Butt Lift, is the fastest-growing cosmetic surgical procedure, despite the risks and controversy that surrounds it. While many commentators attribute this rise in popularity with current societal trends towards public sharing of private life, the fascination with buttock size is in fact a much older human trait. By searching beyond medical literature and delving into historical sources, from ancient civilisations, through the Renaissance and Victorian eras to the ‘Instagram generation’ of the present day, this paper examines the differences – and similarities – in society’s ideal buttock shape and size. Furthermore, the ways in which these various cultures have altered their appearance to achieve this ideal are also examined, looking at the influence of the broader historical context. A deeper understanding of the historical, cultural and psychosocial factors that influence a patient’s desire for buttock augmentation allows the clinician to formulate a well-rounded surgical plan.Keywords: augmentation, Brazilian butt lift, buttock, fat graft, gluteal
Procedia PDF Downloads 20414929 Rapid Detection of Cocaine Using Aggregation-Induced Emission and Aptamer Combined Fluorescent Probe
Authors: Jianuo Sun, Jinghan Wang, Sirui Zhang, Chenhan Xu, Hongxia Hao, Hong Zhou
Abstract:
In recent years, the diversification and industrialization of drug-related crimes have posed significant threats to public health and safety globally. The widespread and increasingly younger demographics of drug users and the persistence of drug-impaired driving incidents underscore the urgency of this issue. Drug detection, a specialized forensic activity, is pivotal in identifying and analyzing substances involved in drug crimes. It relies on pharmacological and chemical knowledge and employs analytical chemistry and modern detection techniques. However, current drug detection methods are limited by their inability to perform semi-quantitative, real-time field analyses. They require extensive, complex laboratory-based preprocessing, expensive equipment, and specialized personnel and are hindered by long processing times. This study introduces an alternative approach using nucleic acid aptamers and Aggregation-Induced Emission (AIE) technology. Nucleic acid aptamers, selected artificially for their specific binding to target molecules and stable spatial structures, represent a new generation of biosensors following antibodies. Rapid advancements in AIE technology, particularly in tetraphenyl ethene-based luminous, offer simplicity in synthesis and versatility in modifications, making them ideal for fluorescence analysis. This work successfully synthesized, isolated, and purified an AIE molecule and constructed a probe comprising the AIE molecule, nucleic acid aptamers, and exonuclease for cocaine detection. The probe demonstrated significant relative fluorescence intensity changes and selectivity towards cocaine over other drugs. Using 4-Butoxytriethylammonium Bromide Tetraphenylethene (TPE-TTA) as the fluorescent probe, the aptamer as the recognition unit, and Exo I as an auxiliary, the system achieved rapid detection of cocaine within 5 mins in aqueous and urine, with detection limits of 1.0 and 5.0 µmol/L respectively. The probe-maintained stability and interference resistance in urine, enabling quantitative cocaine detection within a certain concentration range. This fluorescent sensor significantly reduces sample preprocessing time, offers a basis for rapid onsite cocaine detection, and promises potential for miniaturized testing setups.Keywords: drug detection, aggregation-induced emission (AIE), nucleic acid aptamer, exonuclease, cocaine
Procedia PDF Downloads 70