Search results for: ultra capacitor
171 Imaging 255nm Tungsten Thin Film Adhesion with Picosecond Ultrasonics
Authors: A. Abbas, X. Tridon, J. Michelon
Abstract:
In the electronic or in the photovoltaic industries, components are made from wafers which are stacks of thin film layers of a few nanometers to serval micrometers thickness. Early evaluation of the bounding quality between different layers of a wafer is one of the challenges of these industries to avoid dysfunction of their final products. Traditional pump-probe experiments, which have been developed in the 70’s, give a partial solution to this problematic but with a non-negligible drawback. In fact, on one hand, these setups can generate and detect ultra-high ultrasounds frequencies which can be used to evaluate the adhesion quality of wafer layers. But, on the other hand, because of the quiet long acquisition time they need to perform one measurement, these setups remain shut in punctual measurement to evaluate global sample quality. This last point can lead to bad interpretation of the sample quality parameters, especially in the case of inhomogeneous samples. Asynchronous Optical Sampling (ASOPS) systems can perform sample characterization with picosecond acoustics up to 106 times faster than traditional pump-probe setups. This last point allows picosecond ultrasonic to unlock the acoustic imaging field at the nanometric scale to detect inhomogeneities regarding sample mechanical properties. This fact will be illustrated by presenting an image of the measured acoustical reflection coefficients obtained by mapping, with an ASOPS setup, a 255nm thin-film tungsten layer deposited on a silicone substrate. Interpretation of the coefficient reflection in terms of bounding quality adhesion will also be exposed. Origin of zones which exhibit good and bad quality bounding will be discussed.Keywords: adhesion, picosecond ultrasonics, pump-probe, thin film
Procedia PDF Downloads 159170 Sol-Gel Coated Fabric for Controlled Release of Mosquito Repellent
Authors: Bhaskar M. Murai, Neeraj Banchor, Ishveen Chabbra, Madhusudhan Nadgir, S. Vidhya
Abstract:
Sol-gel technology combined with electronics and biochemistry helps to overcome the problems caused by mosquitoes by developing a portable, low-cost device which enables controlled release of trapped compound inside it. It is a wet-chemical technique which is used primarily for fabrication of silicate gel which is usually allowed to dry as per requirement. The outcome is solid rock hard material which is porous and has lots of applications in different fields. Taking porosity as a key factor, allethrin a naturally occurring synthetic compound with molecular mass 302.40 was entrapped inside the sol-gel matrix as a dopant. Allethrin is commonly used as an insecticide and is a key ingredient in commercially available mosquitoes repellent in Asian and subtropical countries. It has low toxicity for humans and birds, and are used in many household insecticides such as RAID as well as mosquito coils. They are however highly toxic to fish and bees. Insects subject to its exposure become paralyzed (nervous system effect) before dying. They are also used as an ultra-low volume spray for outdoor mosquito control. Therefore, there is a need for controlled release of allethrin in the environment. For controlled release of allethrin from sol-gel matrix, its (allethrin) we utilized temperature based controlled evaporation through porous sol-gel. Different types of fabric like cotton, Terri-cotton, polyester, surgical cap, knee-cap etc are studied and the best with maximum absorption capacity is selected to hold the sol-gel matrix with maximum quantity. For sol-gel coating 2 x 2cm cloth pieces are dipped in sol-gel solution for 10 minutes and by calculating the weight difference we concluded that Terri cotton is best suitable for our project. An electronic circuit with heating plate is developed in to test the controlled release of compound. An oscillatory circuit is used to produce the required heat.Keywords: sol-gel, allethrin, TEOS, biochemistry
Procedia PDF Downloads 375169 Anti-Aging Effects of Retinol and Alpha Hydroxy Acid on Elastin Fibers of Artificially Photo-Aged Human Dermal Fibroblast Cell Lines
Authors: Mohammed Jarrar, Shalini Behl, Nadia Shaheen, Abeer Fatima, Reem Nasab
Abstract:
Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is crucial on aging of skin by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photo-damage is highly valued. Retinoids and Alpha Hydroxy Acids protective and or repairing effects of UV have been endorsed by some researchers. For consolidating a better understanding of anti and protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblasts elastin levels exposed to UV. The UV exposed cells showed significant reduction in the elastin levels. A combination of drugs with a higher concentration of lactic acid (30-35 mM) and a lower concentration of retinol (10-15mg/mL) showed to work better in enhancing elastin concentration in UV exposed cells. We assume this enhancement could be the result of increased tropo-elastin gene expression stimulated by retinol and lactic acid probably repaired the UV irradiated damage by enhancing the amount and integrity of the elastin fibers.Keywords: alpha hydroxy acid, elastin, retinol, ultraviolet radiations
Procedia PDF Downloads 342168 Integrating Efficient Anammox with Enhanced Biological Phosphorus Removal Process Through Flocs Management for Sustainable Ultra-deep Nutrients Removal from Municipal Wastewater
Authors: Qiongpeng Dan, Xiyao Li, Qiong Zhang, Yongzhen Peng
Abstract:
The nutrients removal from wastewater is of great significance for global wastewater recycling and sustainable reuse. Traditional nitrogen and phosphorus removal processes are very dependent on the input of aeration and carbon sources, which makes it difficult to meet the low-carbon goal of energy saving and emission reduction. This study reported a proof-of-concept demonstration of integrating anammox and enhanced biological phosphorus removal (EBPR) by flocs management in a single-stage hybrid bioreactor (biofilms and flocs) for simultaneous nitrogen and phosphorus removal (SNPR). Excellent removal efficiencies of nitrogen (97.7±1.3%) and phosphorus (97.4±0.7%) were obtained in low C/N ratio (3.0±0.5) municipal wastewater treatment. Interestingly, with the loss of flocs, anammox bacteria (Ca. Brocadia) was highly enriched in biofilms, with relative and absolute abundances reaching up to 12.5% and 8.3×1010 copies/g dry sludge, respectively. The anammox contribution to nitrogen removal also rose from 32.6±9.8% to 53.4±4.2%. Endogenous denitrification by flocs was proven to be the main contributor to both nitrite and nitrate reduction, and flocs loss significantly promoted nitrite flow towards anammox, facilitating AnAOB enrichment. Moreover, controlling the floc's solid retention time at around 8 days could maintain a low poly-phosphorus level of 0.02±0.001 mg P/mg VSS in the flocs, effectively addressing the additional phosphorus removal burden imposed by the enrichment of phosphorus-accumulating organisms in biofilms. This study provides an update on developing a simple and feasible strategy for integrating anammox and EBPR for SNPR in mainstream municipal wastewater.Keywords: anammox process, enhanced biological phosphorus removal, municipal wastewater, sustainable nutrients removal
Procedia PDF Downloads 51167 Optimized Dye-Sensitized Solar Cell Using Natural Dye and Counter Electrode from Robusta Coffee Beans Peel Waste
Authors: Tomi Setiawan, Wahyu Y. Subekti, Siti S. Nur'Adya, Khusnul Ilmiah
Abstract:
Dye-Sensitized Solar Cell (DSSC) is one type of solar cell, where solar cells function to convert light energy become the electrical energy. DSSC has two important parts of dye and counter electrode. Anthocyanin compounds in the coffee beans peel can be potential as natural dye and also counter electrodes as activated carbon in the DSSC system. The purpose of this research is to find out how to isolate Anthocyanin, manufacture of counter electrode, and to know the efficiency of counter electrode produced from the coffee pulp waste in DSSC prototype. In this research we used 2 x 2 cm FTO glass coated carbon paste with a thickness variation of 100 μL, 200 μL and 300 μL as counter electrode and other FTO glass coated with TiO₂ paste as work electrode, then two FTO glasses are connected to form a sandwich-liked structure and add Triiodide electrolyte solution in its gap, thus forming a DSSC prototype. The results showed that coffee pulp waste contains anthocyanin of 12.23 mL/80gr and it can produce activated carbon. The characterization performed shows that the UV-Vis Anthocyanin result is at wavelength of ultra violet area that is 219,50 nm with absorbance value equal to 1,469, and maximum wavelength at visible area is 720,00 nm with absorbance value equal to 0,013. The functional groups contained in the anthocyanin are O-H groups at wave numbers 3385.60 cm⁻¹, C = O groups at wave numbers 1618.63 cm⁻¹, and C-O-C groups at 1065.40 cm⁻¹ wave numbers. Morphological characterization using the SEM shows the activated carbon surface area becomes larger and evenly distributed. Voltage obtained on Counter Electrode 100 μL variation of 395mV, 200 μL of 334mV 100 μL of 254mV.Keywords: DSSC, anthocyanin, counter electrode, solar cell, coffee pulp
Procedia PDF Downloads 183166 Laser Writing on Vitroceramic Disks for Petabyte Data Storage
Authors: C. Busuioc, S. I. Jinga, E. Pavel
Abstract:
The continuous need of more non-volatile memories with a higher storage capacity, smaller dimensions and weight, as well as lower costs, has led to the exploration of optical lithography on active media, as well as patterned magnetic composites. In this context, optical lithography is a technique that can provide a significant decrease of the information bit size to the nanometric scale. However, there are some restrictions that arise from the need of breaking the optical diffraction limit. Major achievements have been obtained by employing a vitoceramic material as active medium and a laser beam operated at low power for the direct writing procedure. Thus, optical discs with ultra-high density were fabricated by a conventional melt-quenching method starting from analytical purity reagents. They were subsequently used for 3D recording based on their photosensitive features. Naturally, the next step consists in the elucidation of the composition and structure of the active centers, in correlation with the use of silver and rare-earth compounds for the synthesis of the optical supports. This has been accomplished by modern characterization methods, namely transmission electron microscopy coupled with selected area electron diffraction, scanning transmission electron microscopy and electron energy loss spectroscopy. The influence of laser diode parameters, silver concentration and fluorescent compounds formation on the writing process and final material properties was investigated. The results indicate performances in terms of capacity with two order of magnitude higher than other reported information storage systems. Moreover, the fluorescent photosensitive vitroceramics may be integrated in other applications which appeal to nanofabrication as the driving force in electronics and photonics fields.Keywords: data storage, fluorescent compounds, laser writing, vitroceramics
Procedia PDF Downloads 225165 The Effect of Super-Plasticizer and Ultra-sonic Process on the Carbon Nano Tubes Dispersion in Combination with Nano Silica in Cement Composites to Enhance Its Mechanical Properties
Authors: M.S. El-Feky, Passant Youssef, Mohamed I. Serag
Abstract:
nowadays, nanotechnology is the main trend of research in different areas due to the new potential of using nanometer materials sized less than 100nm. Nanomaterials are needed in cement composites to act as bridging for Nano and micro-cracks to increase tensile strength, reduce the permeability of gases and water in concrete to solve corrosion problem, react with excess Calcium Hydroxide, produce additional C-S-H, act as filler materials to densify the cement matrix and increase its mechanical properties. The present study focuses on the effectiveness of super-plasticizers and ultrasonic processing on the dispersion of Carbon Nanotube at first in water and then in cement composites in combination with Nano silica to enhance the mechanical properties of cement composites. A qualitative analysis using a compressive strength test is conducted with a view to investigate the influence of different dispersion techniques on the mechanical properties of cement composites containing Carbon Nanotube (CNT) and Nano Silica (NS) particles with different percentages. In addition, micro-structural analysis was carried out to understand the surface morphology and microstructure of cement composites with different dosages of NS addition. The investigational study results showed that the combination of NS with a low amount of CNT had a positive effect on the hydration reaction; on the other hand, the combination of CNT and a high amount of NS had a negative effect on the hydration reaction. The compressive strength can be improved by optimum combination 0.02% CNT and 1% NS with gain in strength by 72% and 35% after 7 and 28 days compared to control samples; these results were with an agreement with the morphology structure of composites using microstructure analysis.Keywords: nano silica, dispersion, sonication, carbon nano tubes
Procedia PDF Downloads 146164 [Keynote Talk]: Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites
Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar
Abstract:
In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.Keywords: nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method
Procedia PDF Downloads 468163 Record Peak Current Density in AlN/GaN Double-Barrier Resonant Tunneling Diodes on Free-Standing Gan Substrates by Modulating Barrier Thickness
Authors: Fang Liu, Jia Jia Yao, Guan Lin Wu, Ren Jie Liu, Zhuang Guo
Abstract:
Leveraging plasma-assisted molecular beam epitaxy (PA-MBE) on c-plane free-standing GaN substrates, this work demonstrates high-performance AlN/GaN double-barrier resonant tunneling diodes (RTDs) featuring stable and repeatable negative differential resistance (NDR) characteristics at room temperature. By scaling down the barrier thickness of AlN and the lateral mesa size of collector, a record peak current density of 1551 kA/cm2 is achieved, accompanied by a peak-to-valley current ratio (PVCR) of 1.24. This can be attributed to the reduced resonant tunneling time under thinner AlN barrier and the suppressed external incoherent valley current by reducing the dislocation number contained in the RTD device with the smaller size of collector. Statistical analysis of the NDR performance of RTD devices with different AlN barrier thicknesses reveals that, as the AlN barrier thickness decreases from 1.5 nm to 1.25 nm, the average peak current density increases from 145.7 kA/cm2 to 1215.1 kA/cm2, while the average PVCR decreases from 1.45 to 1.1, and the peak voltage drops from 6.89 V to 5.49 V. The peak current density obtained in this work represents the highest value reported for nitride-based RTDs to date, while maintaining a high PVCR value simultaneously. This illustrates that an ultra-scaled RTD based on a vertical quantum-well structure and lateral collector size is a valuable approach for the development of nitride-based RTDs with excellent NDR characteristics, revealing their great potential applications in high-frequency oscillation sources and high-speed switch circuits.Keywords: GaN resonant tunneling diode, peak current density, peak-to-valley current ratio, negative differential resistance
Procedia PDF Downloads 62162 Synthesis of Flexible Mn1-x-y(CexLay)O2-δ Ultrathin-Film Device for Highly-Stable Pseudocapacitance from end-of-life Ni-MH batteries
Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Sefimofarah, Veena Sahajwalla
Abstract:
The present work details a three-stage strategy based on selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries leading to high-yield fabrication of defect-rich Mn1-x-y(CeₓLaᵧ)O2-δ film. In step one, major impurities (Fe and Al) were removed from a REE-rich solution. In step two, the resulting solution with trace content of Mn was further purified through electrodeposition which resulted in the synthesis of a non-stoichiometric Mn₋₁₋ₓ₋ᵧ(CeₓLaₓᵧ)O2-δ ultra-thin film, with controllable thicknesses (5-650 nm) and transmittance (~29-100%)in which Ce4+/3+ and La3+ ions were dissolved in MnO2-x lattice. Due to percolation impacts on the optoelectronic properties of ultrathin films, a representative Mn1-x-y(CexLay)O2-δ film with 86% transmittance exhibited an outstanding areal capacitance of 3.4 mF•cm-2, mainly attributed to the intercalation/de-intercalation of anionic O2- charge carriers through the atomic tunnels of the stratified Mn1-x-y(CexLay)O2-δ crystallites. Furthermore, the Mn1-x-y(CexLay)O2-δ exhibited excellent capacitance retention of ~90% after 16,000 cycles. Such stability was shown to be associated with intervalence charge transfers occurring among interstitial Ce/La cations and Mn oxidation states within the Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ structure. The energy and power densities of the transparent flexible Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ full-cell pseudocapacitor device with a solid-state electrolyte was measured to be 0.088 µWh.cm-2 and 843 µW.cm-2, respectively. These values showed insignificant changes under vigorous twisting and bending to 45-180˚, confirming these materials are intriguing alternatives for size-sensitive energy storage devices. In step three, the remaining solution purified further, that led to the formation of REOs (La, Ce, and Nd) nanospheres with ~40-50 nm diameter.Keywords: spent Ni-MH batteries, green energy, flexible pseudocapacitor, rare earth elements
Procedia PDF Downloads 134161 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications
Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.
Abstract:
Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.
Procedia PDF Downloads 61160 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature
Procedia PDF Downloads 131159 Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for Treatment of Real Textile Effluent: An in situ Treatment, Anatomical Studies and Toxicity Evaluation
Authors: Suhas Kadam, Vishal Chandanshive, Niraj Rane, Sanjay Govindwar
Abstract:
Fimbristylis dichotoma, Ammannia baccifera, and their co-plantation consortium FA were found to degrade methyl orange, simulated dye mixture, and real textile effluent. Wild plants of Fimbristylis dichotoma and Ammannia baccifera with equal biomass showed 91 and 89% decolorization of methyl orange within 60 h at a concentration of 50 ppm, while 95% dye removal was achieved by consortium FA within 48 h. Floating phyto-beds with co-plantation (Fimbristylis dichotoma and Ammannia baccifera) for the treatment of real textile effluent in a constructed wetland was observed to be more efficient and achieved 79, 72, 77, 66 and 56% reductions in ADMI color value, chemical oxygen demand, biological oxygen demand, total dissolve solid and total suspended solid of textile effluent, respectively. High performance thin layer chromatography, gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, Ultra violet-Visible spectroscopy and enzymatic assays confirmed the phytotransformation of parent dye in the new metabolites. T-RFLP analysis of rhizospheric bacteria of Fimbristylis dichotoma, Ammannia baccifera, and consortium FA revealed the presence of 88, 98 and 223 genera which could have been involved in dye removal. Toxicity evaluation of products formed after phytotransformation of methyl orange by consortium FA on bivalves Lamellidens marginalis revealed less damage in the gills architecture when analyzed histologically. Toxicity measurement by Random Amplification of Polymorphic DNA (RAPD) technique revealed normal banding pattern in treated methyl orange sample suggesting less toxic nature of phytotransformed dye products.Keywords: constructed wetland, phyto-bed, textile effluent, phytoremediation
Procedia PDF Downloads 483158 Characterization of Electrical Transport across Ultra-Thin SrTiO₃ and BaTiO₃ Barriers in Tunnel Junctions
Authors: Henry Navarro, Martin Sirena, Nestor Haberkorn
Abstract:
We report the electrical transport through voltage-current curves (I-V) in tunnels junction GdBa₂Cu₃O₇-d/ insulator/ GdBa₂Cu₃O₇-d, and Nb/insulator/ GdBa₂Cu₃O₇-d is analyzed using a conducting atomic force microscope (CAFM) at room temperature. The measurements were obtained on tunnel junctions with different areas (900 μm², 400 μm² and 100 μm²). Trilayers with GdBa₂Cu₃O₇-d (GBCO) as the bottom electrode, SrTiO₃ (STO) or BaTiO₃ (BTO) as the insulator barrier (thicknesses between 1.6 nm and 4 nm), and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO₃ substrates. For STO and BTO barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. The main difference is that the BTO is a ferroelectric material, while in the STO the ferroelectricity can be produced by stress or deformation at the interfaces. In addition, hysteretic IV curves are obtained for BTO barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/ BTO/ GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/ insulator/ conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures). The superconducting transition of the GBCO electrode was characterized by electrical transport using the 4-prong configuration with low density of topological defects and with Tc over liquid N₂ can be obtained for thicknesses of 16 nm, our results demonstrate that GBCO films with an average root-mean-square (RMS) smaller than 1 nm and areas (up 100 um²) free of 3-D topological defects can be obtained.Keywords: thin film, sputtering, conductive atomic force microscopy, tunnel junctions
Procedia PDF Downloads 155157 Thermoluminescence Study of Cu Doped Lithium Tetra Borate Samples Synthesized by Water/Solution Assisted Method
Authors: Swarnapriya Thiyagarajan, Modesto Antonio Sosa Aquino, Miguel Vallejo Hernandez, Senthilkumar Kalaiselvan Dhivyaraj, Jayaramakrishnan Velusamy
Abstract:
In this paper the lithium tetra borate (Li2B4O7) was prepared by used water/solution assisted synthesis method. Once finished the synthesization, Copper (Cu) were used to doping material with Li2B4O7 in order to enhance its thermo luminescent properties. The heating temperature parameters were 750°C for 2 hr and 150°C for 2hr. The samples produced by water assisted method were doped at different doping percentage (0.02%, 0.04%, 0.06%, 0.08%, 0.12%, 0.5%, 0.1%, and 1%) of Cu.The characteristics and identification of Li2B4O7 (undoped and doped) were determined in four tests. They are X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Ultra violet visible spectroscopy (UV Vis). As it is evidence from the XRD and SEM results the obtained Li2B4O7 and Li2B4O7 doping with Cu was confirmed and also confirmed the chemical compositition and their morphologies. The obtained lithium tetraborate XRD pattern result was verified with the reference data of lithium tetraborate with tetragonal structure from JCPDS. The glow curves of Li2B4O7 and Li2B4O7 : Cu were obtained by thermo luminescence (TLD) reader (Harshaw 3500). The pellets were irradiated with different kind of dose (58mGy, 100mGy, 500mGy, and 945mGy) by using an X-ray source. Finally this energy response was also compared with TLD100. The order of kinetics (b), frequency factor (S) and activation energy (E) or the trapping parameters were calculated using peak shape method. Especially Li2B4O7: Cu (0.1%) presents good glow curve in all kind of doses. The experimental results showed that this Li2B4O7: Cu could have good potential applications in radiation dosimetry. The main purpose of this paper is to determine the effect of synthesis on the TL properties of doped lithium tetra borate Li2B4O7.Keywords: dosimetry, irradiation, lithium tetraborate, thermoluminescence
Procedia PDF Downloads 276156 Molecular Modeling of Structurally Diverse Compounds as Potential Therapeutics for Transmissible Spongiform Encephalopathy
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić
Abstract:
Prion is a protein substance whose certain form is considered as infectious agent. It is presumed to be the cause of the transmissible spongiform encephalopathies (TSEs). The protein it is composed of, called PrP, can fold in structurally distinct ways. At least one of those 3D structures is transmissible to other prion proteins. Prions can be found in brain tissue of healthy people and have certain biological role. The structure of prions naturally occurring in healthy organisms is marked as PrPc, and the structure of infectious prion is labeled as PrPSc. PrPc may play a role in synaptic plasticity and neuronal development. Also, it may be required for neuronal myelin sheath maintenance, including a role in iron uptake and iron homeostasis. PrPSc can be considered as an environmental pollutant. The main aim of this study was to carry out the molecular modeling and calculation of molecular descriptors (lipophilicity, physico-chemical and topological descriptors) of structurally diverse compounds which can be considered as anti-prion agents. Molecular modeling was conducted applying ChemBio3D Ultra version 12.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The Austin Model 1 (AM-1) was used for full geometry optimization of all structures. The obtained set of molecular descriptors is applied in analysis of similarities and dissimilarities among the tested compounds. This study is an important step in further development of quantitative structure-activity relationship (QSAR) models, which can be used for prediction of anti-prion activity of newly synthesized compounds.Keywords: chemometrics, molecular modeling, molecular descriptors, prions, QSAR
Procedia PDF Downloads 322155 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors
Procedia PDF Downloads 273154 Assessment of Wastewater Reuse Potential for an Enamel Coating Industry
Authors: Guclu Insel, Efe Gumuslu, Gulten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tugba Olmez Hanci, Didem Okutman Tas, Fatos Germirli Babuna, Derya Firat Ertem, Okmen Yildirim, Ozge Erturan, Betul Kirci
Abstract:
In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m3 of process water is required and 160 m3 of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m3/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence.Keywords: enamel coating, membrane, reuse, wastewater reclamation
Procedia PDF Downloads 328153 Crosslinked PVA/Bentonite Clay Nanocomposite Membranes: An Effective Membrane for the Separation of Azeotropic Composition of Isopropanol and Water
Authors: Soney C. George, Thomasukutty Jose, Sabu Thomas
Abstract:
Membrane based separation is the most important energy –efficient separation processes. There are wide ranges of membrane based separation process such as Micro-filtration, ultra filtration, reverse osmosis, electro-dialysis etc. Among these pervaporation is one of the most promising techniques. The promising technique is in the sense that it needs an ease of process design, low energy consumption, environmentally clean, economically cost effective and easily separate azeotropic composition without losing any components, unlike distillation in a short period of time. In the present work, we developed a new bentonite clay reinforced cross-linked PVA nano-composite membranes by solution casting method. The membranes were used for the pervaporation separation of azeotropic composition of isopropanol and water mixtures. The azeotropic composition of water and isopropanol is difficult to separate and we can’t get a better separation by normal separation processes. But the better separation was achieved here using cross-linked PVA/Clay nano-composite membranes. The 2wt% bentonite clay reinforced 5vol% GA cross-linked nano-composite membranes showed better separation efficiency. The selectivity of the cross-linked membranes increases 65% upon filler loading. The water permeance is showed tremendous enhancement upon filler loading. The permeance value changes from 4100 to 8200, due to the incorporation hydrophilic bentonite clay to the cross-linked PVA membranes. The clay reinforced membranes shows better thermal stability upon filler loading was confirmed from TGA and DSC analysis. The dispersion of nanoclay in the polymeric matrix was clearly evident from the TEM analysis. The better dispersed membranes showed better separation performance. Thus the developed cross-linked PVA/Clay membranes can be effectively used for the separation of azeotropic composition of water and isopropanol.Keywords: poly(vinyl alcohol), membrane, gluraldehyde, permeance
Procedia PDF Downloads 306152 Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka
Authors: H. M. N. L. Handagiripathira
Abstract:
The distributions of naturally occurring and anthropogenic radioactive materials were determined in surface sediments taken at 27 different locations along the bank of Negombo Lagoon in Sri Lanka. Hydrographic parameters of lagoon water and the grain size analyses of the sediment samples were also carried out for this study. The conductivity of the adjacent water was varied from 13.6 mS/cm to 55.4 mS/cm near to the southern end and the northern end of the lagoon, respectively, and equally salinity levels varied from 7.2 psu to 32.1 psu. The average pH in the water was 7.6 and average water temperature was 28.7 °C. The grain size analysis emphasized the mass fractions of the samples as sand (60.9%), fine sand (30.6%) and fine silt+clay (1.3%) in the sampling locations. The surface sediment samples of wet weight, 1 kg each from upper 5-10 cm layer, were oven dried at 105 °C for 24 hours to get a constant weight, homogenized and sieved through a 2 mm sieve (IAEA technical series no. 295). The radioactivity concentrations were determined using gamma spectrometry technique. Ultra Low Background Broad Energy High Purity Ge Detector, BEGe (Model BE5030, Canberra) was used for radioactivity measurement with Canberra Industries' Laboratory Source-less Calibration Software (LabSOCS) mathematical efficiency calibration approach and Geometry composer software. The mean activity concentration was found to be 24 ± 4, 67 ± 9, 181 ± 10, 59 ± 8, 3.5 ± 0.4 and 0.47 ± 0.08 Bq/kg for 238U, 232Th, 40K, 210Pb, 235U and 137Cs respectively. The mean absorbed dose rate in air, radium equivalent activity, external hazard index, annual gonadal dose equivalent and annual effective dose equivalent were 60.8 nGy/h, 137.3 Bq/kg, 0.4, 425.3 mSv/year and 74.6 mSv/year, respectively. The results of this study will provide baseline information on the natural and artificial radioactive isotopes and environmental pollution associated with information on radiological risk.Keywords: gamma spectrometry, lagoon, radioactivity, sediments
Procedia PDF Downloads 139151 Effect of Annealing Temperature on the Photoelectric Work Function of Silver-Zinc Oxide Contact Materials
Authors: Bouchou Aïssa, Mohamed Akbi
Abstract:
Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermo dynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver-metal oxide (Ag-MeO) electrical contacts (Ag-ZnO (92/8), before and after surface heat treatments at 296 K 813 K, under UHV conditions (residual gas pressure of 1.4 x 10-7 mbar). The electron work function (EWF) of silver zinc oxide materials was measured photoelectrically, using both Fowler’s method of isothermal curves and linearized Fowler plots. In this paper, we present the development of a method for measuring photoelectric work function of contact materials. Also reported in this manuscript are the results of experimental work whose purpose has been the buildup of a reliable photoelectric system and associated monochromatic ultra-violet radiations source, and the photoelectric measurement of the electron work functions (EWF) of contact materials. In order to study the influence of annealing temperature on the EWF, a vacuum furnace was used for heating the metallic samples up to 800 K. The EWF of the silver – zinc oxide materials were investigated to study the influence of annealing temperature on the EWF. In the present study, the photoelectric measurements about Ag-ZnO(92/8) contacts have shown a linear decrease of the EWF with increasing temperature, i.e. the temperature coefficient is constant and negative: for the first annealing # 1, in the temperature range [299 K 823 K]. On the contrary, a linear increase was observed with increasing temperature (i.e. , being constant and positive), for the next annealing # 2, in the temperature range [296 K 813 K]. The EWFs obtained for silver-zinc oxide Ag-ZnO(92/8) show an obvious dependence on the annealing temperature which is strongly associated with the evolution of the arrangement on ZnO nano particles on the Ag-ZnO contact surface as well as surface charge distribution.Keywords: Photoemission, Electron work function, Fowler methods, Ag-ZnO contact materials, Vacuum heat treatment
Procedia PDF Downloads 416150 Hot Cracking Susceptibility Evaluation of the Advanced UNS S31035 Austenitic Stainless Steel by Varestraint Weldability Testing
Authors: Mikael M. Johansson, Peter Stenvall, Leif Karlsson, Joel Andersson
Abstract:
Sandvik Sanicro 25, UNS S31035, is an advanced high temperature austenitic stainless steel that potentially can be used in super-heaters and reheaters in the next generation of advanced ultra-super critical power plants. The material possesses both high creep strength and good corrosion resistance at temperatures up to 700°C. Its high temperature properties are positioned between other commercially available high temperature austenitic stainless steels and nickel-based alloys. It is, however, well known that an austenitic solidification mode combined with a fully austenitic microstructure exacerbate susceptibility towards hot cracking. The problem increases even more for thick walled material in multipass welding and could compromise the integrity of the welded component. Varestraint weldability testing is commonly used to evaluate susceptibility towards hot cracking of materials. In this paper, Varestraint test results are evaluated for base material of both UNS S31035 steel and are compared to those of the well-known and well-characterized UNS S31008 grade. The more creep resistant alloy, UNS S31035, is metallurgically more complicated than the UNS S31008 grade and has additions of several alloying elements to improve its high temperature properties. It benefits from both solid solution hardening as well as precipitation hardening. This investigation therefore attempts, based on the Varestraint weldability test, to understand if there are any differences in cracking mechanisms between these two grades due to the additional alloying elements used in UNS S31035. Results from Varestraint testing and crack type investigations will be presented and discussed in some detail. It is shown that hot cracking susceptibility of the UNS S31035 steel is only slightly higher than that of UNS S31008 despite the more complicated metallurgy. Weldability of the two alloys is therefore judged to be comparable making the newer alloy well suited also for critical applications.Keywords: austenitic stainless steel, hot cracking susceptibility, UNS S31035, UNS S31008, varestraint weldability testing
Procedia PDF Downloads 130149 Construction Innovation: Support for 3D Printing House
Authors: Andrea Palazzo, Daniel Macek, Veronika Malinova
Abstract:
Contour processing is the new technology challenge for architects and construction companies. The many advantages it promises make it one of the most interesting solutions for construction in terms of automation of building processes. The technology for 3D printing houses offers many application possibilities, from low-cost construction, to being considered by NASA for visionary projects as a good solution for building settlements on other planets. Another very important point is that clients, as architects, will no longer have many limits in design concerning ideas and creativity. The prices for real estate are constantly increasing and the lack of availability of construction materials as well as the speculation that has been created around it in 2021 is bringing prices to such a level that in the future real estate developers risk not being able to find customers for these ultra-expensive homes. Hence, this paper starts with the introduction of 3D printing, which now has the potential to gain an important position in the market, becoming a valid alternative to the classic construction process. This technology is not only beneficial from an economic point of view but it is also a great opportunity to have an impact on the environment by reducing CO2 emissions. Further on in the article we will also understand if, after the COP 26 (2021 United Nations Climate Change Conference), world governments could also push towards building technologies that reduce the waste materials that are needed to be disposed of and at the same time reduce emissions with the contribution of governmental funds. This paper will give us insight on the multiple benefits of 3D printing and emphasise the importance of finding new solutions for materials that can be used by the printer. Therefore, based on the type of material, it will be possible to understand the compatibility with current regulations and how the authorities will be inclined to support this technology. This will help to enable the rise and development of this technology in Europe and in the rest of the world on actual housing projects and not only on prototypes.Keywords: additive manufacturing, contour crafting, development, new regulation, printing material
Procedia PDF Downloads 198148 Control Strategy for a Solar Vehicle Race
Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat
Abstract:
Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.Keywords: electrical vehicle, endurance, optimization, shell eco-marathon
Procedia PDF Downloads 265147 Effect of Stress Relief of the Footbath Using Bio-Marker in Japan
Authors: Harumi Katayama, Mina Suzuki, Taeko Muramatsu, Yui Shimogawa, Yoshimi Mizushima, Mitsuo Hiramatsu, Kimitsugu Nakamura, Takeshi Suzue
Abstract:
Purpose: There are very often footbaths in the hot-spring area as culture from old days in Japan. This culture moderately supported mental and physical health among people. In Japanese hospitals, nurses provide footbath for severe patients to mental comfortable. However, there are only a few evidences effect of footbath for mental comfortable. In this presentation, we show the effect of stress relief of the footbath using biomarker among 35 college students in volunteer. Methods: The experiment was designed in two groups of the footbath group and the simple relaxation group randomly. As mental load, Kraepelin test was given to the students beforehand. Ultra-weak chemiluminescence (UCL) in saliva and self-administered liner scale measurable emotional state were measured on four times concurrently; there is before and after the mental load, after the stress relief, and 30 minutes after the stress relief. The scale that measured emotional state was consisted of 7 factors; there is excitement, relaxation, vigorous, fatigue, tension, calm, and sleepiness with 22 items. ANOVA was calculated effect of the footbath for stress relief. Results: The level of UCL (photons/100sec) was significantly increased in response on both groups after mental load. After the two types of stress relief, UCL (photons/100sec) of footbath group was significantly decreased compared to simple relaxation group. Score of sleepiness and relaxation were significantly increased after the stress relief in the footbath group than the simple relaxation group. However, score of excitement, vigorous, tension, and calm were exhibit the same degree of decrease after the stress relief on both group. Conclusion: It was suggested that salivary UCL may be a sensitive biomarker for mild stress relief as nursing care. In the future, we will measure using UCL to evaluate as stress relief for inpatients, outpatients, or general public as the subjects.Keywords: bio-marker, footbath, Japan, stress relief
Procedia PDF Downloads 331146 Viscoelastic Characterization of Gelatin/Cellulose Nanocrystals Aqueous Bionanocomposites
Authors: Liliane Samara Ferreira Leite, Francys Kley Vieira Moreira, Luiz Henrique Capparelli Mattoso
Abstract:
The increasing environmental concern regarding the plastic pollution worldwide has stimulated the development of low-cost biodegradable materials. Proteins are renewable feedstocks that could be used to produce biodegradable plastics. Gelatin, for example, is a cheap film-forming protein extracted from animal skin and connective tissues of Brazilian Livestock residues; thus it has a good potential in low-cost biodegradable plastic production. However, gelatin plastics are limited in terms of mechanical and barrier properties. Cellulose nanocrystals (CNC) are efficient nanofillers that have been used to extend physical properties of polymers. This work was aimed at evaluating the reinforcing efficiency of CNC on gelatin films. Specifically, we have employed the continuous casting as the processing method for obtaining the gelatin/CNC bionanocomposites. This required a first rheological study for assessing the effect of gelatin-CNC and CNC-CNC interactions on the colloidal state of the aqueous bionanocomposite formulations. CNC were isolated from eucalyptus pulp by sulfuric acid hydrolysis (65 wt%) at 55 °C for 30 min. Gelatin was solubilized in ultra-pure water at 85°C for 20 min and then mixed with glycerol at 20 wt.% and CNC at 0.5 wt%, 1.0 wt% and 2.5 wt%. Rotational measurements were performed to determine linear viscosity (η) of bionanocomposite solutions, which increased with increasing CNC content. At 2.5 wt% CNC, η increased by 118% regarding the neat gelatin solution, which was ascribed to percolation CNC network formation. Storage modulus (G’) and loss modulus (G″) further determined by oscillatory tests revealed that a gel-like behavior was dominant in the bionanocomposite solutions (G’ > G’’) over a broad range of temperature (20 – 85 °C), particularly at 2.5 wt% CNC. These results confirm effective interactions in the aqueous gelatin-CNC bionanocomposites that could substantially increase the physical properties of the gelatin plastics. Tensile tests are underway to confirm this hypothesis. The authors would like to thank the Fapesp (process n 2016/03080-3) for support.Keywords: bionanocomposites, cellulose nanocrystals, gelatin, viscoelastic characterization
Procedia PDF Downloads 150145 Linearly Polarized Single Photon Emission from Nonpolar, Semipolar and Polar Quantum Dots in GaN/InGaN Nanowires
Authors: Snezana Lazic, Zarko Gacevic, Mark Holmes, Ekaterina Chernysheva, Marcus Müller, Peter Veit, Frank Bertram, Juergen Christen, Yasuhiko Arakawa, Enrique Calleja
Abstract:
The study reports how the pencil-like morphology of a homoepitaxially grown GaN nanowire can be exploited for the fabrication of a thin conformal InGaN nanoshell, hosting nonpolar, semipolar and polar single photon sources (SPSs). All three SPS types exhibit narrow emission lines (FWHM~0.35 - 2 meV) and high degrees of linear optical polarization (P > 70%) in the low-temperature micro-photoluminescence (µ-PL) experiments and are characterized by a pronounced antibunching in the photon correlation measurements (gcorrected(2)(0) < 0.3). The quantum-dot-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell are identified as the driving mechanism for the single photon emission. As confirmed by the low-temperature transmission electron microscopy combined with cathodoluminescence (TEM-CL) study, the crystal region (i.e. non-polar m-, semi-polar r- and polar c-facets) hosting the single photon emitters strongly affects their emission wavelength, which ranges from ultra-violet for the non-polar to visible for the polar SPSs. The photon emission lifetime is also found to be facet-dependent and varies from sub-nanosecond time scales for the non- and semi-polar SPSs to a few nanoseconds for the polar ones. These differences are mainly attributed to facet-dependent indium content and electric field distribution across the hosting InGaN nanoshell. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon emitters and is thus a promising building block for tunable quantum light devices integrated into future photonic and optoelectronic circuits.Keywords: GaN nanowire, InGaN nanoshell, linear polarization, nonpolar, semipolar, polar quantum dots, single-photon sources
Procedia PDF Downloads 392144 Impact of Fermentation Time and Microbial Source on Physicochemical Properties, Total Phenols and Antioxidant Activity of Finger Millet Malt Beverage
Authors: Henry O. Udeha, Kwaku G. Duodub, Afam I. O. Jideanic
Abstract:
Finger millet (FM) [Eleusine coracana] is considered as a potential ‘‘super grain’’ by the United States National Academies as one of the most nutritious among all the major cereals. The regular consumption of FM-based diets has been associated with reduced risk of diabetes, cataract and gastrointestinal tract disorder. Hyperglycaemic, hypocholesterolaemic and anticataractogenic, and other health improvement properties have been reported. This study examined the effect of fermentation time and microbial source on physicochemical properties, phenolic compounds and antioxidant activity of two finger millet (FM) malt flours. Sorghum was used as an external reference. The grains were malted, mashed and fermented using the grain microflora and Lactobacillus fermentum. The phenolic compounds of the resulting beverage were identified and quantified using ultra-performance liquid chromatography (UPLC) and mass spectrometer system (MS). A fermentation-time dependent decrease in pH and viscosities of the beverages, with a corresponding increase in sugar content were noted. The phenolic compounds found in the FM beverages were protocatechuic acid, catechin and epicatechin. Decrease in total phenolics of the beverages was observed with increased fermentation time. The beverages exhibited 2, 2-diphenyl-1-picrylhydrazyl, 2, 2՛-azinobis-3-ethylbenzthiazoline-6-sulfonic acid radical scavenging action and iron reducing activities, which were significantly (p < 0.05) reduced at 96 h fermentation for both microbial sources. The 24 h fermented beverages retained a higher amount of total phenolics and had higher antioxidant activity compared to other fermentation periods. The study demonstrates that FM could be utilised as a functional grain in the production of non-alcoholic beverage with important phenolic compounds for health promotion and wellness.Keywords: antioxidant activity, eleusine coracana, fermentation, phenolic compounds
Procedia PDF Downloads 107143 Application of Functionalized Magnetic Particles as Demulsifier for Oil‐in‐Water Emulsions
Authors: Hamideh Hamedi, Nima Rezaei, Sohrab Zendehboudi
Abstract:
Separating emulsified oil contaminations from waste- or produced water is of interest to various industries. Magnetic particles (MPs) application for separating dispersed and emulsified oil from wastewater is becoming more popular. Stabilization of MPs is required through developing a coating layer on their surfaces to prevent their agglomeration and enhance their dispersibility. In this research, we study the effects of coating material, size, and concentration of iron oxide MPs on oil separation efficiency, using oil adsorption capacity measurements. We functionalize both micro-and nanoparticles of Fe3O4 using sodium dodecyl sulfate (SDS) as an anionic surfactant, cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, and stearic acid (SA). The chemical structures and morphologies of these particles are characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray (EDX). The oil-water separation results indicate that a low dosage of the coated magnetic nanoparticle with CTAB (0.5 g/L MNP-CTAB) results the highest oil adsorption capacity (nearly 100%) for 1000 ppm dodecane-in-water emulsion, containing ultra-small droplets (250–300 nm). While separation efficiency of the same dosage of bare MNPs is around 57.5%. Demulsification results of magnetic microparticles (MMPs) also reveal that the functionalizing particles with CTAB increase oil removal efficiency from 86.3% for bare MMP to 92% for MMP-CTAB. Comparing the results of different coating materials implies that the major interaction reaction is an electrostatic attraction between negatively charged oil droplets and positively charged MNP-CTAB and MMP-CTAB. Furthermore, the synthesized nanoparticles could be recycled and reused; after ten cycles the oil adsorption capacity slightly decreases to near 95%. In conclusion, functionalized magnetic particles with high oil separation efficiency could be used effectively in treatment of oily wastewater. Finally, optimization of the adsorption process is required by considering the effective system variables, and fluid properties.Keywords: oily wastewater treatment, emulsions, oil-water separation, adsorption, magnetic nanoparticles
Procedia PDF Downloads 107142 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping
Authors: Jie Xu, Zengshan Tian, Ze Li
Abstract:
Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.Keywords: frequency hopping, phase error elimination, carrier phase, ranging
Procedia PDF Downloads 122