Search results for: trees recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2243

Search results for: trees recognition

1763 A Three-Dimensional (3D) Numerical Study of Roofs Shape Impact on Air Quality in Urban Street Canyons with Tree Planting

Authors: Bouabdellah Abed, Mohamed Bouzit, Lakhdar Bouarbi

Abstract:

The objective of this study is to investigate numerically the effect of roof shaped on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, Pvol = 96%. A three-dimensional computational fluid dynamics (CFD) model for evaluating air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier–Stokes (RANS) equations and the k-Epsilon EARSM turbulence model as close of the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against the wind tunnel experiment. Having established this, the wind flow and pollutant dispersion in urban street canyons of six roof shapes are simulated. The numerical simulation agrees reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated, this complexity is increased with presence of tree and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped. The results also indicated that the corners eddies provide additional ventilation and lead to lower traffic pollutant concentrations at the street canyon ends.

Keywords: street canyon, pollutant dispersion, trees, building configuration, numerical simulation, k-Epsilon EARSM

Procedia PDF Downloads 365
1762 Hand Gestures Based Emotion Identification Using Flex Sensors

Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan

Abstract:

In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.

Keywords: emotion identification, emotion models, gesture recognition, user perception

Procedia PDF Downloads 285
1761 The Sawdust Cultivation of Lentinula edodes with Broussonetia kazinoki

Authors: Yeun Sug Jeong, Yeongseon Jang, Rhim Ryoo, Donha Choi, Sung-Suk Lee, Kang-Hyeon Ka

Abstract:

Broussonetia kazinoki (paper mulberry) is a plant native to Asia, and it grows at the foot of a mountain. Its bark is used as a raw material of Hanji, traditional Korean paper, and fruit is used as a medicinal material. However, inside the bark (woody part) is not used and discarded. We tried to use it for Lentinula edodes (oak mushroom) cultivation. It is commonly cultivated using oak trees and sawdust, but it could be grown with other trees. The woody part of paper mulberry was ground and mixed with oak sawdust by five different ratios. The 1.2 kg cylindrical bag media were prepared and water contents were adjusted to 65%. The media were autoclaved at 100℃ for 60 min and 121℃ for 90 min. Two strains of oak mushroom, NIFoS 2462 and NIFoS 2778 were inoculated and cultivated for 90 days in dark condition, and 40 days in light condition. Compared to the control, the mycelial growth period was long and the hardness of the media was low when paper mulberry sawdust was added. After incubation period, fruiting was stimulated at 18℃ and more than 85% humidity. After each flush, there was a resting period of 2 weeks. In the first flush, mushrooms were small, and a lot of small mushrooms were harvested. On the other hand, no mushrooms of 5 g or less were harvested in the secondary flush. The highest productivity was obtained in a 3:1 ratio of paper mulberry and oak sawdust. The size of NIFoS 2778 was uniform in each condition. On the other hand, NIFoS 2462 had smaller mushrooms in the media containing paper mulberry sawdust, but the appearance was not significantly different. This study showed that paper mulberry wood could be used to grow oak mushrooms and some oak sawdust could be substituted.

Keywords: Broussonetia kazinoki, cultivation, Lentinula edodes, oak mushroom

Procedia PDF Downloads 219
1760 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 79
1759 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 574
1758 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 72
1757 LuMee: A Centralized Smart Protector for School Children who are Using Online Education

Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.

Abstract:

This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.

Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data

Procedia PDF Downloads 88
1756 Training a Neural Network to Segment, Detect and Recognize Numbers

Authors: Abhisek Dash

Abstract:

This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.

Keywords: convolutional neural networks, OCR, text detection, text segmentation

Procedia PDF Downloads 161
1755 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps

Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe

Abstract:

Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.

Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion

Procedia PDF Downloads 166
1754 Unveiling Vegetation Composition and Dynamics Along Urbanization Gradient in Ranchi, Eastern India

Authors: Purabi Saikia

Abstract:

The present study was carried out across 84 vegetated grids (>10% vegetation cover) along an urbanization gradient, ranging from the urban core to peri-urban and natural vegetation in and around Ranchi, Eastern India, aiming to examine the phytosociological attributes by belt transect (167 transects each of 0.5 ha) method. Overall, plant species richness was highest in natural vegetation (242 spp.), followed by peri-urban (198 spp.) and urban (182 spp.). Similarly, H’, CD, E, Dmg, Dmn, and ENS showed significant differences in the tree layer (H’: 0.45-3.36; CD: 0.04-1.00; E: 0.25-0.96; Dmg: 0.18-7.15; Dmn: 0.03-4.24, and ENS: 1-29) in the entire urbanization gradient. Various α-diversity indices of the adult trees (H’: 3.98, Dmg: 14.32, Dmn: 2.38, ENS: 54) were comparatively better in urban vegetation compared to peri-urban (H’: 2.49, Dmg: 10.37, Dmn: 0.81, ENS: 12) and natural vegetation (H’: 2.89, Dmg: 13.46, Dmn: 0.85, ENS: 18). Tree communities have shown better response and adaptability in urban vegetation than shrubs and herbs. The prevalence of rare (41%), very rare (29%), and exotic species (39%) in urban vegetation may be due to the intentional introduction of a number of fast-growing exotic tree species in different social forestry plantations that have created a diverse and heterogeneous habitat. Despite contagious distribution, the majority of trees (36.14%) have shown no regeneration in the entire urbanization gradient. Additionally, a quite high percentage of IUCN red-listed plant species (51% and 178 spp.), including endangered (01 sp.), vulnerable (03 spp.), near threatened (04 spp.), least concern (163 spp.), and data deficient (07 spp.), warrant immediate policy interventions. Overall, the study witnessed subsequent transformations in floristic composition and structure from urban to natural vegetation in Eastern India. The outcomes are crucial for fostering resilient ecosystems, biodiversity conservation, and sustainable development in the region that supports diverse plant communities.

Keywords: floristic communities, urbanization gradients, exotic species, regeneration

Procedia PDF Downloads 19
1753 A Fast Version of the Generalized Multi-Directional Radon Transform

Authors: Ines Elouedi, Atef Hammouda

Abstract:

This paper presents a new fast version of the generalized Multi-Directional Radon Transform method. The new method uses the inverse Fast Fourier Transform to lead to a faster Generalized Radon projections. We prove in this paper that the fast algorithm leads to almost the same results of the eldest one but with a considerable lower time computation cost. The projection end result of the fast method is a parameterized Radon space where a high valued pixel allows the detection of a curve from the original image. The proposed fast inversion algorithm leads to an exact reconstruction of the initial image from the Radon space. We show examples of the impact of this algorithm on the pattern recognition domain.

Keywords: fast generalized multi-directional Radon transform, curve, exact reconstruction, pattern recognition

Procedia PDF Downloads 277
1752 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze

Abstract:

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

Keywords: auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter

Procedia PDF Downloads 425
1751 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
1750 Perception of Neighbourhood-Level Built Environment in Relation to Youth Physical Activity in Malaysia

Authors: A. Abdullah, N. Faghih Mirzaei, S. Hany Haron

Abstract:

Neighbourhood environment walkability on reported physical activity (PA) levels of students of Universiti Sains Malaysia (USM) in Malaysia. Compared with previous generations, today’s young people spend less time playing outdoors and have lower participation rates in PA. Research suggests that negative perceptions of neighbourhood walkability may be a potential barrier to adolescents’ PA. The sample consisted of 200 USM students (to 24 years old) who live outside of the main campus and engage in PA in sport halls and sport fields of USM. The data were analysed using the t-test, binary logistic regression, and discriminant analysis techniques. The present study found that youth PA was affected by neighbourhood environment walkability factors, including neighbourhood infrastructures, neighbourhood safety (crime), and recreation facilities, as well as street characteristics and neighbourhood design variables such as facades of sidewalks, roadside trees, green spaces, and aesthetics. The finding also illustrated that active students were influenced by street connectivity, neighbourhood infrastructures, recreation facilities, facades of sidewalks, and aesthetics, whereas students in the less active group were affected by access to destinations, neighbourhood safety (crime), and roadside trees and green spaces for their PAs. These results report which factors of built environments have more effect on youth PA and they message to the public to create more awareness about the benefits of PA on youth health.

Keywords: fear of crime, neighbourhood built environment, physical activities, street characteristics design

Procedia PDF Downloads 353
1749 Working Conditions, Motivation and Job Performance of Hotel Workers

Authors: Thushel Jayaweera

Abstract:

In performance evaluation literature, there has been no investigation indicating the impact of job characteristics, working conditions and motivation on the job performance among the hotel workers in Britain. This study tested the relationship between working conditions (physical and psychosocial working conditions) and job performance (task and contextual performance) with motivators (e.g. recognition, achievement, the work itself, the possibility for growth and work significance) as the mediating variable. A total of 254 hotel workers in 25 hotels in Bristol, United Kingdom participated in this study. Working conditions influenced job performance and motivation moderated the relationship between working conditions and job performance. Poor workplace conditions resulted in decreasing employee performance. The results point to the importance of motivators among hotel workers and highlighted that work be designed to provide recognition and sense of autonomy on the job to enhance job performance of the hotel workers. These findings have implications for organizational interventions aimed at increasing employee job performance.

Keywords: hotel workers, working conditions, motivation, job characteristics, job performance

Procedia PDF Downloads 598
1748 Item-Trait Pattern Recognition of Replenished Items in Multidimensional Computerized Adaptive Testing

Authors: Jianan Sun, Ziwen Ye

Abstract:

Multidimensional computerized adaptive testing (MCAT) is a popular research topic in psychometrics. It is important for practitioners to clearly know the item-trait patterns of administered items when a test like MCAT is operated. Item-trait pattern recognition refers to detecting which latent traits in a psychological test are measured by each of the specified items. If the item-trait patterns of the replenished items in MCAT item pool are well detected, the interpretability of the items can be improved, which can further promote the abilities of the examinees who attending the MCAT to be accurately estimated. This research explores to solve the item-trait pattern recognition problem of the replenished items in MCAT item pool from the perspective of statistical variable selection. The popular multidimensional item response theory model, multidimensional two-parameter logistic model, is assumed to fit the response data of MCAT. The proposed method uses the least absolute shrinkage and selection operator (LASSO) to detect item-trait patterns of replenished items based on the essential information of item responses and ability estimates of examinees collected from a designed MCAT procedure. Several advantages of the proposed method are outlined. First, the proposed method does not strictly depend on the relative order between the replenished items and the selected operational items, so it allows the replenished items to be mixed into the operational items in reasonable order such as considering content constraints or other test requirements. Second, the LASSO used in this research improves the interpretability of the multidimensional replenished items in MCAT. Third, the proposed method can exert the advantage of shrinkage method idea for variable selection, so it can help to check item quality and key dimension features of replenished items and saves more costs of time and labors in response data collection than traditional factor analysis method. Moreover, the proposed method makes sure the dimensions of replenished items are recognized to be consistent with the dimensions of operational items in MCAT item pool. Simulation studies are conducted to investigate the performance of the proposed method under different conditions for varying dimensionality of item pool, latent trait correlation, item discrimination, test lengths and item selection criteria in MCAT. Results show that the proposed method can accurately detect the item-trait patterns of the replenished items in the two-dimensional and the three-dimensional item pool. Selecting enough operational items from the item pool consisting of high discriminating items by Bayesian A-optimality in MCAT can improve the recognition accuracy of item-trait patterns of replenished items for the proposed method. The pattern recognition accuracy for the conditions with correlated traits is better than those with independent traits especially for the item pool consisting of comparatively low discriminating items. To sum up, the proposed data-driven method based on the LASSO can accurately and efficiently detect the item-trait patterns of replenished items in MCAT.

Keywords: item-trait pattern recognition, least absolute shrinkage and selection operator, multidimensional computerized adaptive testing, variable selection

Procedia PDF Downloads 130
1747 Importance of Developing a Decision Support System for Diagnosis of Glaucoma

Authors: Murat Durucu

Abstract:

Glaucoma is a condition of irreversible blindness, early diagnosis and appropriate interventions to make the patients able to see longer time. In this study, it addressed that the importance of developing a decision support system for glaucoma diagnosis. Glaucoma occurs when pressure happens around the eyes it causes some damage to the optic nerves and deterioration of vision. There are different levels ranging blindness of glaucoma disease. The diagnosis at an early stage allows a chance for therapies that slows the progression of the disease. In recent years, imaging technology from Heidelberg Retinal Tomography (HRT), Stereoscopic Disc Photo (SDP) and Optical Coherence Tomography (OCT) have been used for the diagnosis of glaucoma. This better accuracy and faster imaging techniques in response technique of OCT have become the most common method used by experts. Although OCT images or HRT precision and quickness, especially in the early stages, there are still difficulties and mistakes are occurred in diagnosis of glaucoma. It is difficult to obtain objective results on diagnosis and placement process of the doctor's. It seems very important to develop an objective decision support system for diagnosis and level the glaucoma disease for patients. By using OCT images and pattern recognition systems, it is possible to develop a support system for doctors to make their decisions on glaucoma. Thus, in this recent study, we develop an evaluation and support system to the usage of doctors. Pattern recognition system based computer software would help the doctors to make an objective evaluation for their patients. It is intended that after development and evaluation processes of the software, the system is planning to be serve for the usage of doctors in different hospitals.

Keywords: decision support system, glaucoma, image processing, pattern recognition

Procedia PDF Downloads 302
1746 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 57
1745 Bringing the World to Net Zero Carbon Dioxide by Sequestering Biomass Carbon

Authors: Jeffrey A. Amelse

Abstract:

Many corporations aspire to become Net Zero Carbon Carbon Dioxide by 2035-2050. This paper examines what it will take to achieve those goals. Achieving Net Zero CO₂ requires an understanding of where energy is produced and consumed, the magnitude of CO₂ generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between CO₂ and biomass carbon sequestration. Short reviews are provided for prior technologies proposed for reducing CO₂ emissions from fossil fuels or substitution by renewable energy, to focus on their limitations and to show that none offer a complete solution. Of these, CO₂ sequestration is poised to have the largest impact. It will just cost money, scale-up is a huge challenge, and it will not be a complete solution. CO₂ sequestration is still in the demonstration and semi-commercial scale. Transportation accounts for only about 30% of total U.S. energy demand, and renewables account for only a small fraction of that sector. Yet, bioethanol production consumes 40% of U.S. corn crop, and biodiesel consumes 30% of U.S. soybeans. It is unrealistic to believe that biofuels can completely displace fossil fuels in the transportation market. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient and inefficient use of biomass carbon. Both biofuels and CO₂ sequestration reduce future CO₂ emissions from continued use of fossil fuels. They will not remove CO₂ already in the atmosphere. Planting more trees has been proposed as a way to reduce atmospheric CO₂. Trees are a temporary solution. When they complete their Carbon Cycle, they die and release their carbon as CO₂ to the atmosphere. Thus, planting more trees is just 'kicking the can down the road.' The only way to permanently remove CO₂ already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO₂ and sequestering biomass carbon. Sequestering tree leaves is proposed as a solution. Unlike wood, leaves have a short Carbon Cycle time constant. They renew and decompose every year. Allometric equations from the USDA indicate that theoretically, sequestrating only a fraction of the world’s tree leaves can get the world to Net Zero CO₂ without disturbing the underlying forests. How can tree leaves be permanently sequestered? It may be as simple as rethinking how landfills are designed to discourage instead of encouraging decomposition. In traditional landfills, municipal waste undergoes rapid initial aerobic decomposition to CO₂, followed by slow anaerobic decomposition to methane and CO₂. The latter can take hundreds to thousands of years. The first step in anaerobic decomposition is hydrolysis of cellulose to release sugars, which those who have worked on cellulosic ethanol know is challenging for a number of reasons. The key to permanent leaf sequestration may be keeping the landfills dry and exploiting known inhibitors for anaerobic bacteria.

Keywords: carbon dioxide, net zero, sequestration, biomass, leaves

Procedia PDF Downloads 128
1744 An Integrated Cognitive Performance Evaluation Framework for Urban Search and Rescue Applications

Authors: Antonio D. Lee, Steven X. Jiang

Abstract:

A variety of techniques and methods are available to evaluate cognitive performance in Urban Search and Rescue (USAR) applications. However, traditional cognitive performance evaluation techniques typically incorporate either the conscious or systematic aspect, failing to take into consideration the subconscious or intuitive aspect. This leads to incomplete measures and produces ineffective designs. In order to fill the gaps in past research, this study developed a theoretical framework to facilitate the integration of situation awareness (SA) and intuitive pattern recognition (IPR) to enhance the cognitive performance representation in USAR applications. This framework provides guidance to integrate both SA and IPR in order to evaluate the cognitive performance of the USAR responders. The application of this framework will help improve the system design.

Keywords: cognitive performance, intuitive pattern recognition, situation awareness, urban search and rescue

Procedia PDF Downloads 328
1743 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 143
1742 A Robust Spatial Feature Extraction Method for Facial Expression Recognition

Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda

Abstract:

This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.

Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure

Procedia PDF Downloads 425
1741 Its about Cortana, Microsoft’s Virtual Assistant

Authors: Aya Idriss, Esraa Othman, Lujain Malak

Abstract:

Artificial intelligence is the emulation of human intelligence processes by machines, particularly computer systems that act logically. Some of the specific applications of AI include natural language processing, speech recognition, and machine vision. Cortana is a virtual assistant and she’s an example of an AI Application. Microsoft made it possible for this app to be accessed not only on laptops and PCs but can be downloaded on mobile phones and used as a virtual assistant which was a huge success. Cortana can offer a lot apart from the basic orders such as setting alarms and marking the calendar. Its capabilities spread past that, for example, it provides us with listening to music and podcasts on the go, managing my to-do list and emails, connecting with my contacts hands-free by simply just telling the virtual assistant to call somebody, gives me instant answers and so on. A questionnaire was sent online to numerous friends and family members to perform the study, which is critical in evaluating Cortana's recognition capacity and the majority of the answers were in favor of Cortana’s capabilities. The results of the questionnaire assisted us in determining the level of Cortana's skills.

Keywords: artificial intelligence, Cortana, AI, abstract

Procedia PDF Downloads 175
1740 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.

Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village

Procedia PDF Downloads 308
1739 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 50
1738 Smart Multifunctionalized and Responsive Polymersomes as Targeted and Selective Recognition Systems

Authors: Silvia Moreno, Banu Iyisan, Hannes Gumz, Brigitte Voit, Dietmar Appelhans

Abstract:

Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. In addition, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.

Keywords: multifunctionalized, pH stimulus, controllable release, cellular uptake

Procedia PDF Downloads 320
1737 Examining the Role of Tree Species in Absorption of Heavy Metals; Case Study: Abidar Forest Park

Authors: Jahede Tekeykhah, Seyed Mohsen Hossini, Gholamali Jalali

Abstract:

Industrial and traffic activities cause large amounts of heavy metals enter into the atmosphere and the use of plant species can be effective in assessing and reducing air pollution by metals. This study aimed to investigate the adsorption level of heavy metals in leaves of Fraxinus rotundifolia, Robinia, Platanus orientalis, Platycladus orientalis and Pinus eldarica trees in Abidar forest park. For this purpose, samples leaves of the trees were prepared from the contaminated and control areas in each region in 3 stations with 3 replicates in mid-August and finally 90 samples were sent to the laboratory. Then, the concentrations of heavy metals were measured by graphite furnace. To do this, factorial experiment based on a completely randomized design with two factors of location on two levels (contaminated area and control area) and the factor of species on five levels (Fraxinus rotundifolia, Robinia, Platanus orientalis, Platycladus orientalis and Pinus eldarica) with three replications was used. The analysis of collected data was performed by SPSS software and Duncan's multiple range test was used to compare the means. The results showed that the accumulation of all metals in the leaves of most species in the infected area with a significant difference at 95% level was higher than the control area. In the contaminated area, with a significant difference at 5% level, the highest accumulations of metals were observed as the following: lead, cadmium, zinc and manganese in Platanus orientalis, nickel in Fraxinus rotundifolia and copper in Platycladus orientalis.

Keywords: airborne, tree species, heavy metals, absorption, Abidar Forest Park

Procedia PDF Downloads 310
1736 Binarization and Recognition of Characters from Historical Degraded Documents

Authors: Bency Jacob, S.B. Waykar

Abstract:

Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.

Keywords: binarization, denoising, global thresholding, local thresholding, thresholding

Procedia PDF Downloads 344
1735 Effectiveness of Diflubenzuron (DIMILIN) on Various Biological Stages and Behavior of Anthocoris nemoralis (F.) (Hemiptera, anthocoridae) Under Laboratory Conditions

Authors: Baboo Ali, Avni Ugur

Abstract:

Pesticide namely, Diflubenzuron, is tremendously used in pear orchards against different insect pests of pear fruit trees in Turkey. The predatory bug, Anthocoris nemoralis (F.) is found in pear orchard feeding on Cacopsylla pyri (L.) (Homoptera: Psyllidae), is an insect pest of pear fruit trees. In this study, the effectiveness of the above mentioned pesticide on various biological stages of predatory bug were investigated under laboratory conditions of 25±1˚C, 75±5% RH, and photoperiod of 16L: 8D h. Newly emerged 1st, 2nd, 3rd, 4th and 5th instars as well as the female and male stages of the predatory bug were placed on treated petri dishes and their mortality was checked after every 24 hours till the survival of the last individual. Prey consumption of surviving instars as well as the adult stages was determined simultaneously. All biological stages of the predatory bug were fed with eggs of Ephestia kuehniella during the whole research work. Percent hatch of treated eggs was recorded after every 24 hours, and the behavioral test of the male and female stages against Diflubenzuron was also determined using Y-tube olfactometer. Consequently, the mortality rate of 1st, 2nd, 3rd, 4th, and 5th instars was 61.32 %, 67.50%, 74. 91%, 80.11%, and 83.04%, respectively. In case of male and female stages, it has been recorded as 95.47% and 95.50%, respectively. Thus, a significant difference was not found between female and male mortality rates. Prey consumption of 1st, 2nd, 3rd, 4th and 5th surviving instars was noted as 8.01, 11. 72, 13.24, 16.93 and 20.49 number of eggs/day while in females and males, it was 12.05 and 12.71 number of eggs/day, respectively. Hatching ratio of treated eggs of predator was 25.32±4.08. As far as the behavioral test is concerned, it has been indicated that Diflubenzuron has 65% repellent effect on the newly emerged male and female stages of the predatory bug while using Y-tube olfactometer under laboratory conditions.

Keywords: behavior, biological stages, diflubenzuron, effectiveness, pesticide, predatory bug

Procedia PDF Downloads 527
1734 Molecular Characterization and Identification of C-Type Lectin in Red Palm Weevil, Rhynchophorus ferrugineus Oliver

Authors: Hafiza Javaria Ashraf, Xinghong Wang, Zhanghong Shi, Youming Hou

Abstract:

Insect’s innate immunity depends on a variety of defense responses for the recognition of invading pathogens. Pathogen recognition involves particular proteins known as pattern recognition receptors (PRRs). These PRRs interact with pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens to distinguish between self and non-self. C-type lectins (CTLs) belong to a superfamily of PPRs which involved in insect immunity and defense mechanism. Rhynchophorus ferrugineus Olivier is a devastating pest of Palm cultivations in China. Although studies on R. ferrugineus immune mechanism and host defense have conducted, however, the role of CTL in immune responses of R. ferrugineus remains elusive. Here, we report RfCTL, which is a secreted protein containing a single-CRD domain. The open reading frame (ORF) of CTL is 226 bp, which encodes a putative protein of 168 amino acids. Transcript expression analysis revealed that RfCTL highly expressed in immune-related tissues, i.e., hemolymph and fat body. The abundance of RfCTL in the gut and fat body dramatically increased upon Staphylococcus aureus and Escherichia coli bacterial challenges, suggesting a role in defense against gram-positive and gram-negative bacterial infection. Taken together, we inferred that RfCTL might be involved in the immune defense of R. ferrugineus and established a solid foundation for future studies on R. ferrugineus CTL domain proteins for better understanding of insect immunity.

Keywords: biological invasion, c-type lectin, insect immunity, Rhynchophorus ferrugineus Oliver

Procedia PDF Downloads 157