Search results for: shear test
9736 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds
Authors: Hassan Mohammadi Khujin
Abstract:
Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis
Procedia PDF Downloads 749735 Determination of Resistance to Freezing of Bonded Façade Joint
Authors: B. Nečasová, P. Liška, J. Šlanhof
Abstract:
Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding was tested and strength in shear was determined under tensile stress. Research data indicate that little, if any, damage to the bond results from freezing cycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed.Keywords: adhesive system, bonded joints, wooden lightweight façade, timber substructure
Procedia PDF Downloads 3899734 Bonding Characteristics Between FRP and Concrete Substrates
Authors: Houssam A. Toutanji, Meng Han
Abstract:
This study focuses on the development of a fracture mechanics based-model that predicts the debonding behavior of FRP strengthened RC beams. In this study, a database includes 351 concrete prisms bonded with FRP plates tested in single and double shear were prepared. The existing fracture-mechanics-based models are applied to this database. Unfortunately the properties of adhesive layer, especially a soft adhesive layer, used on the specimens in the existing studies were not always able to found. Thus, the new model’s proposal was based on fifteen newly conducted pullout tests and twenty four data selected from two independent existing studies with the application of a soft adhesive layers and the availability of adhesive properties.Keywords: carbon fiber composite materials, interface response, fracture characteristics, maximum shear stress, ultimate transferable load
Procedia PDF Downloads 2669733 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model
Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng
Abstract:
The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation
Procedia PDF Downloads 2459732 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members
Authors: Sami W. Tabsh
Abstract:
The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety
Procedia PDF Downloads 4299731 Effects of Analogy Method on Children's Learning: Practice of Rainbow Experiments
Authors: Hediye Saglam
Abstract:
This research has been carried out to bring in the 6 acquisitions in the 2014 Preschool Teaching Programme of the Turkish Ministry of Education through the method of analogy. This research is practiced based on the experimental pattern with pre-test and final test controlling groups. The working group of the study covers the group between 5-6 ages. The study takes 5 weeks including the 2 weeks spent for pre-test and the final test. It is conducted with the preschool teacher who gives the lesson along with the researcher in the in-class and out-of-class rainbow experiments of the students for 5 weeks. 'One Sample T Test' is used for the evaluation of the pre-test and final test. SPSS 17 programme is applied for the analysis of the data. Results: As an outcome of the study it is observed that analogy method affects children’s learning of the rainbow. For this very reason teachers should receive inservice training for different methods and techniques like analogy. This method should be included in preschool education programme and should be applied by teachers more often.Keywords: acquisitions of preschool education programme, analogy method, pre-test/final test, rainbow experiments
Procedia PDF Downloads 5049730 Pultrusion of Side by Side Glass/Polypropylene Fibers: Study of Flexural and Shear Properties
Authors: Behrooz Ataee, Mohammad Golzar
Abstract:
The main purpose of using side by side (SBS) hybrid yarn in pultrusion thermoplastic method is reprisal the effect of high viscosity in melted thermoplastic and reduction of distance between reinforced fiber and melted thermoplastic. SBS hybrid fiber yarn composed of thermoplastic fibers and fiber reinforcement should be produced in the preparation of pultruded thermoplastic composites prepreg to reach better impregnation. An experimental set-up was designed and built to pultrude continues polypropylene and glass fiber to get obtain a suitable impregnated round prepregs. In final stage, the round prepregs come together to produce rectangular profile. Higher fiber volume fraction produces higher void volume fraction, however the second stage of the production process of rectangular profile and the cold die decrease 50% of the void volume fraction. Results show that whit increasing void volume fraction, flexural and shear strength decrease. Also, under certain conditions of parameters the pultruded profiles exhibit better flexural and shear strength. The pulling speed seems to have the greatest influence on the profile quality. In addition, adding cold die strongly increases the surface quality of rectangular profile.Keywords: thermoplastic pultrusion, hybrid pultrusion, side-by-side fibers, impregnation
Procedia PDF Downloads 2579729 Ground Motion Modelling in Bangladesh Using Stochastic Method
Authors: Mizan Ahmed, Srikanth Venkatesan
Abstract:
Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard
Procedia PDF Downloads 2479728 Performance of Pilot Test of Geotextile Tube Filled with Lightly Cemented Clay
Authors: S. H. Chew, Z. X. Eng, K. E. Chuah, T. Y. Lim, H. M. A. Yim
Abstract:
In recent years, geotextile tube has been widely used in the hydraulic engineering and dewatering industry. To construct a stable containment bund with geotextile tubes, the sand slurry is always the preference infilling material. However, the shortage of sand supply posts a problem in Singapore to adopt this construction method in the actual construction of long containment bund. Hence, utilizing the soft dredged clay or the excavated soft clay as the infilling material of geotextile tubes has a great economic benefit. There are any technical issues with using this soft clayey material as infilling material, especially on the excessive settlement and stability concerns. To minimize the shape deformation and settlement of geotextile tube associated with the use of this soft clay infilling material, a modified innovative infilling material is proposed – lightly cemented soft clay. The preliminary laboratory studies have shown that the dewatering mechanism via geotextile material of the tube skin, and the introduction of cementitious chemical action of the lightly cemented soft clay will accelerate the consolidation and improve the shear strength of infill material. This study aims to extend the study by conducting a pilot test of the geotextile tube filled with lightly cemented clay. This study consists of testing on a series of miniature geo-tubes and two full-size geotextile tube. In the miniature geo-tube tests, a number of small scaled-down size of geotextile tubes were filled with cemented clay (at water content of 150%) with cement content of 0% to 8% (by weight). The shear strength development of the lightly cemented clay under dewatering mechanism was evaluated using a modified in-situ Cone Penetration Test (CPT) at 0 days, 3 days, 7 days and 28 days after the infilling. The undisturbed soil samples of lightly cemented infilled clay were also extracted at 3-days and 7-days for triaxial tests and evaluation of final water content. The results suggested that the geotextile tubes filled with un-cemented soft clay experienced very significant shape change over the days (as control test). However, geotextile mini-tubes filled with lightly cemented clay experienced only marginal shape changed, even that the strength development of this lightly cemented clay inside the tube may not show significant strength gain at the early stage. The shape stability is believed to be due to the confinement effect of the geotextile tube with clay at non-slurry state. Subsequently, a full-scale instrumented geotextile tube filled with lightly cemented clay was performed. The extensive results of strain gauges and pressure transducers installed on this full-size geotextile tube demonstrated a substantial mobilization of tensile forces on the geotextile skin corresponding to the filling activity and the subsequent dewatering stage. Shape change and the in-fill material strength development was also monitored. In summary, the construction of containment bund with geotextile tube filled with lightly cemented clay is found to be technically feasible and stable with the use of the sufficiently strong (i.e. adequate tensile strength) geotextile tube, the adequate control on the dosage of cement content, and suitable water content of infilling soft clay material.Keywords: cemented clay, containment bund, dewatering, geotextile tube
Procedia PDF Downloads 2669727 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier
Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur
Abstract:
Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.Keywords: test case prioritization, classification, artificial neural networks, TF-IDF
Procedia PDF Downloads 3939726 A More Powerful Test Procedure for Multiple Hypothesis Testing
Authors: Shunpu Zhang
Abstract:
We propose a new multiple test called the minPOP test for testing multiple hypotheses simultaneously. Under the assumption that the test statistics are independent, we show that the minPOP test has higher global power than the existing multiple testing methods. We further propose a stepwise multiple-testing procedure based on the minPOP test and two of its modified versions (the Double Truncated and Left Truncated minPOP tests). We show that these multiple tests have strong control of the family-wise error rate (FWER). A method for finding the p-values of the proposed tests after adjusting for multiplicity is also developed. Simulation results show that the Double Truncated and Left Truncated minPOP tests, in general, have a higher number of rejections than the existing multiple testing procedures.Keywords: multiple test, single-step procedure, stepwise procedure, p-value for multiple testing
Procedia PDF Downloads 829725 Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels
Authors: Jungkyun Na, Jaesang Lee, Yang Mo Koo
Abstract:
In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease.Keywords: electrical steel, Goss texture, columnar structure, normal grain growth
Procedia PDF Downloads 2179724 A Study of Soft Soil Improvement by Using Lime Grit
Authors: Ashim Kanti Dey, Briti Sundar Bhowmik
Abstract:
This paper presents an idea to improve the soft soil by using lime grits which are normally produced as waste product in the paper manufacturing industries. This waste material cannot be used as a construction material because of its light weight, uniform size and poor compaction control. With scarcity in land, effective disposal of lime grit is a major concern of all paper manufacturing industries. Considering its non-plasticity and high permeability characteristics the lime grit may suitably be used as a drainage material for speedy consolidation of cohesive soil. It can also be used to improve the bearing capacity of soft clay. An attempt has been made in this paper to show the usefulness of lime grit in improving the bearing capacity of shallow foundation resting on soft clayey soil. A series of undrained unconsolidated cyclic triaxial tests performed at different area ratios and at three different water contents shows that dynamic shear modulus and damping ratio can be substantially improved with lime grit. Improvement is observed to be more in case of higher area ratio and higher water content. Static triaxial tests were also conducted on lime grit reinforced clayey soil after application of 50 load cycles to determine the effect of lime grit columns on cyclically loaded clayey soils. It is observed that the degradation is less for lime grit stabilized soil. A study of model test with different area ratio of lime column installation is also included to see the field behaviour of lime grit reinforced soil.Keywords: lime grit column, area ratio, shear modulus, damping ratio, strength ratio, improvement factor, degradation factor
Procedia PDF Downloads 5029723 Image Rotation Using an Augmented 2-Step Shear Transform
Authors: Hee-Choul Kwon, Heeyong Kwon
Abstract:
Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition
Procedia PDF Downloads 2759722 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other
Abstract:
Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.Keywords: seismic behavior, twin tunnels, tunnel positions, TBM, optimum distance
Procedia PDF Downloads 2929721 Variation in pH Values and Tenderness of Meat of Cattle Fed Different Levels of Lipids
Authors: Erico Da Silva Lima, Tiago Neves Pereira Valente, Roberto De Oliveira Roça
Abstract:
Introduction: Over the last few years the market has increased its demand for high quality meat. Based on this premise some producers have continuously improved their efficiency in breeding beef cattle with the purpose to support this demand. It is well recognized that final quality of beef is intimately linked to animal’s diet. The key objective of this study is to evaluate the influence of feeding animals with cottonseed and its lipids and the final results in terms of pH and shear forces of the meat. Materials and Methods: The study was carried out in the Chapéu de Couro Farm in Aguaí/SP, Brazil. A group of 39 uncastrated Nellore cattle. Mean age of the animals was 36 months and initial mean live weight was 494.1 ± 10.1. Animals were randomly assigned to one of three treatments, based on dry matter: feed with control diet 2.50% cottonseed, feed with 11.50% cottonseed, and feed with 3.13% cottonseed added of 1.77% protected lipid. Forage:concentrate ratio was 50:50 on a dry matter basis. Sugar cane chopped was used as forage. After slaughter, carcasses were identified and divided into two halves that were kept in a cold chamber for 24 h at 2°C. Using pH meter was determined post-mortem pH in Longissimus thoracis muscle between the 12th and 13th rib of the left half carcass. After, part of each animal was removed, and divided in three samples (steaks). Steaks were 2.5 cm thick and were identified and stored individually in plastic bags under vacuum. Samples were frozen in a freezer at -18°C. The same samples cooked were refrigerated by 12 h the 4°C, and then cut into cylinders 1.10 Øcm with the support of a drill press avoiding fats and nerves. Shear force was calculated in these samples cut into cylinders through the Brookfield texture CT3 Texture Analyzer 25 k equipped with a set of blade Warner-Bratzler. Results and Discussion: No differences (P > 0.05) in pH 24 h after slaughter were observed in the meat of Nellore cattle fed different sources of fat, and mean value for this variable was 5.59. However, for the shear force differences (P < 0.05) were founded. For diet with 2,50% cottonseed the lowest value found 5.10 (kg) while for the treatment with 11.50% cottonseed the great value found was 6.30 (kg). High shear force values mean greater texture of meat that indicates less tenderness. The texture of the meat can be influenced by age, weight to the slaughter of animals. For cattle breed Nellore Bos taurus indicus more high value of shear force. Conclusions: The add the cottonseed or protected lipid in diet is not affected pH values in meat. The whole cottonseed does not contribute to the improvement of tenderness of the meat. Acknowledgments: IFGoiano, FAPEG and CNPq (Brazil).Keywords: beef quality, cottonseed, protected fat, shear force
Procedia PDF Downloads 2289720 A Statistical Approach to Rationalise the Number of Working Load Test for Quality Control of Pile Installation in Singapore Jurong Formation
Authors: Nuo Xu, Kok Hun Goh, Jeyatharan Kumarasamy
Abstract:
Pile load testing is significant during foundation construction due to its traditional role of design validation and routine quality control of the piling works. In order to verify whether piles can take loadings at specified settlements, piles will have to undergo working load test where the test load should normally up to 150% of the working load of a pile. Selection or sampling of piles for the working load test is done subject to the number specified in Singapore National Annex to Eurocode 7 SS EN 1997-1:2010. This paper presents an innovative way to rationalize the number of pile load test by adopting statistical analysis approach and looking at the coefficient of variance of pile elastic modulus using a case study at Singapore Tuas depot. Results are very promising and have shown that it is possible to reduce the number of working load test without influencing the reliability and confidence on the pile quality. Moving forward, it is suggested that more load test data from other geological formations to be examined to compare with the findings from this paper.Keywords: elastic modulus of pile under soil interaction, jurong formation, kentledge test, pile load test
Procedia PDF Downloads 3849719 A Kolmogorov-Smirnov Type Goodness-Of-Fit Test of Multinomial Logistic Regression Model in Case-Control Studies
Authors: Chen Li-Ching
Abstract:
The multinomial logistic regression model is used popularly for inferring the relationship of risk factors and disease with multiple categories. This study based on the discrepancy between the nonparametric maximum likelihood estimator and semiparametric maximum likelihood estimator of the cumulative distribution function to propose a Kolmogorov-Smirnov type test statistic to assess adequacy of the multinomial logistic regression model for case-control data. A bootstrap procedure is presented to calculate the critical value of the proposed test statistic. Empirical type I error rates and powers of the test are performed by simulation studies. Some examples will be illustrated the implementation of the test.Keywords: case-control studies, goodness-of-fit test, Kolmogorov-Smirnov test, multinomial logistic regression
Procedia PDF Downloads 4559718 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell
Authors: M. Hossain, H. P. Zhu, A. B. Yu
Abstract:
This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.Keywords: DEM, granular rheology, non-spherical particles, regime transition
Procedia PDF Downloads 2619717 The Inattentional Blindness Paradigm: A Breaking Wave for Attentional Biases in Test Anxiety
Authors: Kritika Kulhari, Aparna Sahu
Abstract:
Test anxiety results from concerns about failure in examinations or evaluative situations. Attentional biases are known to pronounce the symptomatic expression of test anxiety. In recent times, the inattentional blindness (IB) paradigm has shown promise as an attention bias modification treatment (ABMT) for anxiety by overcoming practice and expectancy effects which preexisting paradigms fail to counter. The IB paradigm assesses the inability of an individual to attend to a stimulus that appears suddenly while indulging in a perceptual discrimination task. The present study incorporated an IB task with three critical items (book, face, and triangle) appearing randomly in the perceptual discrimination task. Attentional biases were assessed as detection and identification of the critical item. The sample (N = 50) consisted of low test anxiety (LTA) and high test anxiety (HTA) groups based on the reactions to tests scale scores. Test threat manipulation was done with pre- and post-test assessment of test anxiety using the State Test Anxiety Inventory. A mixed factorial design with gender, test anxiety, presence or absence of test threat, and critical items was conducted to assess their effects on attentional biases. Results showed only a significant main effect for test anxiety on detection with higher accuracy of detection of the critical item for the LTA group. The study presents promising results in the realm of ABMT for test anxiety.Keywords: attentional bias, attentional bias modification treatment, inattentional blindness, test anxiety
Procedia PDF Downloads 2249716 Effect of Hydrostatic Stress on Yield Behavior of the High Density Polyethylene
Authors: Kamel Hachour, Lydia Sadeg, Djamel Sersab, Tassadit Bellahcen
Abstract:
The hydrostatic stress is, for polymers, a significant parameter which affects the yield behavior of these materials. In this work, we investigate the influence of this parameter on yield behavior of the high density polyethylene (hdpe). Some tests on specimens with diverse geometries are described in this paper. Uniaxial tests: tensile on notched round bar specimens with different curvature radii, compression on cylindrical specimens and simple shear on parallelepiped specimens were performed. Biaxial tests with various combinations of tensile/compressive and shear loading on butterfly specimens were also realized in order to determine the hydrostatic stress for different states of solicitation. The experimental results show that the yield stress is very affected by the hydrostatic stress developed in the material during solicitations.Keywords: biaxial tests, hdpe, Hydrostatic stress, yield behavior
Procedia PDF Downloads 3889715 Sequential Padding: A Method to Improve the Impact Resistance in Body Armor Materials
Authors: Ankita Srivastava, Bhupendra S. Butola, Abhijit Majumdar
Abstract:
Application of shear thickening fluid (STF) has been proved to increase the impact resistance performance of the textile structures to further use it as a body armor material. In the present research, STF was applied on Kevlar woven fabric to make the structure lightweight and flexible while improving its impact resistance performance. It was observed that getting a fair amount of add-on of STF on Kevlar fabric is difficult as Kevlar fabric comes with a pre-coating of PTFE which hinders its absorbency. Hence, a method termed as sequential padding is developed in the present study to improve the add-on of STF on Kevlar fabric. Contrary to the conventional process, where Kevlar fabric is treated with STF once using any one pressure, in sequential padding method, the Kevlar fabrics were treated twice in a sequential manner using combination of two pressures together in a sample. 200 GSM Kevlar fabrics were used in the present study. STF was prepared by adding PEG with 70% (w/w) nano-silica concentration. Ethanol was added with the STF at a fixed ratio to reduce viscosity. A high-speed homogenizer was used to make the dispersion. Total nine STF treated Kevlar fabric samples were prepared by using varying combinations and sequences of three levels of padding pressure {0.5, 1.0 and 2.0 bar). The fabrics were dried at 80°C for 40 minutes in a hot air oven to evaporate ethanol. Untreated and STF treated fabrics were tested for add-on%. Impact resistance performance of samples was also tested on dynamic impact tester at a fixed velocity of 6 m/s. Further, to observe the impact resistance performance in actual condition, low velocity ballistic test with 165 m/s velocity was also performed to confirm the results of impact resistance test. It was observed that both add-on% and impact energy absorption of Kevlar fabrics increases significantly with sequential padding process as compared to untreated as well as single stage padding process. It was also determined that impact energy absorption is significantly better in STF treated Kevlar fabrics when 1st padding pressure is higher, and 2nd padding pressure is lower. It is also observed that impact energy absorption of sequentially padded Kevlar fabric shows almost 125% increase in ballistic impact energy absorption (40.62 J) as compared to untreated fabric (18.07 J).The results are owing to the fact that the treatment of fabrics at high pressure during the first padding is responsible for uniform distribution of STF within the fabric structures. While padding with second lower pressure ensures the high add-on of STF for over-all improvement in the impact resistance performance of the fabric. Therefore, it is concluded that sequential padding process may help to improve the impact performance of body armor materials based on STF treated Kevlar fabrics.Keywords: body armor, impact resistance, Kevlar, shear thickening fluid
Procedia PDF Downloads 2389714 Dynamic Wind Effects in Tall Buildings: A Comparative Study of Synthetic Wind and Brazilian Wind Standard
Authors: Byl Farney Cunha Junior
Abstract:
In this work the dynamic three-dimensional analysis of a 47-story building located in Goiania city when subjected to wind loads generated using both the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method is realized. To model the frames three different methodologies are used: the shear building model and both bi and three-dimensional finite element models. To start the analysis, a plane frame is initially studied to validate the shear building model and, in order to compare the results of natural frequencies and displacements at the top of the structure the same plane frame was modeled using the finite element method through the SAP2000 V10 software. The same steps were applied to an idealized 20-story spacial frame that helps in the presentation of the stiffness correction process applied to columns. Based on these models the two methods used to generate the Wind loads are presented: a discrete model proposed in the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method. The method uses the Davenport spectrum which is divided into a variety of frequencies to generate the temporal series of loads. Finally, the 47- story building was analyzed using both the three-dimensional finite element method through the SAP2000 V10 software and the shear building model. The models were loaded with Wind load generated by the Wind code NBR6123 (ABNT, 1988) and by the Synthetic-Wind method considering different wind directions. The displacements and internal forces in columns and beams were compared and a comparative study considering a situation of a full elevated reservoir is realized. As can be observed the displacements obtained by the SAP2000 V10 model are greater when loaded with NBR6123 (ABNT, 1988) wind load related to the permanent phase of the structure’s response.Keywords: finite element method, synthetic wind, tall buildings, shear building
Procedia PDF Downloads 2729713 The Effect of Arbitrary Support Conditions on the Static Behavior of Curved Beams Using the Finite Element Method
Authors: Hossein Mottaghi T., Amir R. Masoodi
Abstract:
This study presents a finite curved element for analyzing the static behavior of curved beams within the elastic range. The objective is to enhance accuracy while reducing the number of elements by incorporating first-order shear deformations of Timoshenko beams. Initially, finite element formulations are developed by considering polynomial initial functions for axial, shear, and rotational deformations for a three-node element. Subsequently, nodal interpolation functions for this element are derived, followed by the construction of the element stiffness matrix. To enable the utilization of the stiffness matrix in the static analysis of curved beams, the constructed matrix in the local coordinates of the element is transformed to the global coordinate system using the rotation matrix. A numerical benchmark example is investigated to assess the accuracy and effectiveness of this method. Moreover, the influence of spring stiffness on the rotation of the endpoint of a clamped beam is examined by substituting each support reaction of the beam with a spring. In the parametric study, the effect of the central angle of the beam on the rotation of the beam's endpoint in a cantilever beam under a concentrated load is examined. This research encompasses various mechanical, geometrical, and boundary configurations to evaluate the static characteristics of curved beams, thus providing valuable insights for their analysis and examination.Keywords: curved beam, finite element method, first-order shear deformation theory, elastic support
Procedia PDF Downloads 669712 Developing Kazakh Language Fluency Test in Nazarbayev University
Authors: Saule Mussabekova, Samal Abzhanova
Abstract:
The Kazakh Language Fluency Test, based on the IELTS exam, was implemented in 2012 at Nazarbayev University in Astana, Kazakhstan. We would like to share our experience in developing this exam and some exam results with other language instructors. In this paper, we will cover all these peculiarities and their related issues. The Kazakh Language Fluency Test is a young exam. During its development, we faced many difficulties. One of the goals of the university and the country is to encourage fluency in the Kazakh language for all citizens of the Republic. Nazarbayev University has introduced a Kazakh language program to assist in achieving this goal. This policy is one-step in ensuring that NU students have a thorough understanding of the Kazakh language through a fluency test based on the International English Language Testing System (IELTS). The Kazakh Language Fluency Test exam aims to determine student’s knowledge of Kazakh language. The fact is that there are three types of students at Nazarbayev University: Kazakh-speaking heritage learners, Russian-speaking and English-speaking students. Unfortunately, we have Kazakh students who do not speak Kazakh. All students who finished school with Russian language instruction are given Kazakh Language Fluency Test in order to determine their Kazakh level. After the test exam, all students can choose appropriate Kazakh course: Basic Kazakh, Intermediate Kazakh and Upper-Intermediate Kazakh. The Kazakh Language Fluency Test consists of four parts: Listening, Reading, Writing and Speaking. They are taken on the same day in the abovementioned order.Keywords: diagnostic test, kazakh language, placement test, test result
Procedia PDF Downloads 4069711 Comparing Student Performance on Standardized Tests at Test Center versus through Online-Proctored Delivery
Authors: Jin Koo
Abstract:
The main purpose of this study is to investigate the comparability of student scores obtained from Test Center (TC) vs. Online-Proctored (OP) Delivery in the three subject areas of Verbal, Reading, and Mathematics for each level (Middle and Upper). Also, this study examines whether there is an interaction effect between test deliveries (TC vs. OP) and gender/ethnicity/ability level in each subject area. The test used in this study is a multiple-choice standardized test for students in grades 5-11. For this study, data were collected during the 2022-23 test administration. This research used a one-factor between-subjects ANOVA and Cohen’s d to compare the TC and OP groups’ test means for each level and each subject area. Also, 2-factor between-subjects ANOVAs were conducted to investigate examinee characteristics: gender (male and female), ethnicity (African-American, Asian, Hispanic, Multi-racial, and White), and ability level (low, average, and high-ability groups). The author found that students’ test scores in some subject areas varied between TC and OP test deliveries by gender, ethnicity, and ability level, meaning that gender, ethnicity, and ability level were related to the score difference. These results will be discussed according to the current testing systems.Keywords: ability level, ethnicity, gender, online-proctored delivery, standardized test, test center
Procedia PDF Downloads 549710 Influence of Optimization Method on Parameters Identification of Hyperelastic Models
Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda
Abstract:
This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.Keywords: particle swarm optimization, identification, hyperelastic, model
Procedia PDF Downloads 1699709 Bioremediation Effect on Shear Strength of Contaminated Soils
Authors: Samira Abbaspour
Abstract:
Soil contamination by oil industry is unavoidable issue; irrespective of environmental impact, which occurs during the process of soil contaminating and remediating. Effect of this phenomenon on the geotechnical properties of the soil has not been investigated thoroughly. Some researchers studied the environmental aspects of these phenomena more than geotechnical point of view. In this research, compaction and unconfined compression tests were conducted on samples of natural, contaminated and treated soil after 50 days of bio-treatment. The results manifest that increasing the amount of crude oil, leads to decreased values of maximum dry density and optimum water content and increased values of unconfined compression strength (UCS). However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. Foremost, as bioremediation takes place, values of maximum dry density, unconfined compression strength and failure strain increase.Keywords: contamination, shear strength, compaction, oil contamination
Procedia PDF Downloads 1829708 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns
Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani
Abstract:
Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.Keywords: equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity
Procedia PDF Downloads 2559707 Bending Test Characteristics for Splicing of Thermoplastic Polymer Using Hot Gas Welding
Authors: Prantasi Harmi Tjahjanti, Iswanto Iswanto, Edi Widodo, Sholeh Pamuji
Abstract:
Materials of the thermoplastic polymer when they break is usually thrown away, or is recycled which requires a long process. The purpose of this study is to splice the broken thermoplastic polymer using hot gas welding with different variations of welding wire/electrodes. Materials of thermoplastic polymer used are Polyethylene (PE), Polypropylene (PP), and Polyvinyl chloride (PVC) by using welding wire like the three materials. The method is carried out by using hot gas welding; there are two materials that cannot be connected, namely PE with PVC welding wire, and PP with PVC welding wire. The permeable liquid penetrant test is PP with PE welding wire, and PVC with PE welding wire. The best bending test result with the longest elongation is PE with PE welding wire with a bending test value of 179.03 kgf/mm². The microstructure was all described in Scanning Electron Microscopy (SEM) observations.Keywords: thermoplastic polymers, bending test, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), hot gas welding, bending test
Procedia PDF Downloads 202