Search results for: spherical clustering
522 Cardiac Biosignal and Adaptation in Confined Nuclear Submarine Patrol
Authors: B. Lefranc, C. Aufauvre-Poupon, C. Martin-Krumm, M. Trousselard
Abstract:
Isolated and confined environments (ICE) present several challenges which may adversely affect human’s psychology and physiology. Submariners in Sub-Surface Ballistic Nuclear (SSBN) mission exposed to these environmental constraints must be able to perform complex tasks as part of their normal duties, as well as during crisis periods when emergency actions are required or imminent. The operational and environmental constraints they face contribute to challenge human adaptability. The impact of such a constrained environment has yet to be explored. Establishing a knowledge framework is a determining factor, particularly in view of the next long space travels. Ensuring that the crews are maintained in optimal operational conditions is a real challenge because the success of the mission depends on them. This study focused on the evaluation of the impact of stress on mental health and sensory degradation of submariners during a mission on SSBN using cardiac biosignal (heart rate variability, HRV) clustering. This is a pragmatic exploratory study of a prospective cohort included 19 submariner volunteers. HRV was recorded at baseline to classify by clustering the submariners according to their stress level based on parasympathetic (Pa) activity. Impacts of high Pa (HPa) versus low Pa (LPa) level at baseline were assessed on emotional state and sensory perception (interoception and exteroception) as a cardiac biosignal during the patrol and at a recovery time one month after. Whatever the time, no significant difference was found in mental health between groups. There are significant differences in the interoceptive, exteroceptive and physiological functioning during the patrol and at recovery time. To sum up, compared to the LPa group, the HPa maintains a higher level in psychosensory functioning during the patrol and at recovery but exhibits a decrease in Pa level. The HPa group has less adaptable HRV characteristics, less unpredictability and flexibility of cardiac biosignals while the LPa group increases them during the patrol and at recovery time. This dissociation between psychosensory and physiological adaptation suggests two treatment modalities for ICE environments. To our best knowledge, our results are the first to highlight the impact of physiological differences in the HRV profile on the adaptability of submariners. Further studies are needed to evaluate the negative emotional and cognitive effects of ICEs based on the cardiac profile. Artificial intelligence offers a promising future for maintaining high level of operational conditions. These future perspectives will not only allow submariners to be better prepared, but also to design feasible countermeasures that will help support analog environments that bring us closer to a trip to Mars.Keywords: adaptation, exteroception, HRV, ICE, interoception, SSBN
Procedia PDF Downloads 182521 Green Synthesis of Silver Nanoparticles from Citrus aurantium Aqueous Pollen Extract and Their Antibacterial Activity
Authors: Mohammad Ali Karimi, Hossein Tavallali, Abdolhamid Hatefi-Mehrjardi
Abstract:
Pollen extract of in vitro plants raised of Citrus aurantium as reducer and stabilizer was assessed for the green synthesis of silver nanoparticles (AgNPs). The synthesis of AgNPs was performed at room temperature assisting in solutions by reduction takes place rapidly for 10 min. Surface plasmon resonance (SPR) peaks in UV–Vis spectra indicated the formation of polydispersive AgNPs. Silver ions concentration, pH, temperature and reaction time were optimized in the synthesis of AgNPs. The nanoparticles obtained were characterized by UV-Vis spectrophotometer, transmission electron microscopy (TEM). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. The synthesized AgNPs were mostly spherical in shape with an average size of 15 nm. XRD study shows that the AgNPs are crystalline in nature with face-centered cubic (fcc) geometry. It shows the significant antibacterial efficacy against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by disk diffusion method using Mueller-Hinton Agar.Keywords: green synthesis, Citrus aurantium, silver nanoparticles, antibacterial activity
Procedia PDF Downloads 287520 Using Nonhomogeneous Poisson Process with Compound Distribution to Price Catastrophe Options
Authors: Rong-Tsorng Wang
Abstract:
In this paper, we derive a pricing formula for catastrophe equity put options (or CatEPut) with non-homogeneous loss and approximated compound distributions. We assume that the loss claims arrival process is a nonhomogeneous Poisson process (NHPP) representing the clustering occurrences of loss claims, the size of loss claims is a sequence of independent and identically distributed random variables, and the accumulated loss distribution forms a compound distribution and is approximated by a heavy-tailed distribution. A numerical example is given to calibrate parameters, and we discuss how the value of CatEPut is affected by the changes of parameters in the pricing model we provided.Keywords: catastrophe equity put options, compound distributions, nonhomogeneous Poisson process, pricing model
Procedia PDF Downloads 167519 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks
Authors: Wided Abidi, Tahar Ezzedine
Abstract:
Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency
Procedia PDF Downloads 329518 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data
Procedia PDF Downloads 378517 An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries
Authors: Evangelos G. Karvelas, Christos Liosis, Andreas Theodorakakos, Theodoros E. Karakasidis
Abstract:
In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles’ follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles' diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%.Keywords: computational fluid dynamics, CFD, covariance matrix adaptation evolution strategy, discrete element method, DEM, magnetic navigation, spherical particles
Procedia PDF Downloads 142516 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning
Authors: Rik van Leeuwen, Ger Koole
Abstract:
Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.Keywords: hierarchical cluster analysis, hospitality, market segmentation
Procedia PDF Downloads 108515 Statically Fused Unbiased Converted Measurements Kalman Filter
Authors: Zhengkun Guo, Yanbin Li, Wenqing Wang, Bo Zou
Abstract:
The statically fused converted position and doppler measurements Kalman filter (SF-CMKF) with additive debiased measurement conversion has been previously presented to combine the resulting states of converted position measurements Kalman filter (CPMKF) and converted doppler measurement Kalman filter (CDMKF) to yield the final state estimates under minimum mean squared error (MMSE) criterion. However, the exact compensation for the bias in the polar-to-cartesian and spherical-to-cartesian conversion are multiplicative and depend on the statistics of the cosine of the angle measurement errors. As a result, the consistency and performance of the SF-CMKF may be suboptimal in large-angle error situations. In this paper, the multiplicative unbiased position and Doppler measurement conversion for 2D (polar-to-cartesian) tracking are derived, and the SF-CMKF is improved to use those conversions. Monte Carlo simulations are presented to demonstrate the statistical consistency of the multiplicative unbiased conversion and the superior performance of the modified SF-CMKF (SF-UCMKF).Keywords: measurement conversion, Doppler, Kalman filter, estimation, tracking
Procedia PDF Downloads 208514 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 171513 Fabrication of LiNbO₃ Based Conspicuous Nanomaterials for Renewable Energy Devices
Authors: Riffat Kalsoom, Qurat-Ul-Ain Javed
Abstract:
Optical and dielectric properties of lithium niobates have made them the fascinating materials to be used in optical industry for device formation such as Q and optical switching. Synthesis of lithium niobates was carried out by solvothermal process with and without temperature fluctuation at 200°C for 4 hrs, and behavior of properties for different durations was also examined. Prepared samples of LiNbO₃ were examined in a way as crystallographic phases by using XRD diffractometer, morphology by scanning electron microscope (SEM), absorption by UV-Visible Spectroscopy and dielectric measurement by impedance analyzer. A structural change from trigonal to spherical shape was observed by changing the time of reaction. Crystallite size decreases by the temperature fluctuation and increasing reaction time. Band gap decreases whereas dielectric constant and dielectric loss was increased with increasing time of reaction. Trend of AC conductivity is explained by Joschner’s power law. Due to these significant properties, it finds its applications in devices, such as cells, Q switching and optical switching for laser and gigahertz frequencies, respectively and these applications depend on the industrial demands.Keywords: lithium niobates, renewable energy devices, controlled structure, temperature fluctuations
Procedia PDF Downloads 131512 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles
Authors: S. Levitsky
Abstract:
Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid
Procedia PDF Downloads 304511 A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service
Authors: Manfred F. Maute, Olga Naumenko, Raymond T. Kong
Abstract:
Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered.Keywords: customer satisfaction, financial services, psychographics, response differences, segmentation
Procedia PDF Downloads 334510 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs
Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro
Abstract:
This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression
Procedia PDF Downloads 443509 Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization
Authors: K. Umbleja, M. Ichino, H. Yaguchi
Abstract:
In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object.Keywords: data visualization, dissimilarity-based coloring, proximity-based coloring, symbolic data
Procedia PDF Downloads 170508 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques
Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo
Abstract:
Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.Keywords: air pollution, air quality modelling, data mining, particulate matter
Procedia PDF Downloads 258507 Proprioceptive Neuromuscular Facilitation Exercises of Upper Extremities Assessment Using Microsoft Kinect Sensor and Color Marker in a Virtual Reality Environment
Authors: M. Owlia, M. H. Azarsa, M. Khabbazan, A. Mirbagheri
Abstract:
Proprioceptive neuromuscular facilitation exercises are a series of stretching techniques that are commonly used in rehabilitation and exercise therapy. Assessment of these exercises for true maneuvering requires extensive experience in this field and could not be down with patients themselves. In this paper, we developed software that uses Microsoft Kinect sensor, a spherical color marker, and real-time image processing methods to evaluate patient’s performance in generating true patterns of movements. The software also provides the patient with a visual feedback by showing his/her avatar in a Virtual Reality environment along with the correct path of moving hand, wrist and marker. Primary results during PNF exercise therapy of a patient in a room environment shows the ability of the system to identify any deviation of maneuvering path and direction of the hand from the one that has been performed by an expert physician.Keywords: image processing, Microsoft Kinect, proprioceptive neuromuscular facilitation, upper extremities assessment, virtual reality
Procedia PDF Downloads 273506 Antioxidant Activity of Nanoparticle of Etlingera elatior (Jack) R.M.Sm Flower Extract on Liver and Kidney of Rats
Authors: Tita Nofianti, Tresna Lestari, Ade Y. Aprillia, Lilis Tuslinah, Ruswanto Ruswanto
Abstract:
Nanoparticle technology gives a chance for drugs, especially natural based product, to give better activities than in its macromolecule form. The ginger torch is known to have activities as an antioxidant, antimicrobial, anticancer, etc. In this research, ginger torch flower extract was nanoparticlized using poloxamer 1, 3, and 5%. Nanoparticle was charaterized for its particle size, polydispersity index, zeta potential, entrapment efficiency, and morphological form by SEM (scanning electron microscope). The result shows that nanoparticle formulations have particle size 134.7-193.1 nm, polydispersity index is less than 0.5 for all formulations, zeta potential is -41.0 to (-24.3) mV, and entrapment efficiency is 89.93 to 97.99 against flavonoid content with a soft surface and spherical form of particles. Methanolic extract of ginger torch flower could enhance superoxide dismutase activity by 1,3183 U/mL in male rats. Nanoparticle formulation of ginger torch extract is expected to increase the capability of drug to enhance superoxide dismutase activity.Keywords: superoxide dismutase, ginger torch flower, nanoparticle, poloxamer
Procedia PDF Downloads 207505 Beijerinckia indica Extracellular Extract Mediated Green Synthesis of Silver Nanoparticles with Antioxidant and Antibacterial Activities against Clinical Pathogens
Authors: Gopalu Karunakaran, Matheswaran Jagathambal, Nguyen Van Minh, Evgeny Kolesnikov, Denis Kuznetsov
Abstract:
This work investigated the use of Beijerinckia indica extracellular extract for the synthesis of silver nanoparticles using AgNO3. The formation of nanoparticles was confirmed by different methods, such as UV-Vis absorption spectroscopy, XRD, FTIR, EDX, and TEM analysis. The formation of silver nanoparticles (AgNPs) was confirmed by the change in color from light yellow to dark brown. The absorbance peak obtained at 430 nm confirmed the presence of silver nanoparticles. The XRD analysis showed the cubic crystalline phase of the synthesized nanoparticles. FTIR revealed the presence of groups that acts as stabilizing and reducing agents for silver nanoparticles formation. The synthesized silver nanoparticles were generally found to be spherical in shape with size ranging from 5 to 20 nm, as evident by TEM analysis. These nanoparticles were found to inhibit pathogenic bacterial strains. This work proved that the bacterial extract is a potential eco-friendly candidate for the synthesis of silver nanoparticles with promising antibacterial and antioxidant properties.Keywords: antioxidant activity, antimicrobial activity, Beijerinckia indica, characterisation, extracellular extracts, silver nanoparticles
Procedia PDF Downloads 340504 Design of Personal Job Recommendation Framework on Smartphone Platform
Authors: Chayaporn Kaensar
Abstract:
Recently, Job Recommender Systems have gained much attention in industries since they solve the problem of information overload on the recruiting website. Therefore, we proposed Extended Personalized Job System that has the capability of providing the appropriate jobs for job seeker and recommending some suitable information for them using Data Mining Techniques and Dynamic User Profile. On the other hands, company can also interact to the system for publishing and updating job information. This system have emerged and supported various platforms such as web application and android mobile application. In this paper, User profiles, Implicit User Action, User Feedback, and Clustering Techniques in WEKA libraries have gained attention and implemented for this application. In additions, open source tools like Yii Web Application Framework, Bootstrap Front End Framework and Android Mobile Technology were also applied.Keywords: recommendation, user profile, data mining, web and mobile technology
Procedia PDF Downloads 313503 Porous Titanium Scaffolds Fabricated by Metal Injection Moulding Using Potassium-Chloride and Space Holder
Authors: Ali Dehghan Manshadi, David H. StJohn, Matthew S. Dargusch, M. Qian
Abstract:
Biocompatible, highly porous titanium scaffolds were manufactured by metal injection moulding of spherical titanium powder (powder size: -45 µm) with potassium chloride (powder size: -250 µm) as a space holder. Property evaluation of scaffolds confirmed a high level of compatibility between their mechanical properties and those of human cortical bone. The optimum sintering temperature was found to be 1250°C producing scaffolds with more than 90% interconnected pores in the size range of 200-250 µm, yield stress of 220 MPa and Young’s modulus of 7.80 GPa, all of which are suitable for bone tissue engineering. Increasing the sintering temperature to 1300°C increased the Young’s modulus to 22.0 GPa while reducing the temperature to 1150°C reduced the yield stress to 120 MPa due to incomplete sintering. The residual potassium chloride was determined vs. sintering temperature. A comparison was also made between the porous titanium scaffolds fabricated in this study and the additively manufactured titanium lattices of similar porosity reported in the literature.Keywords: titanium, metal injection moulding, mechanical properties, scaffolds
Procedia PDF Downloads 208502 In vivo Therapeutic Potential of Biologically Synthesized Silver Nanoparticles
Authors: Kalakotla Shanker, G. Krishna Mohan
Abstract:
Nowadays, nanoparticles are being used in pharmacological studies for their exclusive properties such as small size, more surface area, biocompatibility and enhanced solubility. In view of this, the present study aimed to evaluate the antihyperglycemic potential of biologically synthesized silver nanoparticles (BSSNPs) and Gymnema sylvestre (GS) extract. The SEM and SEM analysis divulges that the BSSNPs were spherical in shape. EDAX spectrum exhibits peaks for the presence of silver, carbon, and oxygen atoms in the range of 1.0-3.1 keV. FT-IR reveals the binding properties of active bio-constituents responsible for capping and stabilizing BSSNPs. The results showed increased blood glucose, huge loss in body weight and downturn in plasma insulin. The GS extract (200 mg/kg, 400 mg/kg), BSSNPs (100 mg/kg, 200 mg/kg) and metformin 50 mg/kg were administered to the diabetic rats. BSSNPs at a dose level of 200 mg/kg (b.wt.p.o.) showed significant inhibition of (p<0.001) blood glucose levels as compared with GS extract treated group. The results obtained from study indicate that the BSSNP shows potent anti-diabetic activity.Keywords: biological silver nanoparticles, G. sylvetre, gymnemic acid, streptozotocin, Wistar rats, antihyperglycemic activity, anti-hyperlipidemic activity
Procedia PDF Downloads 302501 Extracting Actions with Improved Part of Speech Tagging for Social Networking Texts
Authors: Yassine Jamoussi, Ameni Youssfi, Henda Ben Ghezala
Abstract:
With the growing interest in social networking, the interaction of social actors evolved to a source of knowledge in which it becomes possible to perform context aware-reasoning. The information extraction from social networking especially Twitter and Facebook is one of the problems in this area. To extract text from social networking, we need several lexical features and large scale word clustering. We attempt to expand existing tokenizer and to develop our own tagger in order to support the incorrect words currently in existence in Facebook and Twitter. Our goal in this work is to benefit from the lexical features developed for Twitter and online conversational text in previous works, and to develop an extraction model for constructing a huge knowledge based on actionsKeywords: social networking, information extraction, part-of-speech tagging, natural language processing
Procedia PDF Downloads 305500 Authentication Based on Hand Movement by Low Dimensional Space Representation
Authors: Reut Lanyado, David Mendlovic
Abstract:
Most biological methods for authentication require special equipment and, some of them are easy to fake. We proposed a method for authentication based on hand movement while typing a sentence with a regular camera. This technique uses the full video of the hand, which is harder to fake. In the first phase, we tracked the hand joints in each frame. Next, we represented a single frame for each individual using our Pose Agnostic Rotation and Movement (PARM) dimensional space. Then, we indicated a full video of hand movement in a fixed low dimensional space using this method: Fixed Dimension Video by Interpolation Statistics (FDVIS). Finally, we identified each individual in the FDVIS representation using unsupervised clustering and supervised methods. Accuracy exceeds 96% for 80 individuals by using supervised KNN.Keywords: authentication, feature extraction, hand recognition, security, signal processing
Procedia PDF Downloads 126499 Capacitated Multiple Allocation P-Hub Median Problem on a Cluster Based Network under Congestion
Authors: Çağrı Özgün Kibiroğlu, Zeynep Turgut
Abstract:
This paper considers a hub location problem where the network service area partitioned into predetermined zones (represented by node clusters is given) and potential hub nodes capacity levels are determined a priori as a selection criteria of hub to investigate congestion effect on network. The objective is to design hub network by determining all required hub locations in the node clusters and also allocate non-hub nodes to hubs such that the total cost including transportation cost, opening cost of hubs and penalty cost for exceed of capacity level at hubs is minimized. A mixed integer linear programming model is developed introducing additional constraints to the traditional model of capacitated multiple allocation hub location problem and empirically tested.Keywords: hub location problem, p-hub median problem, clustering, congestion
Procedia PDF Downloads 492498 Aristotle University of Thessaloniki
Authors: Ail Akbar Emamverdian, Neriman Özada, Atabak Rahimzadeh Ilkhchi, Zahra Emamverdian
Abstract:
The reverse shoulder prosthesis is an innovative procedure design to treat of (GH) joint problems with severe rotator cuff deficiency. The original reverse shoulder prosthesis was invented by France surgery in1985 and has been in clinical use in the United States in 2004. These prostheses consist of baseplate that attached to the glenoid, in order to hold a spherical component, and humeral part consist of polyethylene insert which is flat. This prosthesis is the ‘reverse’ configuration. The indications for the reverse prosthesis are: (1) treating failed hemi arthroplasty with irrecoverable rotator cuff tears, (2) relief of painful arthritis associated with cuff tear arthropathy, (3) instauration after tumor resection, (4) pseudo paralysis because of irrecoverable rotator cuff tears (5) some fractures of the shoulder which reverse shoulder prostheses is only the option for treatment. This prosthesis resulting in relief of pain and decreasing the range of motion in above indications. However, this prosthesis and its applications such as notching of the scapula, dislocation of the prosthesis parts and acromial stress fractures. In this article the reverse shoulder prostheses, indication has been reviewed. This study can make clear aspect of reverse shoulder prosthesis that can help to find some solution in future.Keywords: prostheses, complications, reverse shoulder prosthesis, indications
Procedia PDF Downloads 278497 Rheological and Morphological Properties of Investment Casting Pattern Material Based on Paraffin Wax Fortified with Linear Low-Density Polyethylene and Filled with Poly Methyl Methacrylate
Authors: Robert Kimutai Tewo, Hilary Limo Rutto, Tumisang Seodigeng
Abstract:
The rheological and morphological properties of paraffin wax, linear low-density polyethylene (LLDPE), and poly (methyl methacrylate) (PMMA) microbeads formulations were prepared via an extrusion process. The blends were characterized by rheometry, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the viscosity of the blends increased as compared to that of neat wax. SEM confirmed that LLDPE alters the wax crystal habit at higher concentrations. The rheological experimental data fitted with predicted data using the modified Krieger and Dougherty expression. The SEM micrograph of wax/LLDPE/PMMA revealed a near-perfect spherical nature for the filler particles in the wax/EVA polymer matrix. The FT-IR spectra show the deformation vibrations stretch of a long-chain aliphatic hydrocarbon (C-H) and also the presence of carbonyls absorption group denoted by -C=O- stretch.Keywords: investment casting pattern, paraffin wax, LLDPE, PMMA, rheological properties, modified Krieger and Dougherty expression
Procedia PDF Downloads 170496 Diagnose of the Future of Family Businesses Based on the Study of Spanish Family Businesses Founders
Authors: Fernando Doral
Abstract:
Family businesses are a key phenomenon within the business landscape. Nevertheless, it involves two terms (“family” and “business”) which are nowadays rapidly evolving. Consequently, it isn't easy to diagnose if a family business will be a growing or decreasing phenomenon, which is the objective of this study. For that purpose, a sample of 50 Spanish-established companies from various sectors was taken. Different factors were identified for each enterprise, related to the profile of the founders, such as age, the number of sons and daughters, or support received from the family at the moment to start it up. That information was taken as an input for a clustering method to identify groups, which could help define the founders' profiles. That characterization was carried as a base to identify three factors whose evolution should be analyzed: family structures, business landscape and entrepreneurs' motivations. The analysis of the evolution of these three factors seems to indicate a negative tendency of family businesses. Therefore the consequent diagnosis of this study is to consider family businesses as a declining phenomenon.Keywords: business diagnose, business trends, family business, family business founders
Procedia PDF Downloads 207495 Data Mining Techniques for Anti-Money Laundering
Authors: M. Sai Veerendra
Abstract:
Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.Keywords: data mining, clustering, money laundering, anti-money laundering solutions
Procedia PDF Downloads 537494 Simulation Approach for a Comparison of Linked Cluster Algorithm and Clusterhead Size Algorithm in Ad Hoc Networks
Authors: Ameen Jameel Alawneh
Abstract:
A Mobile ad-hoc network (MANET) is a collection of wireless mobile hosts that dynamically form a temporary network without the aid of a system administrator. It has neither fixed infrastructure nor wireless ad hoc sessions. It inherently reaches several nodes with a single transmission, and each node functions as both a host and a router. The network maybe represented as a set of clusters each managed by clusterhead. The cluster size is not fixed and it depends on the movement of nodes. We proposed a clusterhead size algorithm (CHSize). This clustering algorithm can be used by several routing algorithms for ad hoc networks. An elected clusterhead is assigned for communication with all other clusters. Analysis and simulation of the algorithm has been implemented using GloMoSim networks simulator, MATLAB and MAPL11 proved that the proposed algorithm achieves the goals.Keywords: simulation, MANET, Ad-hoc, cluster head size, linked cluster algorithm, loss and dropped packets
Procedia PDF Downloads 391493 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 139