Search results for: trace elements concentrations
5994 Assesment of the Economic Potential of Lead Contaminated Brownfield for Growth of Oil Producing Crop Like Helianthus annus (Sunflower)
Authors: Shahenaz Sidi, S. K. Tank
Abstract:
When sparsely used industrial and commercial facilities are retired or abandoned, one of the biggest issues that arise is what to do with the remaining land. This land, referred to as a ‘Brownfield site’ or simply ‘Brownfield’ is often contaminated with waste and pollutants left behind by the defunct industrial facilities and factories that stand on the land. Phytoremediation has been proved a promising greener and cleaner technology in remediating the land unlike other chemical excavation methods. Helianthus annus is a hyper accumulator of lead. Helianthus annus can be used for remediation procedures in metal contaminated soils. It is a fast-growing crop which would favour soil stabilization. Its tough leaves and stems are rarely eaten by animals. The seeds (actively eaten by birds) have very low concentrations of potentially toxic elements, and represent low risk for the food web. The study is conducted to determine the phytoextraction potentials of the plant and the eventual seed harvesting and commercial oil production on remediated soil.Keywords: Brownfield, phytoextraction, helianthus, oil, commercial
Procedia PDF Downloads 3375993 Some Metal Levels in Muscle Tissue of Seven Fish Species from the Suğla and Beyşehir Lakes, Turkey
Authors: Haluk Özparlak, Murad Aydın Şanda, Gülşin Arslan
Abstract:
Phoxinellus anatolicus, Carassius gibelio, Sander lucioperca, Vimba vimba tenella, Capoeta capoeta, Tinca tinca from Suğla Lake (Turkey) and Phoxinellus anatolicus, Scardinius erythrophthalmus, Tinca tinca from Beyşehir Lake (Turkey) are economically important fish species and these fish have been consumed as food by local people. P. anatolicus is also endangered and endemic species from Turkey. In this study, concentrations of Cd, Co, Cr, Fe, Mn, Ni, Pb and Zn were determined in muscle tissue of these fish by using atomic absorption spectrophotometer. Levels of metals in the muscle tissue of all the fish specimens were compared with results of previous studies, the tolerance levels of national and international guidelines and the levels of Provisional Tolerable Weekly Intake (PTWI) limits set by FAO/WHO. Concentrations of Cd, Cr, Ni and Pb in the muscle tissue of all the fish specimens from Suğla and Beyşehir Lakes exceeded the tolerance levels of national and international guidelines. However, concentrations of Cd, Fe, Pb and Zn were below PTWI limits. Therefore, in terms of these metal levels, consumption of fresh filet of examined seven fish species (weekly up to about 300 g/person) doesn’t seem to be objectionable for human health.Keywords: Beyşehir Lake, fish, metal levels, Suğla Lake
Procedia PDF Downloads 3345992 The Doctor-Patient Interaction Experience Hierarchy Using Rasch Measurement Model Analysis
Authors: Wan Nur'ashiqin Wan Mohamad, Zarina Othman, Mohd Azman Abas, Azizah Ya'acob, Rozmel Abdul Latiff
Abstract:
Effective doctor-patient interaction is vital to both doctor and patient relationship. It is the cornerstone of good practice and an integral quality of a healthcare institution. This paper presented the hierarchy of the communication elements in doctor-patient interaction during medical consultations in a medical centre in Malaysia. This study adapted The Picker Patient Experience Questionnaire (2002) to obtain the information from patients. The questionnaire survey was responded by 100 patients between the ages of 20 and 50. Data collected were analysed using Rasch Measurement Model to yield the hierarchy of the communication elements in doctor-patient interaction. The findings showed that the three highest ranking on the doctor-patient interaction were doctor’s treatment, important information delivery and patient satisfaction of doctor’s responses. The results are valuable in developing the framework for communication ethics of doctors.Keywords: communication elements, doctor-patient interaction, hierarchy, Rasch measurement model
Procedia PDF Downloads 1635991 The Influence of the Concentration and Temperature on the Rheological Behavior of Carbonyl-Methylcellulose
Authors: Mohamed Rabhi, Kouider Halim Benrahou
Abstract:
The rheological properties of the carbonyl-methylcellulose (CMC), of different concentrations (25000, 50000, 60000, 80000 and 100000 ppm) and different temperatures were studied. We found that the rheological behavior of all CMC solutions presents a pseudo-plastic behavior, it follows the model of Ostwald-de Waele. The objective of this work is the modeling of flow by the CMC Cross model. The Cross model gives us the variation of the viscosity according to the shear rate. This model allowed us to adjust more clearly the rheological characteristics of CMC solutions. A comparison between the Cross model and the model of Ostwald was made. Cross the model fitting parameters were determined by a numerical simulation to make an approach between the experimental curve and those given by the two models. Our study has shown that the model of Cross, describes well the flow of "CMC" for low concentrations.Keywords: CMC, rheological modeling, Ostwald model, cross model, viscosity
Procedia PDF Downloads 4055990 Hexavalent Chromium-Induced Changes in Biochemical Parameters of Wistar Albino Rats
Authors: Ounassa Adjroud
Abstract:
Potassium dichromate (K2Cr2O7) is one of the most toxic elements to which man can be exposed at work or in the environment. The purpose of the current work is to compare the effect of K2Cr2O7 using variations in the dose, route of administration and duration of exposure in male and female Wistar albino rats with a special focus on biochemical parameters. K2Cr2O7 was subcutaneously administered alone (10, 50 and 100 mg/kg body weight) to female Wistar albino rats. Male rats received in their drinking water K2Cr2O7 30 mg/L/day) for 20 consecutive days. The Biochemical parameters were evaluated on days 3, 6 and 21 after subcutaneous (sc.) treatment in female rats and on days 10 and 20 after oral administration in male rats. The subcutaneous (s.c.) administration of 25 mg/kg of K2Cr2O7 to Wistar albino rats induced a slight change in plasma glucose levels during the experiment period. On the contrary, a significant decrease in plasma glucose levels was observed with 50 mg/kg mainly on days 3 (-26%) and 21 (-48%) after treatment compared to controls females rats. On the other hand, the higher dose provoked a significant increase in plasma glucose concentrations on days 6 (+31%) and 21 (+60%). similarly, the lower dose of chromium had no effect on the plasma urea levels. Conversely, a significant increase (122%) in this parameter was obtained during the first three days after treatment. In addition, a significant decrease in plasma glucose levels was observed with 50 mg/kg mainly on days 3 (-26%) and 21 (-48%) after treatment. On the other hand, the higher dose provoked a significant increase in plasma glucose concentrations on days 6 (+31%) and 21 (+60%). similarly, the lower dose of chromium had no effect on the plasma urea levels. Conversely, a significant increase in this parameter (122%) was obtained during the first three days after treatment. In addition, administration of 100 mg/kg of K2Cr2O7 by s.c markedly augmented the levels of plasma urea on days 3 (62%) and 6 (121%). Administration of 30 mg/L/day of K2Cr2O7 in the drinking water induced a significant augmentation in both of plasma glucose (27%) and urea (126%) during the first ten days of treatment. These results suggested that K2Cr2O7 administered subcutaneously or in the drinking water may induce harmful effects on biochemical parameters.Keywords: glucose, potassium dichromate, Wistar albino rat, urea
Procedia PDF Downloads 2835989 Incidences and Chemico-Mobility of Toxic Heavy Metals in Environmental Samples
Authors: I. Hilia, C. Hange, F. Hakala, M. Matheus, C. Jansen, J. Hidinwa, O. Awofolu
Abstract:
The article reports on the occurrences, level, and mobility of selected trace metals in environmental samples. The conceptual basis was to examine the possible influence of anthropogenic activities and the impact on human and environmental health. Environmental samples (soil, plant and lower animal) were randomly collected from stratified study/sampling areas, preserved and pre-treated before analysis. Mineral acid digestion procedure was employed for the isolation of metallic contents in samples, and elemental qualitative and quantitative analysis was by ICP-OES. Analytical protocol was validated through the quality assurance process and was found acceptable with quantitative metallic recoveries in the range of 85-90%; hence considered applicable for the analyses of environmental samples. The mean concentration of analysed metals in soil samples ranged from 53.2- 2532.8 mg/kg (Cu); 59.5- 2020.1 mg/kg (Zn); 1.80 – 21.26 mg/kg (Cd) and 19.6- 140.9 mg/kg (Pb). The mean level in grass samples ranged from 9.33 – 38.63 mg/kg (Cu); 64.20-105.18 mg/kg (Zn); 0.28–0.73 mg/kg (Cd) and 0.53 -16.26 mg/kg (Pb) while the mean level in lower animal sample (beetle) varied from 9.6 - 105.3 mg/kg (Cu); 134.1-297.2 mg/kg (Zn); 0.63 – 3.78 (Cd) and 8.0 – 29.1 mg/kg (Pb) across sample collection points (SCPs) 1-4 respectively. Metallic transfer factors (TFs) were in the order Zn >Cd > Cu > Pb with metal Pollution Indices (MPIs) in the order SCP1 > SCP2 > SCP3 > SCP4. About 60-70 % of analysed metals were above the maximum allowable limits (MALs) in soil and plant samples. Results obtained revealed the general prevalence of analysed metals at all sampled sites with indication of metallic mobility across the food chain which portrayed dire consequences for environmental and human health. Systematic environmental remediation and pollution abatement strategies are recommended.Keywords: trace metals, pollution, human health, Incidences, ICP-OES
Procedia PDF Downloads 1595988 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants
Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin
Abstract:
Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants
Procedia PDF Downloads 2885987 Ascorbic Acid Application Mitigates the Salt Stress Effects on Helianthus annuus L. Plants Grown on a Reclaimed Saline Soil
Authors: Mostafa M. Rady, Majed M. Howladar, Saad M. Howladar
Abstract:
A field trial was conducted during two successive seasons (2013 and 2014) in Southeast Fayoum, Egypt (29º 17'N; 30º 53'E) to investigate the improving effect of ascorbic acid (Vit C) foliar spray at the rates of 0, 1, 2 or 3 mM on the growth, seed and oil yields, and some chemical constituents of sunflower plants grown on a reclaimed saline soil (EC = 7.98–7.83). Vit C application at all rates (1, 2 and 3 mM) was significantly increased growth traits, seed and oil yields, and the concentrations of endogenous Vit C, leaf photosynthetic pigments, total soluble sugars, free proline and nutrient elements as well as K/Na ratio. In contrast, Na concentration was significantly reduced with the application of all Vit C levels. Vit C foliar spray at the rate of 2 mM was found to be the best treatment, alleviating the inhibitory effects of salinity on sunflower plants grown on a reclaimed saline soil.Keywords: Helianthus annuus L., Vit C, salinity, growth, seed and oil yields, osmoprotectants
Procedia PDF Downloads 4185986 A Simple Olfactometer for Odour and Lateralization Thresholds of Chemical Vapours
Authors: Lena Ernstgård, Aishwarya M. Dwivedi, Johan Lundström, Gunnar Johanson
Abstract:
A simple inexpensive olfactometer was constructed to enable valid measures of detection threshold of low concentrations of vapours of chemicals. The delivery system consists of seven syringe pumps, each connected to a Tedlar bag containing a predefined concentration of the test chemical in the air. The seven pumps are connected to a 8-way mixing valve which in turn connects to a birhinal nose piece. Chemical vapor of known concentration is generated by injection of an appropriate amount of the test chemical into a Tedlar bag with a known volume of clean air. Complete vaporization is assured by gentle heating of the bag from the outside with a heat flow. The six test concentrations are obtained by adding different volumes from the starting bag to six new Tedlar bags with known volumes of clean air. One bag contains clean air only. Thus, six different test concentrations and clean air can easily be tested in series by shifting the valve to new positions. Initial in-line measurement with a photoionization detector showed that the delivery system quickly responded to a shift in valve position. Thus 90% of the desired concentration was reached within 15 seconds. The concentrations in the bags are verified daily by gas chromatography. The stability of the system in terms of chemical concentration is monitored in real time by means of a photo-ionization detector. To determine lateralization thresholds, an additional pump supplying clean air is added to the delivery system in a way so that the nostrils can be separately and interchangeably be exposed to clean air and test chemical. Odor and lateralization thresholds were determined for three aldehydes; acrolein, crotonaldehyde, and hexanal in 20 healthy naïve individuals. Aldehydes generally have a strong odour, and the selected aldehydes are also considered to be irritating to mucous membranes. The median odor thresholds of the three aldehydes were 0.017, 0.0008, and 0.097 ppm, respectively. No lateralization threshold could be identified for acrolein, whereas the medians for crotonaldehyde and hexanal were 0.003 and 0.39 ppm, respectively. In conclusion, we constructed a simple, inexpensive olfactometer that allows for stable and easily measurable concentrations of vapors of the test chemical. Our test with aldehydes demonstrates that the system produces valid detection among volunteers in terms of odour and lateralization thresholds.Keywords: irritation, odour delivery, olfactometer, smell
Procedia PDF Downloads 2165985 Insecticidal Effects of the Wettable Powder Formulations of Plant Extracts on Cotton Bollworm, Helicoverpa armigera (Lep. Noctuidae)
Authors: Reza Sadeghi, Maryam Nazarahari
Abstract:
Due to the numerous side effects of chemical pesticides, in this research, to provide the practical use of herbal compounds, the extracts of the two plants of thyme and eucalyptus were extracted by using water, 70% ethanol, and n-hexane solvents via percolation method and then formulated as wettable powders. The mortality rates of cotton bollworm (Helicoverpa armigera) were investigated under different concentrations of ethanolic, hexanic, and aqueous extracts of thyme and eucalyptus and their formulations in laboratory conditions. The results showed that the used concentrations, types of solvents, and sorts of formulations significantly affected the mortality rates of cotton bollworm larvae during the exposure period of 24 h.Keywords: cotton bollworm, eucalyptus, formulation, thyme, toxicity
Procedia PDF Downloads 845984 Modeling of Drug Distribution in the Human Vitreous
Authors: Judith Stein, Elfriede Friedmann
Abstract:
The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body
Procedia PDF Downloads 1375983 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 395982 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements
Authors: Alexander Buhr, Klaus Ehrenfried
Abstract:
Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.Keywords: boundary layer, high-speed PIV, ICE3, moving train model, roughness elements
Procedia PDF Downloads 3055981 Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels
Authors: Mahmoud M. Tash
Abstract:
The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed.Keywords: hot forging, hot rolling, heat treatment, hardness (HV), impact toughness (J), microstructure, low alloy steels
Procedia PDF Downloads 5165980 Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production
Authors: Oluwatoyin Joseph Gbadeyan, Sarp Adali, Bright Glen, Bruce Sithole
Abstract:
Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement.Keywords: sodium lauryl surfactant, mechanical properties , achatina fulica snail shel, calcium carbonate nanopowder
Procedia PDF Downloads 1455979 DSF Elements in High-Rise Timber Buildings
Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih
Abstract:
The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.Keywords: glass, high-rise buildings, numerical analysis, timber
Procedia PDF Downloads 465978 Effect of Heat Stress on the Physiology of the Cork Oak
Authors: J. Zekri, N. Souilah, W. Abdelaziz, D. Alatou
Abstract:
Our study shall focus on the ability of trees cork oak that showed vis-à-vis sensitivity to climate change, including late spring frosts. The combination of these factors resulted in damage alarmed, therefore forest ecosystems weakened trees that can affect their ability to support other abiotic and biotic stresses, For this we tested its tolerance to thermal variations and cold weather conditions by estimating some stress markers (quantification of proteins, RNA, soluble sugars) that are quantified to evaluate the cold tolerance of seedlings. Sowing of cork oak (Quercus suber L.) is grown in controlled conditions at 25° C ± 2° C in long days 16h. These seedlings are transferred at low temperatures between 5° C and -6° C for a period of 3 hours. Biochemical analyzes were performed in the various organs of the cork oak seedlings. Cool temperatures induced a significant accumulation of proline in different organs of seedlings and the optimum concentrations were observed in the roots with very high concentrations (4 times larger than those of the control). The accumulation of soluble sugars is significantly in stems and roots at 0° C. Protein concentrations are very high in leaves of both growth and high waves in rod at -4° C to -2° C. Tolerance cork oak seems to be at the thermal limit of -2°C. The concentration of these metabolites in the various organs showed the ability oak cork hardening during the winter.Keywords: climate change, thermal change, semi-aride, biochemical markers, heat stress
Procedia PDF Downloads 2495977 Evaluation of Heavy Metal Concentrations of Stem and Seed of Juncus acutus for Grazing Animals and Birds in Kızılırmak Delta
Authors: N. Cetinkaya, F. Erdem
Abstract:
Juncus acutus (Juncaceae) is a perennial wetland plant and it is commonly known as spiny rush or sharp rush. It is the most abundant plant in Kizilirmak grassland, Samsun, Turkey. Heavy metals are significant environmental contaminants in delta and their toxicity is an increasing problem for animals whose natural habitat is delta. The objective of this study was to evaluate heavy metal concentrations mainly As, Cd, Sb, Ba, Pb and Hg in stem and seed of Juncus acutus for grazing animals and birds in delta. The Juncus acutus stem and seed samples were collected from Kizilirmak Delta in July, August and September. Heavy metal concentrations of collected samples were analyzed by Inductively Coupled Plasma – Mass Spectrometer (ICP-MS). The obtained mean values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus were 0.11 and 0.23 mg/kg; 0.07 and 0.11 mg/kg; 0.02 and 0.02 mg/kg; 5.26 and 1.75 mg/kg; 0.05 and not detectable in July respectively. Hg was not detected in both stem and seed of Juncus acutus, Pb concentration was determined only in stem of Juncus acutus but not in seed. There were no significant differences between the values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus. The obtained As, Cd, Sb, Ba, Pb and Hg results of stem and seed of Juncus acutus show that seed and stem of Juncus acutus may be safely consumed for grazing animals and birds regarding to heavy metals contamination in Kizilirmak Delta.Keywords: heavy metals, Juncus acutus, Kizilirmak Delta, wetland
Procedia PDF Downloads 1395976 The Impact of Built Environment Design on Users’ Psychology to Foster Pro-Environmental Behavior in University Open Spaces
Authors: Rehab Mahmoud El Sayed, Toka Fahmy Nasr, Dalia M. Rasmi
Abstract:
Environmental psychology studies the interaction between the user and the environment. This field is crucial in understanding how the built environment affects human behaviour, moods and feelings. Studying and understanding the aspects and influences of environmental psychology is a crucial key to investigating how the design can influence human behaviour to be environmentally friendly. This is known as pro-environmental behaviour where human actions are sustainable and impacts the environment positively. Accordingly, this paper aims to explore the impact of built environment design on environmental psychology to foster pro-environmental behaviour in university campus open spaces. In order to achieve this, an exploratory research method was conducted where a detailed study of the influences of environmental psychology was done and clarified its elements. Moreover, investigating the impact of design elements on human psychology took place. Besides, an empirical study of the outdoor spaces of the British University in Egypt occurred and a survey for students and staff was distributed. The research concluded that the four main psychological aspects are mostly influenced by the following design elements colours, lighting and thermal comfort respectively. Additionally, focusing on these design elements in the design process will create a sustainable environment. As a consequence, the pro-environmental behaviour of the user will be fostered.Keywords: environmental psychology, pro-environmental behavior, sustainable environment, psychological influences
Procedia PDF Downloads 845975 Examining Effects of Electronic Market Functions on Decrease in Product Unit Cost and Response Time to Customer
Authors: Maziyar Nouraee
Abstract:
Electronic markets in recent decades contribute remarkably in business transactions. Many organizations consider traditional ways of trade non-economical and therefore they do trade only through electronic markets. There are different categorizations of electronic markets functions. In one classification, functions of electronic markets are categorized into classes as information, transactions, and value added. In the present paper, effects of the three classes on the two major elements of the supply chain management are measured. The two elements are decrease in the product unit cost and reduction in response time to the customer. The results of the current research show that among nine minor elements related to the three classes of electronic markets functions, six factors and three factors influence on reduction of the product unit cost and reduction of response time to the customer, respectively.Keywords: electronic commerce, electronic market, B2B trade, supply chain management
Procedia PDF Downloads 3925974 Evaluation of Automated Analyzers of Polycyclic Aromatic Hydrocarbons and Black Carbon in a Coke Oven Plant by Comparison with Analytical Methods
Authors: L. Angiuli, L. Trizio, R. Giua, A. Digilio, M. Tutino, P. Dambruoso, F. Mazzone, C. M. Placentino
Abstract:
In the winter of 2014 a series of measurements were performed to evaluate the behavior of real-time PAHs and black carbon analyzers in a coke oven plant located in Taranto, a city of Southern Italy. Data were collected both insides than outside the plant, at air quality monitoring sites. Contemporary measures of PM2.5 and PM1 were performed. Particle-bound PAHs were measured by two methods: (1) aerosol photoionization using an Ecochem PAS 2000 analyzer, (2) PM2.5 and PM1 quartz filter collection and analysis by gas chromatography/mass spectrometry (GC/MS). Black carbon was determined both in real-time by Magee Aethalometer AE22 analyzer than by semi-continuous Sunset Lab EC/OC instrument. Detected PM2.5 and PM1 levels were higher inside than outside the plant while PAHs real-time values were higher outside than inside. As regards PAHs, inside the plant Ecochem PAS 2000 revealed concentrations not significantly different from those determined on the filter during low polluted days, but at increasing concentrations the automated instrument underestimated PAHs levels. At the external site, Ecochem PAS 2000 real-time concentrations were steadily higher than those on the filter. In the same way, real-time black carbon values were constantly lower than EC concentrations obtained by Sunset EC/OC in the inner site, while outside the plant real-time values were comparable to Sunset EC values. Results showed that in a coke plant real-time analyzers of PAHs and black carbon in the factory configuration provide qualitative information, with no accuracy and leading to the underestimation of the concentration. A site specific calibration is needed for these instruments before their installation in high polluted sites.Keywords: black carbon, coke oven plant, PAH, PAS, aethalometer
Procedia PDF Downloads 3445973 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 3685972 A Small Signal Model for Resonant Tunneling Diode
Authors: Rania M. Abdallah, Ahmed A. S. Dessouki, Moustafa H. Aly
Abstract:
This paper has presented a new simple small signal model for a resonant tunnelling diode device. The resonant tunnelling diode equivalent circuit elements were calculated and the results led to good agreement between the calculated equivalent circuit elements and the measurement results.Keywords: resonant tunnelling diode, small signal model, negative differential conductance, electronic engineering
Procedia PDF Downloads 4435971 Modal Analysis of Small Frames using High Order Timoshenko Beams
Authors: Chadi Azoury, Assad Kallassy, Pierre Rahme
Abstract:
In this paper, we consider the modal analysis of small frames. Firstly, we construct the 3D model using H8 elements and find the natural frequencies of the frame focusing our attention on the modes in the XY plane. Secondly, we construct the 2D model (plane stress model) using Q4 elements. We concluded that the results of both models are very close to each other’s. Then we formulate the stiffness matrix and the mass matrix of the 3-noded Timoshenko beam that is well suited for thick and short beams like in our case. Finally, we model the corners where the horizontal and vertical bar meet with a special matrix. The results of our new model (3-noded Timoshenko beam for the horizontal and vertical bars and a special element for the corners based on the Q4 elements) are very satisfying when performing the modal analysis.Keywords: corner element, high-order Timoshenko beam, Guyan reduction, modal analysis of frames, rigid link, shear locking, and short beams
Procedia PDF Downloads 3185970 Evaluation of Arsenic Removal in Soils Contaminated by the Phytoremediation Technique
Authors: V. Ibujes, A. Guevara, P. Barreto
Abstract:
Concentration of arsenic represents a serious threat to human health. It is a bioaccumulable toxic element and is transferred through the food chain. In Ecuador, values of 0.0423 mg/kg As are registered in potatoes of the skirts of the Tungurahua volcano. The increase of arsenic contamination in Ecuador is mainly due to mining activity, since the process of gold extraction generates toxic tailings with mercury. In the Province of Azuay, due to the mining activity, the soil reaches concentrations of 2,500 to 6,420 mg/kg As whereas in the province of Tungurahua it can be found arsenic concentrations of 6.9 to 198.7 mg/kg due to volcanic eruptions. Since the contamination by arsenic, the present investigation is directed to the remediation of the soils in the provinces of Azuay and Tungurahua by phytoremediation technique and the definition of a methodology of extraction by means of analysis of arsenic in the system soil-plant. The methodology consists in selection of two types of plants that have the best arsenic removal capacity in synthetic solutions 60 μM As, a lower percentage of mortality and hydroponics resistance. The arsenic concentrations in each plant were obtained from taking 10 ml aliquots and the subsequent analysis of the ICP-OES (inductively coupled plasma-optical emission spectrometry) equipment. Soils were contaminated with synthetic solutions of arsenic with the capillarity method to achieve arsenic concentration of 13 and 15 mg/kg. Subsequently, two types of plants were evaluated to reduce the concentration of arsenic in soils for 7 weeks. The global variance for soil types was obtained with the InfoStat program. To measure the changes in arsenic concentration in the soil-plant system, the Rhizo and Wenzel arsenic extraction methodology was used and subsequently analyzed with the ICP-OES (optima 8000 Pekin Elmer). As a result, the selected plants were bluegrass and llanten, due to the high percentages of arsenic removal of 55% and 67% and low mortality rates of 9% and 8% respectively. In conclusion, Azuay soil with an initial concentration of 13 mg/kg As reached the concentrations of 11.49 and 11.04 mg/kg As for bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.79 and 11.10 mg/kg As for blue grass and llanten after 7 weeks. For the Tungurahua soil with an initial concentration of 13 mg/kg As it reached the concentrations of 11.56 and 12.16 mg/kg As for the bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.97 and 12.27 mg/kg Ace for bluegrass and llanten after 7 weeks. The best arsenic extraction methodology of soil-plant system is Wenzel.Keywords: blue grass, llanten, phytoremediation, soil of Azuay, soil of Tungurahua, synthetic arsenic solution
Procedia PDF Downloads 1035969 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System
Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k
Abstract:
Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving
Procedia PDF Downloads 2545968 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles
Authors: M. Vadivel, R. Ramesh Babu
Abstract:
Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization
Procedia PDF Downloads 3175967 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure
Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru
Abstract:
On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.Keywords: modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response
Procedia PDF Downloads 3195966 Structural Changes and Formation of Calcium Complexes in Corn Starch Processed by Nixtamalization
Authors: Arámbula-Villa Gerónimo, García-Lara Kenia Y., Figueroa-Cárdenas J. D., Pérez-Robles J. F., Jiménez-Sandoval S., Salazar-López R., Herrera-Corredor J. A.
Abstract:
The nixtamalization process (thermal-alkaline method) improves the nutritional part of the corn grain. In this process, the using of Ca(OH)₂ is basic, although the chemical mechanisms between this alkali and the carbohydrates (starch), proteins, lipids, and fiber have not been fully identified. In this study, the native corn starch was taken as a model, and it was subjected to cooking with different concentrations of lime (nixtamalization process) and specific studies of FTIR and XRD were carried out to identify the formation of chemical compounds, and the physical, physicochemical, rheological (paste) and structural properties of material obtained were determined. The FTIR spectra showed the formation of calcium-starch complexes. The treatments with Ca(OH)₂ showed a band shift towards 1675 cm⁻¹ and a band in 1436 cm⁻¹ (COO⁻), indicating the oxidation of starch. Three bands were identified (1575, 1550, and 1540 cm⁻¹) characteristics of carboxylic acid salts for three types of coordinated structures: monodentate, pseudo-bridged, and bidentate. The XRD spectra of starch treated with Ca(OH)₂ showed a peak corresponding to CaCO₃ (29.40°). The oxidation of starch was favored with low concentrations of Ca(OH)₂, producing carboxyl and carbonyl groups and increasing the residual CaCO₃. The increased concentration of Ca(OH)₂ showed the formation of calcium carboxylates, with a decrease in relative crystallinity and residual CaCO₃. Samples with low concentrations of Ca(OH)₂ slowed the onset of gelatinization and increased the swelling of the granules and the peak viscosity. The higher concentrations of Ca(OH)₂ difficulted the water absorption and decreased the viscosity rate and peak viscosity. These results can be used to improve the quality characteristics of the dough and tortillas and to get better acceptance by consumers.Keywords: maize starch, nixtamalization, gelatinization, calcium carboxylates
Procedia PDF Downloads 955965 Development of the Manufacturing Process of Low Salt-Fermented Soy Sauce
Authors: Young-Ran Song, Byeong-Uk Lim, Sang-Ho Baik
Abstract:
This study was initiated in order to develop a method for soy sauce fermentation at low salt concentrations without decreasing quality. Soy sauce was fermented with the fermentation starter (meju) and different salt contents (8-14%, w/v) by inoculating two strains or not, in which Torulaspora delbrueckii and Pichia guilliermondii strains having different abilities to induce sterilizing effects or enhance flavor production were used. As the results, there were microbial and biochemical differences among prepared soy sauce. First, Staphylococcus and Enterococcus spp. in addition to Bacillus genus that is the most important bacteria in Korean fermented soy product were detected by salt reduction. However, application of yeast starters can inhibit the undesirable bacterial growth. Moreover, PCA bi-plots of major principal components on various biochemical parameters (final pH, total acidity, soluble sugar, reducing sugar, ethanol and 32 volatile flavor compounds) were drawn to demonstrate the physicochemical differences and similarities among the samples. It was confirmed that the soy sauce samples produced with different salt concentrations were clearly different since salt reduction induced low contents of acids, alcohols and esters with higher acidity. However despite low salt concentration, combining two different yeasts appeared to have similar characteristics to the high salt-fermented soy sauce with elevated concentrations of ethanol, some alcohols, and most ketones, hence resulted in a balance of more complex and richer flavors with a flavor profile pattern identical to that of high-salt.Keywords: Soy sauce, low salt, fermentation, yeast.
Procedia PDF Downloads 391