Search results for: water treatment plants
16350 Biochemical Identification and Study of Antibiotic Resistance in Isolated Bacteria from WWTP TIMGAD
Authors: Abdessemed Zineb, Atia Yahia, Yeza Salima
Abstract:
Water is self-purified by activated sludge process which makes its uniqueness. The main goal is the microbial biocenosis study of the input and output water of the waste water treatment system plant Timgad. 89.47% of the identified biocenosis belongs to ɤ-Proteobacteria while the remaining 10.52 % is equally divided between α-Proteobacteria and β-Proteobacteria. The antibiotics susceptibility profiles reveal that over 30 % are wild strains while the penicillinases are often present (11.30-20 %) with also other profiles. This proportion is worrying that the water discharged join the Oued Soltez used for irrigation. This disadvantage involves the installation of a chlorination step.Keywords: activated sludge, biocenosis, antibiotics profiles, penicillinases, physic-chemical quality
Procedia PDF Downloads 30516349 Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System
Authors: Thiwanka Weerakkody, Lakmali Handagiripathira, Poshitha Dabare, Thisari Guruge
Abstract:
The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes.Keywords: drinking water, gross alpha, gross beta, waste water
Procedia PDF Downloads 19816348 Bench-scale Evaluation of Alternative-to-Chlorination Disinfection Technologies for the Treatment of the Maltese Tap-water
Authors: Georgios Psakis, Imren Rahbay, David Spiteri, Jeanice Mallia, Martin Polidano, Vasilis P. Valdramidis
Abstract:
Absence of surface water and progressive groundwater quality deterioration have exacerbated scarcity rapidly, making the Mediterranean island of Malta one of the most water-stressed countries in Europe. Water scarcity challenges have been addressed by reverse osmosis desalination of seawater, 60% of which is blended with groundwater to form the current potable tap-water supply. Chlorination has been the adopted method of water disinfection prior to distribution. However, with the Malteseconsumer chlorine sensory-threshold being as low as 0.34 ppm, presence of chorine residuals and chlorination by-products in the distributed tap-water impacts negatively on its organoleptic attributes, deterring the public from consuming it. As part of the PURILMA initiative, and with the aim of minimizing the impact of chlorine residual on the quality of the distributed water, UV-C, and hydrosonication, have been identified as cost- and energy-effective decontamination alternatives, paving the way for more sustainable water management. Bench-scale assessment of the decontamination efficiency of UV-C (254 nm), revealed 4.7-Log10 inactivation for both Escherichia coli and Enterococcus faecalis at 36 mJ/cm2. At >200 mJ/cm2fluence rates, there was a systematic 2-Log10 difference in the reductions exhibited by E. coli and E. faecalis to suggest that UV-C disinfection was more effective against E. coli. Hybrid treatment schemes involving hydrosonication(at 9.5 and 12.5 dm3/min flow rates with 1-5 MPa maximum pressure) and UV-C showed at least 1.1-fold greater bactericidal activity relative to the individualized UV-C treatments. The observed inactivation appeared to have stemmed from additive effects of the combined treatments, with hydrosonication-generated reactive oxygen species enhancing the biocidal activity of UV-C.Keywords: disinfection, groundwater, hydrosonication, UV-C
Procedia PDF Downloads 17216347 [Keynote Talk]: Some Underlying Factors and Partial Solutions to the Global Water Crisis
Authors: Emery Jr. Coppola
Abstract:
Water resources are being depleted and degraded at an alarming and non-sustainable rate worldwide. In some areas, it is progressing more slowly. In other areas, irreversible damage has already occurred, rendering regions largely unsuitable for human existence with destruction of the environment and the economy. Today, 2.5 billion people or 36 percent of the world population live in water-stressed areas. The convergence of factors that created this global water crisis includes local, regional, and global failures. In this paper, a survey of some of these factors is presented. They include abuse of political power and regulatory acquiescence, improper planning and design, ignoring good science and models, systemic failures, and division between the powerful and the powerless. Increasing water demand imposed by exploding human populations and growing economies with short-falls exacerbated by climate change and continuing water quality degradation will accelerate this growing water crisis in many areas. Without regional measures to improve water efficiencies and protect dwindling and vulnerable water resources, environmental and economic displacement of populations and conflict over water resources will only grow. Perhaps more challenging, a global commitment is necessary to curtail if not reverse the devastating effects of climate change. Factors will be illustrated by real-world examples, followed by some partial solutions offered by water experts for helping to mitigate the growing water crisis. These solutions include more water efficient technologies, education and incentivization for water conservation, wastewater treatment for reuse, and improved data collection and utilization.Keywords: climate change, water conservation, water crisis, water technologies
Procedia PDF Downloads 23516346 Backwash Optimization for Drinking Water Treatment Biological Filters
Authors: Sarra K. Ikhlef, Onita Basu
Abstract:
Natural organic matter (NOM) removal efficiency using drinking water treatment biological filters can be highly influenced by backwashing conditions. Backwashing has the ability to remove the accumulated biomass and particles in order to regenerate the biological filters' removal capacity and prevent excessive headloss buildup. A lab scale system consisting of 3 biological filters was used in this study to examine the implications of different backwash strategies on biological filtration performance. The backwash procedures were evaluated based on their impacts on dissolved organic carbon (DOC) removals, biological filters’ biomass, backwash water volume usage, and particle removal. Results showed that under nutrient limited conditions, the simultaneous use of air and water under collapse pulsing conditions lead to a DOC removal of 22% which was significantly higher (p>0.05) than the 12% removal observed under water only backwash conditions. Employing a bed expansion of 20% under nutrient supplemented conditions compared to a 30% reference bed expansion while using the same amount of water volume lead to similar DOC removals. On the other hand, utilizing a higher bed expansion (40%) lead to significantly lower DOC removals (23%). Also, a backwash strategy that reduced the backwash water volume usage by about 20% resulted in similar DOC removals observed with the reference backwash. The backwash procedures investigated in this study showed no consistent impact on biological filters' biomass concentrations as measured by the phospholipids and the adenosine tri-phosphate (ATP) methods. Moreover, none of these two analyses showed a direct correlation with DOC removal. On the other hand, dissolved oxygen (DO) uptake showed a direct correlation with DOC removals. The addition of the extended terminal subfluidization wash (ETSW) demonstrated no apparent impact on DOC removals. ETSW also successfully eliminated the filter ripening sequence (FRS). As a result, the additional water usage resulting from implementing ETSW was compensated by water savings after restart. Results from this study provide insight to researchers and water treatment utilities on how to better optimize the backwashing procedure for the goal of optimizing the overall biological filtration process.Keywords: biological filtration, backwashing, collapse pulsing, ETSW
Procedia PDF Downloads 27316345 Surface and Drinking Water Quality Monitoring of Thomas Reservoir, Kano State, Nigeria
Authors: G. A. Adamu, M. S. Sallau, S. O. Idris, E. B. Agbaji
Abstract:
Drinking water is supplied to Danbatta, Makoda and some parts of Minjibir local government areas of Kano State from the surface water of Thomas Reservoir. The present land use in the catchment area of the reservoir indicates high agricultural activities, fishing, as well as domestic and small scale industrial activities. To study and monitor the quality of surface and drinking water of the area, water samples were collected from the reservoir, treated water at the treatment plant and potable water at the consumer end in three seasons November - February (cold season), March - June (dry season) and July - September (rainy season). The samples were analyzed for physical and chemical parameters, pH, temperature, total dissolved solids (TDS), conductivity, turbidity, total hardness, suspended solids, total solids, colour, dissolved oxygen (DO), biological oxygen demand (BOD), chloride ion (Cl-) nitrite (NO2-), nitrate (NO3-), chemical oxygen demand (COD) and phosphate (PO43-). The higher values obtained in some parameters with respect to the acceptable standard set by World Health Organization (WHO) and Nigerian Industrial Standards (NIS) indicate the pollution of both the surface and drinking water. These pollutants were observed to have a negative impact on water quality in terms of eutrophication, largely due to anthropogenic activities in the watershed.Keywords: surface water, drinking water, water quality, pollution, Thomas reservoir, Kano
Procedia PDF Downloads 29516344 Impact of Integrated Watershed Management Programme Based on Four Waters Concept: A Case Study of Sali Village, Rajasthan State of India
Authors: Garima Sharma, R. N. Sharma
Abstract:
Integrated watershed management programme based on 'Four Water Concept' was implemented in Sali village, in Jaipur District, Rajasthan State of India . The latitude 26.7234486 North and longitude 75.023876 East are the geocoordinate of the Sali. 'Four Waters Concept' is evolved by integrating the 'Four Waters', viz. rain water, soil moisture, ground water and surface water This methodology involves various water harvesting techniques to prevent the runoff of water by treatment of catchment, proper utilization of available water harvesting structures, renovation of the non-functional water harvesting structures and creation of new water harvesting structures. The case study included questionnaire survey from farmers and continuous study of village for two years. The total project area is 6153 Hac, and the project cost is Rs. 92.25 million. The sanctioned area of Sali Micro watershed is 2228 Hac with an outlay of Rs. 10.52 million. Watershed treatment activities such as water absorption trench, continuous contour trench, field bunding, check dams, were undertaken on agricultural lands for soil and water conservation. These measures have contributed in preventing runoff and increased the perennial availability of water in wells. According to the survey, water level in open wells in the area has risen by approximately 5 metres after the introduction of water harvesting structures. The continuous availability of water in wells has increased the area under irrigation and helped in crop diversification. Watershed management activities have brought the changes in cropping patterns and crop productivity. It helped in transforming 567 Hac culturable waste land into culturable arable land in the village. The farmers of village have created an additional income from the increased crop production. The programme also assured the availability of water during peak summers for the day to day activities of villagers. The outcomes indicate that there is positive impact of watershed management practices on the water resource potential as well the crop production of the area. This suggests that persistent efforts in this direction may lead to sustainability of the watershed.Keywords: four water concept, groundwater potential, irrigation potential, watershed management
Procedia PDF Downloads 35716343 Adsoption Tests of Two Industrial Dyes by Hydroxyds of Metals
Authors: R. Berrached, H. Ait Mahamed, A. Iddou
Abstract:
Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated sludge, lagoons as biological processes and coagulation-flocculation as a physic-chemical process. These processes are very expensive and a decreasing in efficiency treatment with the increase of the initial pollutants concentration. This is the reason why research has been reoriented towards the use of adsorption process as an alternative solution instead of the other traditional processes. In our study, we have tempted to explore the characteristics of hydroxides of Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.Keywords: metallic hydroxydes, dyes, purification, adsorption
Procedia PDF Downloads 33716342 Variation of Manning’s Coefficient in a Meandering Channel with Emergent Vegetation Cover
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
Vegetation plays a major role in deciding the flow parameters in an open channel. It enhances the aesthetic view of the revetments. The major types of vegetation in river typically comprises of herbs, grasses, weeds, trees, etc. The vegetation in an open channel usually consists of aquatic plants with complete submergence, partial submergence, floating plants. The presence of vegetative plants can have both benefits and problems. The major benefits of aquatic plants are they reduce the soil erosion, which provides the water with a free surface to move on without hindrance. The obvious problems are they retard the flow of water and reduce the hydraulic capacity of the channel. The degree to which the flow parameters are affected depends upon the density of the vegetation, degree of submergence, pattern of vegetation, vegetation species. Vegetation in open channel tends to provide resistance to flow, which in turn provides a background to study the varying trends in flow parameters having vegetative growth in the channel surface. In this paper, an experiment has been conducted on a meandering channel having sinuosity of 1.33 with rigid vegetation cover to investigate the effect on flow parameters, variation of manning’s n with degree of the denseness of vegetation, vegetation pattern and submergence criteria. The measurements have been carried out in four different cross-sections two on trough portion of the meanders, two on the crest portion. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress have been taken into account. Dimensionless eddy viscosity and bed friction have been incorporated to modify the SKM to provide more accurate results. A mathematical model has been formulated to have a comparative analysis with the results obtained from Shiono-Knight Method.Keywords: bed friction, depth averaged velocity, eddy viscosity, SKM
Procedia PDF Downloads 13716341 Phenol Removal from Water in the Presence of Nano-TiO₂ and a Natural Activated Carbon: Intensive and Extensive Processes
Authors: Hanane Belayachi, Fadila Nemchi, Amel Belayachi, Sarra Bourahla, Mostefa Belhakem
Abstract:
In this work, two photocatalytic processes for the degradation of phenol in water are presented. The first one is extensive (EP), which is carried out in a treatment chain of two steps, allowing the adsorption of the pollutant by a naturally activated carbon from the grapes. This operation is followed by a photocatalytic degradation of the residual phenol in the presence of TiO₂. The second process is intensive (IP) and is realized in one step in the presence of a hybrid photocatalytic nanomaterial prepared from naturally activated carbon and TiO₂. The evaluation of the two processes, EP and IP, is based on the analytical monitoring of the initial and final parameters of the water to be treated, i.e., the phenol concentration by liquid phase chromatography (HPLC) and total organic carbon (TOC). For both processes, the sampling was carried out every 10 min for 120 min of treatment time to measure the phenol concentrations. The elimination and degradation rates in the case of the intensive process are better than the extensive process. In both processes, the catechol molecule was detected as an under product of degradation. In the IP case, this intermediate phenol was totally eliminated, and only traces of catechol persisted in the water.Keywords: photocatalysis, hybrid, activated carbon, phenol
Procedia PDF Downloads 5316340 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop
Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares
Abstract:
Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.Keywords: agriculture, composting, soil, sugar beet lime, wastewater
Procedia PDF Downloads 32316339 Reclamation of Saline and Alkaline Soils through Aquaculture: A Review and Prospects for Future Research
Authors: M. Shivakumar, S. R. Somashekhar, C. V. Raju
Abstract:
Secondary salinization of agricultural lands in any command areas of the world is the major issue in the recent past. Currently, it is estimated that the 954 mh of saline and alkaline soil is present in the world. Thousands of hectares of land, getting added every year. Argentina, Bangladesh and Australia are most affected countries. In India, out of 142.80 million hectare (mh) cropped area, 56 mh is irrigated area. Of which, more than 9 mh (about 16.%) of land is found to be alkaline/saline. Due to continuous utilization of same land for same agricultural activities, excessive usage of fertilizers and water, most of the soils have become alkaline, saline or water logged. These lands are low productive and at times totally unfit for agricultural activities. These soils may or may not posses good physical condition, but plants may suffer from its inability to absorb water from salty solution. Plants suffer from dehydration and loose water to the soil, shrink, resulting death of plant. This process is called plasmolysis. It is the fact that soil is an independent, organic body of nature that acquires properties in accordance with forces which act upon it. Aquaculture is one of the solutions to utilize such problematic soils for food production. When the impoundments are constructed in an area 10-15% of the affected areas, the excess water along with the salts gets into impoundments and management of salt is easier in water than in the soil. Due to high organic input in aquaculture such as feed, manure and continuous deposition of fecal matter, pH of the soil gets reduced and over the period of time such soils can be put back into the original activity. Under National Agricultural Development Program (NADP), the project was implemented in 258 villages of Mandya District, Karnataka State, India and found that these lands can be effectively utilized for fish culture and increase the proteinacious food production by many folds while conserving the soils. The findings of the research can be adopted and up scaled in any country.Keywords: saline and alkaline soils, Aquaculture, Problematic soils, Reclamation
Procedia PDF Downloads 14116338 Biochemical Evaluation of Air Conditioning West Water in Jeddah City: Concept of Sustainable Water Resources
Authors: D. Alromi, A. Alansari, S. Alghamdi, E. Jambi
Abstract:
As the need for water is increasing globally, and the available water resources are barely meeting the current quality of life and economy. Air conditioning (AC) condensate water could be explored as an alternative water source, which could be considered within the global calculations of the water supply. The objective of this study is to better understand the potential for recovery of condensate water from air conditioning systems. The results generated so far showed that the AC produces a high quantity of water, and data analysis revealed that the amount of water is positively and significantly correlated with the humidity (P <= 0.05). In the meantime, the amount of heavy metals has been measuring using ICP-OES. The results, in terms of quantity, clearly show that the AC can be used as an alternative source of water, especially in the regions characterized by high humidity. The results also showed that the amount of produced water depends on the type of AC.Keywords: air conditioning systems, water quantity, water resources, wastewater
Procedia PDF Downloads 21316337 A Control Model for the Dismantling of Industrial Plants
Authors: Florian Mach, Eric Hund, Malte Stonis
Abstract:
The dismantling of disused industrial facilities such as nuclear power plants or refineries is an enormous challenge for the planning and control of the logistic processes. Existing control models do not meet the requirements for a proper dismantling of industrial plants. Therefore, the paper presents an approach for the control of dismantling and post-processing processes (e.g. decontamination) in plant decommissioning. In contrast to existing approaches, the dismantling sequence and depth are selected depending on the capacity utilization of required post-processing processes by also considering individual characteristics of respective dismantling tasks (e.g. decontamination success rate, uncertainties regarding the process times). The results can be used in the dismantling of industrial plants (e.g. nuclear power plants) to reduce dismantling time and costs by avoiding bottlenecks such as capacity constraints.Keywords: dismantling management, logistics planning and control models, nuclear power plant dismantling, reverse logistics
Procedia PDF Downloads 30416336 Biological Activities of Species in the Genus Tulbaghia: A Review
Authors: S. Takaidza, M. Pillay, F. Mtunzi
Abstract:
Since time immemorial, plants have been used by several communities to treat a large number of diseases. Numerous studies on the pharmacology of medicinal plants have been done. Medicinal plants constitute a potential source for the production of new medicines and may complement conventional antimicrobials and probably decrease health costs. Phytochemical compounds in plants are known to be biologically active aiding, for example, as antioxidants and antimicrobials. The overwhelming challenge of drug resistance has resulted in an increasing trend towards using medicinal plants to treat various diseases, especially in developing countries. Species of the genus Tulbaghia has been widely used in traditional medicine to treat various ailments such rheumatism, fits, fever, earache, tuberculosis etc. It is believed that the species possess several therapeutic properties. This paper evaluates some of the biological activities of the genus Tulbaghia. It is evident from current literature that T. violacea is the most promising species. The other species of Tulbaghia still require further studies to ascertain their medicinal potential.Keywords: biological activities, antimicrobial, antioxidant, phytochemicals, tulbaghia
Procedia PDF Downloads 38516335 Effects of pH, Load Capacity and Contact Time in the Sulphate Sorption onto a Functionalized Mesoporous Structure
Authors: Jaime Pizarro, Ximena Castillo
Abstract:
The intensive use of water in agriculture, industry, human consumption and increasing pollution are factors that reduce the availability of water for future generations; the challenge is to advance in sustainable and low-cost solutions to reuse water and to facilitate the availability of the resource in quality and quantity. The use of new low-cost materials with sorbent capacity for pollutants is a solution that contributes to the improvement and expansion of water treatment and reuse systems. Fly ash, a residue from the combustion of coal in power plants that is produced in large quantities in newly industrialized countries, contains a high amount of silicon oxides and aluminum oxides, whose properties can be used for the synthesis of mesoporous materials. Properly functionalized, this material allows obtaining matrixes with high sorption capacity. The mesoporous materials have a large surface area, thermal and mechanical stability, uniform porous structure, and high sorption and functionalization capacities. The goal of this study was to develop hexagonal mesoporous siliceous material (HMS) for the adsorption of sulphate from industrial and mining waters. The silica was extracted from fly ash after calcination at 850 ° C, followed by the addition of water. The mesoporous structure has a surface area of 282 m2 g-1 and a size of 5.7 nm and was functionalized with ethylene diamine through of a self-assembly method. The material was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The capacity of sulphate sorption was evaluated according to pH, maximum load capacity and contact time. The sulphate maximum adsorption capacity was 146.1 mg g-1, which is three times higher than commercial sorbents. The kinetic data were fitted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model.Keywords: fly ash, mesoporous siliceous, sorption, sulphate
Procedia PDF Downloads 15616334 Assessment of Bisphenol A and 17 α-Ethinyl Estradiol Bioavailability in Soils Treated with Biosolids
Authors: I. Ahumada, L. Ascar, C. Pedraza, J. Montecino
Abstract:
It has been found that the addition of biosolids to soil is beneficial to soil health, enriching soil with essential nutrient elements. Although this sludge has properties that allow for the improvement of the physical features and productivity of agricultural and forest soils and the recovery of degraded soils, they also contain trace elements, organic trace and pathogens that can cause damage to the environment. The application of these biosolids to land without the total reclamation and the treated wastewater can transfer these compounds into terrestrial and aquatic environments, giving rise to potential accumulation in plants. The general aim of this study was to evaluate the bioavailability of bisphenol A (BPA), and 17 α-ethynyl estradiol (EE2) in a soil-biosolid system using wheat (Triticum aestivum) plant assays and a predictive extraction method using a solution of hydroxypropyl-β-cyclodextrin (HPCD) to determine if it is a reliable surrogate for this bioassay. Two soils were obtained from the central region of Chile (Lo Prado and Chicauma). Biosolids were obtained from a regional wastewater treatment plant. The soils were amended with biosolids at 90 Mg ha-1. Soils treated with biosolids, spiked with 10 mgkg-1 of the EE2 and 15 mgkg-1 and 30 mgkg-1of BPA were also included. The BPA, and EE2 concentration were determined in biosolids, soils and plant samples through ultrasound assisted extraction, solid phase extraction (SPE) and gas chromatography coupled to mass spectrometry determination (GC/MS). The bioavailable fraction found of each one of soils cultivated with wheat plants was compared with results obtained through a cyclodextrin biosimulator method. The total concentration found in biosolid from a treatment plant was 0.150 ± 0.064 mgkg-1 and 12.8±2.9 mgkg-1 of EE2 and BPA respectively. BPA and EE2 bioavailability is affected by the organic matter content and the physical and chemical properties of the soil. The bioavailability response of both compounds in the two soils varied with the EE2 and BPA concentration. It was observed in the case of EE2, the bioavailability in wheat plant crops contained higher concentrations in the roots than in the shoots. The concentration of EE2 increased with increasing biosolids rate. On the other hand, for BPA, a higher concentration was found in the shoot than the roots of the plants. The predictive capability the HPCD extraction was assessed using a simple linear correlation test, for both compounds in wheat plants. The correlation coefficients for the EE2 obtained from the HPCD extraction with those obtained from the wheat plants were r= 0.99 and p-value ≤ 0.05. On the other hand, in the case of BPA a correlation was not found. Therefore, the methodology was validated with respect to wheat plants bioassays, only in the EE2 case. Acknowledgments: The authors thank FONDECYT 1150502.Keywords: emerging compounds, bioavailability, biosolids, endocrine disruptors
Procedia PDF Downloads 14516333 Importance of Determining the Water Needs of Crops in the Management of Water Resources in the Province of Djelfa
Authors: Imessaoudene Y., Mouhouche B., Sengouga A., Kadir M.
Abstract:
The objective of this work is to determine the virtual water of main crops grown in the province of Djelfa and water use efficiency (W.U.E.), Which is essential to approach the application and better integration with the offer in the region. In the case of agricultural production, virtual water is the volume of water evapo-transpired by crops. It depends on particular on the expertise of its producers and its global production area, warm and dry climates induce higher consumption. At the scale of the province, the determination of the quantities of virtual water is done by calculating the unit water requirements related to water irrigated hectare and total rainfall over the crop using the Cropwat 8.0 F.A.O. software. Quantifying the volume of agricultural virtual water of crops practiced in the study area demonstrates the quantitative importance of these volumes of water in terms of available water resources in the province, so the advantages which can be the concept of virtual water as an analysis tool and decision support for the management and distribution of water in scarcity situation.Keywords: virtual water, water use efficiency, water requirements, Djelfa
Procedia PDF Downloads 43016332 Use of Fault Tree Analysis for Technical Assessment of Waste-to-Energy Plants
Authors: Ying-Chu Chen
Abstract:
Waste to energy (WTE) technology is becoming increasingly important throughout the world. There are 24 WTE plants in operation in Taiwan that might be ranked the top in density (number of MSW incinerators/area) in the world. Many problems exist in WTE plants, such as low-quality construction, leakage of pipelines, irregular feedings, and lack of maintenance. These problems should be identified and analyzed for effective implementation and efficient operation of WTE plants. This research applies a fault tree analysis (FTA) to identify failures and evaluate their effects on the operation of WTE plants from a technical point of view. Five subsystems of a WTE plant were defined, including loading system, incineration system, effluent disposal system, structural components, and control system. This research results proved that FTA is suitable for WTE evaluation and is an effective analysis tool for technical evaluation in the field of WTE technology.Keywords: delphi method, fault tree approach, municipal solid waste, waste to energy, WTE
Procedia PDF Downloads 56716331 Industrial Wastewater Treatment Improvements Using Activated Carbon
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran
Abstract:
The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.Keywords: adsorption, COD removal, filtration, TDS removal
Procedia PDF Downloads 49816330 Anti-Aging Effects of Two Agricultural Plant Extracts and Their Underlying Mechanism
Authors: Shwu-Ling Peng, Chiung-Man Tsai, Chia-Jui Weng
Abstract:
Chronic micro-inflammation is a hallmark of many aging-related neurodegenerative and metabolic syndrome-driven diseases. In high glucose (HG) environment, reactive oxygen species (ROS) is generated and the ROS induced inflammation, cytokines secretion, DNA damage, and cell cycle arrest to lead to cellular senescence. Water chestnut shell (WCS) is a plant hull which containing polyphenolic compounds and showed antioxidant and anticancer activities. Orchid, which containing a natural polysaccharide compound, possesses many physiological activities including anti-inflammatory and neuroprotective effects. These agricultural plants might be able to reduce oxidative stress and inflammation. This study was used HG-induced human normal dermal fibroblasts (HG-HNDFs) as an in vitro model to disclose the effects of water extract of Phalaenopsis orchid flower (WEPF) and ethanol extract of water chestnut shell (EEWCS) on the anti-aging and their underlying molecular mechanisms. The toxicity of extracts on human normal dermal fibroblasts (HNDFs) was determined by MTT method. The senescence of cells was assayed by β-galactosidase (SA-β-gal) kit. ROS and nitrate production was analyzed by Intracellular ROS contents and ELISA, respectively. Western blotting was used to detect the proteins in cells. The results showed that the exposure of HNDFs to HG (30 mM) for 72 h were caused cellular senescence and arrested cells at G0/G1 phase. Indeed, the treatment of HG-HNDFs with WEPF (200 μg/ml) and EEWCS (10 μg/ml) significantly released cell cycle arrest and promoted cell proliferation. The G1/S phase transition regulatory proteins such as protein retinoblastoma (pRb), p53, and p16ᴵᴺᴷ⁴ᵃ depressed by WEPF and EEWCS were also observed. Additionally, the treatment of WEPF and EEWCS increased the activity of HO-1 through upregulating Nrf2 as well as decreased the ROS and NO of HG-HNDFs. Therefore, the senescence marker protein-30 (SMP30) in cells was diminished. In conclusion, the WEPF and EEWCS might inhibit HG-induced aging of HNDFs by reducing oxidative stress and free radicals.Keywords: agricultural plant extract, anti-aging, high glucose, Phalaenopsis orchid flower, water chestnut shell
Procedia PDF Downloads 15416329 Phytotechnologies for Use and Reconstitution of Contaminated Sites
Authors: Olga Shuvaeva, Tamara Romanova, Sergey Volynkin, Valentina Podolinnaya
Abstract:
Green chemistry concept is focused on the prevention of environmental pollution caused by human activity. However, there are a lot of contaminated areas in the world which pose a serious threat to ecosystems in terms of their conservation. Therefore in accordance with the principles of green chemistry, it should not be forgotten about the need to clean these areas. Furthermore, the waste material often contains the valuable components, the extraction of which by traditional wet chemical technologies is inefficient both from the economic and environmental protection standpoint. Wherein, the plants may be successfully used to ‘scavenge’ a range of metals from polluted land sites in an approach allowing to carry out both of these processes – phytoremediation and phytomining in conjunction. The goal of the present work was to study bioaccumulation ability of floating macrophytes such as water hyacinth and pondweed toward Hg, Ba, Cd, Mo and Pb as pollutants in aquatic medium and terrestrial plants (birch, reed, and cane) towards gold and silver as valuable components. The peculiarity of ongoing research was that the plants grew under extreme conditions (pH of drainage and pore waters was about 2.5). The study was conducted at the territory of Ursk tailings (Southwestern Siberia, Russia) formed as a result of primary polymetallic ores cyanidation. The waste material is mainly presented (~80%) by pyrite (FeS₂) and barite (BaSO₄), the raw minerals included FeAsS, HgS, PbS, Ag₂S as minor ones. It has been shown that water hyacinth demonstrates high ability to accumulate different metals, and what is especially important – to remove mercury from polluted waters with BCF value more than 1000. As for the gold, its concentrations in reed and cane growing near the waste material were estimated as 500 and 900 μg∙kg⁻¹ respectively. It was also found that the plants can survive under extreme conditions of acidic environment and hence we can assume that there is a principal opportunity to use them for the valuable substances extraction from an area of the mining waste dumps burial.Keywords: bioaccumulation, gold, heavy metals, mine tailing
Procedia PDF Downloads 17116328 Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration
Authors: Zohreh Fallah, Edward P. L. Roberts
Abstract:
One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed.Keywords: adsorption, electrochemical regeneration, emulsified oil, produced water
Procedia PDF Downloads 58216327 Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters
Authors: R. F. Vieira, D. Lopes, I. Baptista, S. A. Figueiredo, V. F. Domingues, R. Jorge, C. Delerue-matos, O. M. Freitas
Abstract:
Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored.Keywords: ammonia removal, biofiltration, natural materials, odour control
Procedia PDF Downloads 36916326 Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters
Authors: Samira Ghizellaoui, Manel Boumagoura
Abstract:
Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate).Keywords: water, scaling, calcium carbonate, green inhibitor
Procedia PDF Downloads 6816325 Treatment of Mycotic Dermatitis in Domestic Animals with Poly Herbal Drug
Authors: U. Umadevi, T. Umakanthan
Abstract:
Globally, mycotic dermatitis is very common but there is no single proven specific allopathic treatment regimen. In this study, domestic animals with skin diseases of different age and breed from geographically varied regions of Tamil Nadu state, India were employed. Most of them have had previous treatment with native and allopathic medicines without success. Clinically, the skin lesions were found to be mild to severe. The trial animals were treated with poly herbal formulation (ointment) prepared using the indigenous medicinal plants – viz Andrographis paniculata, Lawsonia inermis and Madhuca longifolia. Allopathic antifungal drugs and ointments, povidone iodine and curabless (Terbinafine HCl, Ofloxacin, Ornidazole, Clobetasol propionate) were used in control. Comparatively, trial animals were found to have lesser course of treatment time and higher recovery rate than control. In Ethnoveterinary, this combination was tried for the first time. This herbal formulation is economical and an alternative for skin diseases.Keywords: allopathic drugs, dermatitis, domestic animals, poly herbal formulation
Procedia PDF Downloads 31416324 Physiological Response of Water-Restricted Xhosa Goats Supplemented with Vitamin C
Authors: O.F. Akinmoladun, F.N. Fon, C.T. Mpendulo, O. Okoh
Abstract:
The sustainability of livestock production is under threat as a result of water scarcity, fluctuating precipitation, and high environmental temperature. These combined stressors have impacted negatively on general animal production and welfare, necessitating a very reliable and cost-effective management practices, especially in arid and water-limited regions of the world. Instead of the above, this study was designed to investigate the growth performance and physiological response of water-restricted Xhosa ear-lobe goats fed diets supplemented with single or multiple vitamin C (VC) during summer. The total forty-eight goats used for the experiment were balanced for body weight and randomly assigned to the seven treatment groups (seven goats/treatment): GI (W100%); GII (W70%); GIII (W50%); GIV (W70%+3g/day VC); GV ((W50% +3g/day VC); GVI (W70%+3g/d VC+extra 5g on every eight-day); GVII (W50%+3g/d VC+extra 5g on every eight-day). The design was a complete randomized design and VC was administered per os. At the end of the 75-day feeding trial, GIII (W50%) animals were the most affected (P<0.05) and the effect was more pronounced in their body condition scores (BCs). Weight loss and depression in feed intake due to water restriction (P<0.05) were attenuated by VC treated groups (GIV-GVII). Changes in body thermal gradient (BTG) and rectal temperature (RcT) were similar (P>0.05) across the various experimental groups. The attenuation effect of VC was significant in responses to respiratory rate (RR) and cortisol. Supplementation of VC (either single or multiple) did not significantly (P>0.05) improve water restriction effect on body condition scores (BCs) and FAMACHA©. The current study found out that Xhosa ear lobe goats can adapt to the prevailing bioclimatic changes and limited water intake. However, supplementation of vitamin C can be beneficial at modulating these stressful stimuli. Continuous consistencies in the outcome of vitamin C on water-stressed animals can help validate recommendations especially to farmers in the arid and water-limited regions across the globe.Keywords: vitamin C, Xhosa ear-lobe, thermotolerance, water stress
Procedia PDF Downloads 13116323 The Impact of Alkaline Water Supplemented with Sodium Ascorbate on Glucose and Cortisol Levels in the Blood Serum During Acute Hyperthermic Exposure of White Laboratory Rats
Authors: Valdrina Ajeti, Icko Gjorgoski
Abstract:
Stress can be a reason for some physiological and biological disorders in the body. The antioxidative defense system is necessary for the maintenance of redox homeostasis in organisms. Because of its antioxidant effect, alkaline water (AW) is the focus of scientific interest. Adding AW and co-treatment with sodium ascorbate (SA) is expected for the organism to act preventively to hyperthermic stress. To investigate the effect of AW and SA on glucose and cortisol levels during acute hyperthermic stress, white female Wistar laboratory rats, divided into three groups of 10 individuals, were exposed to heat for 80 min, for 21 days. Acute hyperthermic exposure at 41˚C was a cause for oxidative stress. The first group is the control group, the second group is treated with AW, and the third group with AW and SA. Plasma glucose levels were determined by colorimetric method and cortisol was measured using the enzyme-linked immunosorbent assay method. The comparison of the means was made using the Tukey test. Differences were considered significant at a level of p < 0.05. Our results show that levels of glucose and cortisol have been increased in the group treated with AW on the 21st day after treatment (p < 0.0001), but not on the 7th and 14th day as compared to the control group. Also, co-treatment of animals with AW and SA significantly increased the levels of glucose and cortisol on the 21st day after treatment showing a synergistic effect. The individual action of AW, as well as synergism with SA, caused a high protective effect on oxidative damage.Keywords: alkaline water, sodium ascorbate, hyperthermic stress, glucose, cortisol
Procedia PDF Downloads 13116322 Treatment of Coal-Water-Oil Slurry Using High Voltage Discharge and Dielectric Barrier Discharge Plasmas
Authors: Song-Chol Pak, Yong-Jun Kim, Hak- Chol Choe, Yong-Son Choe
Abstract:
We converted the coal-water-oil slurry (CWOS) into an alternative fuel (AF) for internal combustion engines by high-voltage discharge (HVD) and dielectric barrier discharge (DBD) plasmas. After its treatments, the CWOS had the average coal size reduced from 12.95 to 8.26㎛, improved dispersibility, fewer deposits, and calorific value enhanced by 35%. The effects of some parameters were analyzed on the conversion of CWOS to AF, and the AF was characterized. The plasma-treated CWOS is similar to other liquid fuels in rheological properties and calorific value. It is therefore concluded that it can be directly employed in internal combustion engines with a little design modification. The suggested method may be an alternative way of converting CWOS to AF without any dispersant or stabilizer.Keywords: coal-water-oil slurry, high-voltage discharge, dielectric barrier discharge, plasma treatment, alternative fuel
Procedia PDF Downloads 2316321 Water Crisis Management in a Tourism Dependent Community
Authors: Aishath Shakeela
Abstract:
At a global level, water stewardship, water stress and water security are crucial factors in tourism planning and development considerations. Challenges associated with water is of particular concern to the Maldives as there is limited availability of freshwater, high dependency on desalinated water, and high unit cost associated with desalinating water. While the Maldives is promoted as an example of sustainable tourism, a key sustainability challenge facing tourism dependent communities is the efficient use and management of available water resources. A water crisis event in the capital island of Maldives highlighted how precarious water related issues are in this tourism dependent destination. Applying netnography, the focus of this working paper is to present community perceptions of how government policies addressed Malé Water and Sewerage Company (MWSC) water crisis event.Keywords: crisis management, government policies, Maldives, tourism, water
Procedia PDF Downloads 530