Search results for: resilience of compression (RC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1690

Search results for: resilience of compression (RC)

1210 Numerical Modelling of 3-D Fracture Propagation and Damage Evolution of an Isotropic Heterogeneous Rock with a Pre-Existing Surface Flaw under Uniaxial Compression

Authors: S. Mondal, L. M. Olsen-Kettle, L. Gross

Abstract:

Fracture propagation and damage evolution are extremely important for many industrial applications including mining industry, composite materials, earthquake simulations, hydraulic fracturing. The influence of pre-existing flaws and rock heterogeneity on the processes and mechanisms of rock fracture has important ramifications in many mining and reservoir engineering applications. We simulate the damage evolution and fracture propagation in an isotropic sandstone specimen containing a pre-existing 3-D surface flaw in different configurations under uniaxial compression. We apply a damage model based on the unified strength theory and solve the solid deformation and damage evolution equations using the Finite Element Method (FEM) with tetrahedron elements on unstructured meshes through the simulation software, eScript. Unstructured meshes provide higher geometrical flexibility and allow a more accurate way to model the varying flaw depth, angle, and length through locally adapted FEM meshes. The heterogeneity of rock is considered by initializing material properties using a Weibull distribution sampled over a cubic grid. In our model, we introduce a length scale related to the rock heterogeneity which is independent of the mesh size. We investigate the effect of parameters including the heterogeneity of the elastic moduli and geometry of the single flaw in the stress strain response. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks and far-field cracks were identified, and these depend on the geometry of the pre-existing surface flaw. This model results help to advance our understanding of fracture and damage growth in heterogeneous rock with the aim to develop fracture simulators for different industry applications.

Keywords: finite element method, heterogeneity, isotropic damage, uniaxial compression

Procedia PDF Downloads 195
1209 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel

Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam

Abstract:

The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.

Keywords: residues, date palm stalks, chopper, briquetting, quality properties

Procedia PDF Downloads 519
1208 The Financial Impact of Covid 19 on the Hospitality Industry in New Zealand

Authors: Kay Fielden, Eelin Tan, Lan Nguyen

Abstract:

In this research project, data was gathered at a Covid 19 Conference held in June 2021 from industry leaders who discussed the impact of the global pandemic on the status of the New Zealand hospitality industry. Panel discussions on financials, human resources, health and safety, and recovery were conducted. The themes explored for the finance panel were customer demographics, hospitality sectors, financial practices, government impact, and cost of compliance. The aim was to see how the hospitality industry has responded to the global pandemic and the steps that have been taken for the industry to recover or sustain their business. The main research question for this qualitative study is: What are the factors that have impacted on finance for the hospitality industry in New Zealand due to Covid 19? For financials, literature has been gathered to study global effects, and this is being compared with the data gathered from the discussion panel through the lens of resilience theory. Resilience theory applied to the hospitality industry suggests that the challenges imposed by Covid 19 have been the catalyst for government initiatives, technical innovation, engaging local communities, and boosting confidence. Transformation arising from these ground shifts have been a move towards sustainability, wellbeing, more awareness of climate change, and community engagement. Initial findings suggest that there has been a shift in customer base that has prompted regional accommodation providers to realign offers and to become more flexible to attract and maintain this realigned customer base. Dynamic pricing structures have been required to meet changing customer demographics. Flexible staffing arrangements include sharing staff between different accommodation providers, owners with multiple properties adopting different staffing arrangements, maintaining a good working relationship with the bank, and conserving cash. Uncertain times necessitate changing revenue strategies to cope with external factors. Financial support offered by the government has cushioned the financial downturn for many in the hospitality industry, and managed isolation and quarantine (MIQ) arrangements have offered immediate financial relief for those hotels involved. However, there is concern over the long-term effects. Compliance with mandated health and safety requirements has meant that the hospitality industry has streamlined its approach to meeting those requirements and has invested in customer relations to keep paying customers informed of the health measures in place. Initial findings from this study lie within the resilience theory framework and are consistent with findings from the literature.

Keywords: global pandemic, hospitality industry, new Zealand, resilience

Procedia PDF Downloads 82
1207 Drastic Improvement in Vision Following Surgical Excision of Juvenile Nasopharyngeal Angiofibroma with Compressive Optic Neuropathy

Authors: Sweta Das

Abstract:

This case report is a 15-year-old male who presented with painless unilateral vision loss from left optic nerve compression due to juvenile nasopharyngeal angiofibroma. JNA is a rare, benign neoplasm that causes intracranial and intraorbital bone destruction and extends aggressively into surrounding soft tissues. It accounts for <1% of all head and neck tumors, is predominantly found in pediatric males and tends to affect indigenous population disproportionately. The most common presenting symptom for JNA is epistaxis and nasal obstruction. However, it can invade orbit, chiasm and pituitary gland, causing loss of vision and field. Visual acuity and function near normalized following surgical excision. Optometry plays an important role in the diagnosis and co-management of JNA with optic nerve compression by closely monitoring afferent optic nerve function and structure, and extraocular motility. Visual function and acuity in patients with short-term compressive neuropathy may drastically improve following surgical resection as this case demonstrates.

Keywords: orbital mass, painless monocular vision loss, compressive optic neuropathy, pediatric tumor

Procedia PDF Downloads 39
1206 Serial Position Curves under Compressively Expanding and Contracting Schedules of Presentation

Authors: Priya Varma, Denis John McKeown

Abstract:

Psychological time, unlike physical time, is believed to be ‘compressive’ in the sense that the mental representations of a series of events may be internally arranged with ever decreasing inter-event spacing (looking back from the most recently encoded event). If this is true, the record within immediate memory of recent events is severely temporally distorted. Although this notion of temporal distortion of the memory record is captured within some theoretical accounts of human forgetting, notably temporal distinctiveness accounts, the way in which the fundamental nature of the distortion underpins memory and forgetting broadly is barely recognised or at least directly investigated. Our intention here was to manipulate the spacing of items for recall in order to ‘reverse’ this supposed natural compression within the encoding of the items. In Experiment 1 three schedules of presentation (expanding, contracting and fixed irregular temporal spacing) were created using logarithmic spacing of the words for both free and serial recall conditions. The results of recall of lists of 7 words showed statistically significant benefits of temporal isolation, and more excitingly the contracting word series (which we may think of as reversing the natural compression within the mental representation of the word list) showed best performance. Experiment 2 tested for effects of active verbal rehearsal in the recall task; this reduced but did not remove the benefits of our temporal scheduling manipulation. Finally, a third experiment used the same design but with Chinese characters as memoranda, in a further attempt to subvert possible verbal maintenance of items. One change to the design here was to introduce a probe item following the sequence of items and record response times to this probe. Together the outcomes of the experiments broadly support the notion of temporal compression within immediate memory.

Keywords: memory, serial position curves, temporal isolation, temporal schedules

Procedia PDF Downloads 196
1205 Enhancing Seismic Resilience in Colombia's Informal Housing: A Low-cost Retrofit Strategy with Buckling-restrained Braces to Protect Vulnerable Communities in Earthquake-prone Regions

Authors: Luis F. Caballero-castro, Dirsa Feliciano, Daniela Novoa, Orlando Arroyo, Jesús D. Villalba-morales

Abstract:

Colombia faces a critical challenge in seismic resilience due to the prevalence of informal housing, which constitutes approximately 70% of residential structures. More than 10 million Colombians (20% of the population), live in homes susceptible to collapse in the event of an earthquake. This, combined with the fact that 83% of the population is in intermediate and high seismic hazard areas, has brought serious consequences to the country. These consequences became evident during the 1999 Armenia earthquake, which affected nearly 100,000 properties and represented economic losses equivalent to 1.88% of that year's Gross Domestic Product (GDP). Despite previous efforts to reinforce informal housing through methods like externally reinforced masonry walls, alternatives related to seismic protection systems (SPDs), such as Buckling-Restrained Braces (BRB), have not yet been explored in the country. BRBs are reinforcement elements capable of withstanding both compression and tension, making them effective in enhancing the lateral stiffness of structures. In this study, the use of low-cost and easily installable BRBs for the retrofit of informal housing in Colombia was evaluated, considering the economic limitations of the communities. For this purpose, a case study was selected involving an informally constructed dwelling in the country, from which field information on its structural characteristics and construction materials was collected. Based on the gathered information, nonlinear models with and without BRBs were created, and their seismic performance was analyzed and compared through incremental static (pushover) and nonlinear dynamic analyses. In the first analysis, the capacity curve was identified, showcasing the sequence of failure events occurring from initial yielding to structural collapse. In the second case, the model underwent nonlinear dynamic analyses using a set of seismic records consistent with the country's seismic hazard. Based on the results, fragility curves were calculated to evaluate the probability of failure of the informal housings before and after the intervention with BRBs, providing essential information about their effectiveness in reducing seismic vulnerability. The results indicate that low-cost BRBs can significantly increase the capacity of informal housing to withstand earthquakes. The dynamic analysis revealed that retrofit structures experienced lower displacements and deformations, enhancing the safety of residents and the seismic performance of informally constructed houses. In other words, the use of low-cost BRBs in the retrofit of informal housing in Colombia is a promising strategy for improving structural safety in seismic-prone areas. This study emphasizes the importance of seeking affordable and practical solutions to address seismic risk in vulnerable communities in earthquake-prone regions in Colombia and serves as a model for addressing similar challenges of informal housing worldwide.

Keywords: buckling-restrained braces, fragility curves, informal housing, incremental dynamic analysis, seismic retrofit

Procedia PDF Downloads 73
1204 Rethinking Everyday Urban Spaces Using Principles of Resilient Urbanism: A Case of Flooding in Thiruvalla

Authors: Prejily Thomas John

Abstract:

Flooding of urban areas often has an adverse impact on the dense population residing in cities. The vulnerable areas are the most affected due to flooding, which even results in loss of life. The increasing trend of urban floods is a universal phenomenon and leads to a vital loss in the physical, economic, social, and environmental dimensions. The shift from floods being natural disasters to man-made disasters due to unplanned urban growth is evident from national and international reports. Thiruvalla, bordered by the Manimala River in the Pathanamthitta district, is an important urban node and a drainage point of various estuaries. The city is often faced with flash floods and overflow from rivers since it is a low-lying land. The need for urban flood resilience for planned urban development is a necessity for livability in consideration of the topography. The paper focuses on developing an urban design framework in everyday urban spaces through the principles of resilient urbanism. The principles guide the creation of flood-resilient spaces and productive urban landscapes for the city to enable better and safer living conditions. A flood-resilient city not only prepares the city for disasters but also improves the ecological and economic conditions.

Keywords: everyday urban spaces, flood resilience, resilient urbanism, productive urban landscapes

Procedia PDF Downloads 63
1203 Effects of Wearable Garments on Postural Regulation in Community-Dwelling Elderly Adults

Authors: Mei Teng Woo, Keith Davids, Jarmo Liukkonen, Jia Yi Chow, Timo Jaakkola

Abstract:

Wearable garments such as tapes, compression garments, and braces could improve proprioception and reduced postural sway. The aim of this study was to examine the effects of wearable garments on postural regulation in a sample of community-dwelling elderly individuals, aged 65 years. It was hypothesized that wearable garments such as socks would provide stimulation to lower leg mechanoreceptors, and help participants achieve better postural regulation. Participants (N=63) performed a 30-s Romberg balance test protocol under four conditions (barefoot; wearing commercial socks; wearing clinical compression socks; wearing non-clinical compression socks), in a counterbalanced order, with four levels of performance difficulty: (1) standing on a stable surface with open eyes (SO); (2) a stable surface with closed eyes (SC); (3) a foam surface with open eyes (FO); and (4) a foam surface with closed eyes (FC). Centre of pressure (CoP) measurements included postural sway area (C90 area), trace length (TL) and sway velocity. Thirty-five participants (55.6%) showed positive effects of wearing the socks (responded group). In the responded group, it was revealed that socks showed significant differences in SO, SC and FO conditions for the two CoP measurements - TL and sway velocity (p < 0.05). In contrast, in the non-responded group, barefoot condition significantly decreased the TL and velocity in the SO condition. From the positive effects observed in the responded group, it is possible that wearable garments provide sensory cues that could interact with a biological cueing system to enhance performance in the postural regulation system. This study suggests that individuals respond to the socks treatments differently and future research should be undertaken to examine the factors that benefited the responded group of participants.

Keywords: community-dwelling, elderly adults, postural regulation, wearable garments

Procedia PDF Downloads 317
1202 Effect of Lime and Leaf Ash on Engineering Properties of Red Mud

Authors: Pawandeep Kaur, Prashant Garg

Abstract:

Red mud is a byproduct of aluminum extraction from Bauxite industry. It is dumped in a pond which not only uses thousands of acres of land but having very high pH, it pollutes the ground water and the soil also. Leaves are yet another big waste especially during autumn when they contribute immensely to the blockage of drains and can easily catch fire, among other risks hence also needs to be utilized effectively. The use of leaf ash and red mud in highway construction as a filling material may be an efficient way to dispose of leaf ash and red mud. In this study, leaf ash and lime were used as admixtures to improve the geotechnical engineering properties of red mud. The red mud was taken from National Aluminum Company Limited, Odisha, and leaf ash was locally collected. The aim of present study is to investigate the effect of lime and leaf ash on compaction characteristics and strength characteristics of red mud. California Bearing Ratio and Unconfined Compression Strength tests were performed on red mud by varying different percentages of lime and leaf ash. Leaf ash was added in proportion 2%,4%,6%,8% and 10% whereas lime was added in proportions of 5% to 15%. Optimized value of lime was decided with respect to maximum CBR (California Bearing Ratio) of red mud mixed with different proportions of lime. An increase of 300% in California Bearing ratio of red mud and an increase of 125% in Unconfined Compression Strength values were observed. It may, therefore, be concluded that red mud may be effectively utilized in the highway industry as a filler material.

Keywords: stabilization, lime, red mud, leaf ash

Procedia PDF Downloads 210
1201 Characterization of Structural Elements Concrete Metal Fibre

Authors: Benaouda Hemza

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We are interested in this study to the rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios (S/G) are S/G=0.8, and S/G=1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G=1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: EUROSTEEL fibers corrugated and DRAMIX fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 431
1200 Improving the Crashworthiness Characteristics of Long Steel Circular Tubes Subjected to Axial Compression by Inserting a Helical Spring

Authors: Mehdi Tajdari, Farzad Mokhtarnejad, Fatemeh Moradi, Mehdi Najafizadeh

Abstract:

Nowadays, energy absorbing devices have been widely used in all vehicles and moving parts such as railway couches, aircraft, ships and lifts. The aim is to protect these structures from serious damages while subjected to impact loads, or to minimize human injuries while collision is occurred in transportation systems. These energy-absorbing devices can dissipate kinetic energy in a wide variety of ways like friction, facture, plastic bending, crushing, cyclic plastic deformation and metal cutting. On the other hand, various structures may be used as collapsible energy absorbers. Metallic cylindrical tubes have attracted much more attention due to their high stiffness and strength combined with the low weight and ease of manufacturing process. As a matter of fact, favorable crash worthiness characteristics for energy dissipation purposes can be achieved from axial collapse of tubes while they crush progressively in symmetric modes. However, experimental and theoretical results have shown that depending on various parameters such as tube geometry, material properties of tube, boundary and loading conditions, circular tubes buckle in different modes of deformation, namely, diamond and Euler collapsing modes. It is shown that when the tube length is greater than the critical length, the tube deforms in overall Euler buckling mode, which is an inefficient mode of energy absorption and needs to be avoided in crash worthiness applications. This study develops a new method with the aim of improving energy absorption characteristics of long steel circular tubes. Inserting a helical spring into the tubes is proved experimentally to be an efficient solution. In fact when a long tube is subjected to axial compression load, the spring prevents of undesirable Euler or diamond collapsing modes. This is because the spring reinforces the internal wall of tubes and it causes symmetric deformation in tubes. In this research three specimens were prepared and three tests were performed. The dimensions of tubes were selected so that in axial compression load buckling is occurred. In the second and third tests a spring was inserted into tubes and they were subjected to axial compression load in quasi-static and impact loading, respectively. The results showed that in the second and third tests buckling were not happened and the tubes deformed in symmetric modes which are desirable in energy absorption.

Keywords: energy absorption, circular tubes, collapsing deformation, crashworthiness

Procedia PDF Downloads 320
1199 Characterization of Structural Elements in Metal Fiber Concrete

Authors: Ammari Abdelhammid

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We're interested in this study to the Rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios ( S/G) are S/G = 0.8 and S/G = 1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G = 1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: Eurosteel fibers corrugated and Dramix fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 420
1198 Limit State Evaluation of Bridge According to Peak Ground Acceleration

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Jongyoon Moon, Donghoon Shin, Kiyoung Kim

Abstract:

In the past, the criteria and procedures for the design of concrete structures were mainly based on the stresses allowed for structural components. However, although the frequency of earthquakes has increased and the risk has increased recently, it has been difficult to determine the safety factor for earthquakes in the safety assessment of structures based on allowable stresses. Recently, limit state design method has been introduced for reinforced concrete structures, and limit state-based approach has been recognized as a more effective technique for seismic design. Therefore, in this study, the limit state of the bridge, which is a structure requiring higher stability against earthquakes, was evaluated. The finite element program LS-DYNA and twenty ground motion were used for time history analysis. The fracture caused by tensile and compression of the pier were set to the limit state. In the concrete tensile fracture, the limit state arrival rate was 100% at peak ground acceleration 0.4g. In the concrete compression fracture, the limit state arrival rate was 100% at peak ground acceleration 0.2g.

Keywords: allowable stress, limit state, safety factor, peak ground acceleration

Procedia PDF Downloads 196
1197 Efficient Storage and Intelligent Retrieval of Multimedia Streams Using H. 265

Authors: S. Sarumathi, C. Deepadharani, Garimella Archana, S. Dakshayani, D. Logeshwaran, D. Jayakumar, Vijayarangan Natarajan

Abstract:

The need of the hour for the customers who use a dial-up or a low broadband connection for their internet services is to access HD video data. This can be achieved by developing a new video format using H. 265. This is the latest video codec standard developed by ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) on April 2013. This new standard for video compression has the potential to deliver higher performance than the earlier standards such as H. 264/AVC. In comparison with H. 264, HEVC offers a clearer, higher quality image at half the original bitrate. At this lower bitrate, it is possible to transmit high definition videos using low bandwidth. It doubles the data compression ratio supporting 8K Ultra HD and resolutions up to 8192×4320. In the proposed model, we design a new video format which supports this H. 265 standard. The major areas of applications in the coming future would lead to enhancements in the performance level of digital television like Tata Sky and Sun Direct, BluRay Discs, Mobile Video, Video Conferencing and Internet and Live Video streaming.

Keywords: access HD video, H. 265 video standard, high performance, high quality image, low bandwidth, new video format, video streaming applications

Procedia PDF Downloads 339
1196 Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities

Authors: Abdelghani Qadem

Abstract:

Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future.

Keywords: urban hydrology, Morocco, urbanization, climate change, water management, green infrastructure, sustainable development

Procedia PDF Downloads 33
1195 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber

Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi

Abstract:

This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.

Keywords: bending and deflection, bridge beam, compression, Nigerian Opepe, shear, structural reliability

Procedia PDF Downloads 440
1194 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends

Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe

Abstract:

Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.

Keywords: port, Miami, network, cargo, cruise

Procedia PDF Downloads 59
1193 Dynamic Web-Based 2D Medical Image Visualization and Processing Software

Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail

Abstract:

In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.

Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN

Procedia PDF Downloads 141
1192 Mechanical Properties, Vibrational Response and Flow-Field Analysis of Staghorn Coral Skeleton, Acropora cervicornis

Authors: Alejandro Carrasco-Pena, Mahmoud Omer, Nina Orlovskaya

Abstract:

The results of studies of microstructure, mechanical behavior, vibrational response, and flow field analysis of critically endangered staghorn coral (Acropora cervicornis) skeletons are reported. The CaCO₃ aragonite structure of a chemically-cleaned coral skeleton of A. cervicornis was studied by optical microscopy and computer tomography. The mechanical behavior was studied using uniaxial compression and Vickers hardness technique. The average maximum stress measured during skeleton uniaxial compression was 10.7 ± 2.24 MPa and Vickers hardness was 3.56 ± 0.31 GPa. The vibrational response of the aragonite structure was studied by micro-Raman spectroscopy, which showed a substantial dependence of the structure on applied compressive stress. The flow-field around a single coral skeleton forming vortices in the wake of the moving skeleton was measured using Particle Image Velocimetry (PIV). The results are important for further analysis of time-dependent mechanical fatigue behavior and predicting the lifetime of staghorn corals.

Keywords: failure, mechanical properties, microstructure, Raman spectroscopy

Procedia PDF Downloads 132
1191 Spinal Hydatidosis: Therapeutic Management of 5 Cases

Authors: Ghoul Rachid Brahim, Trad Khodja Rafik

Abstract:

Vertebral localization of the hydatid cyst is a severe form of bone hydatidosis, is a parasitic infection caused by the larval forms of the tapeworms Echinococcus granulosus, The disease is slowly remaining silent (a long incubation period) which may explain why this pathology is often discovered at the stage of neurological complications. The objective of this study is to recall the clinical and radiological aspects of this condition and the importance of early diagnosis and appropriate management. We report a study of 5 patients with vertebral hydatidosis, four men and one woman, four (04) patients operated in the emergency setting for spinal cord compression (decompression by wide laminectomy with evacuation of intra and extra canal vesicles).Albendazole-based medical treatment is instituted in all patients. Results: The evolution was favorable for three patients, the other two patients reoperated for a local recurrence. Conclusion: Vertebral hydatidosis is a rare condition with a poor prognosis due to the risk of neurological damage, the infiltrating nature of bone lesions, the frequency of relapses and therapeutic difficulties. The only curative method remains surgery, which must aim for complete and large excision of the lesions as if it were a “malignant tumour”.

Keywords: hydatidosis, Echinococcosis granulosus, hydatid cyst, spinal cord compression, laminectomy

Procedia PDF Downloads 74
1190 Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties

Authors: Maizatulnisa Othman, Mohamad Bukhari, Zahurin Halim, Souad A. Muhammad, Khalisani Khalid

Abstract:

Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 Gpa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results.

Keywords: sandwich structure composite, epoxy, aluminium, kenaf fiber

Procedia PDF Downloads 371
1189 On the Design of a Secure Two-Party Authentication Scheme for Internet of Things Using Cancelable Biometrics and Physically Unclonable Functions

Authors: Behnam Zahednejad, Saeed Kosari

Abstract:

Widespread deployment of Internet of Things (IoT) has raised security and privacy issues in this environment. Designing a secure two-factor authentication scheme between the user and server is still a challenging task. In this paper, we focus on Cancelable Biometric (CB) as an authentication factor in IoT. We show that previous CB-based scheme fail to provide real two-factor security, Perfect Forward Secrecy (PFS) and suffer database attacks and traceability of the user. Then we propose our improved scheme based on CB and Physically Unclonable Functions (PUF), which can provide real two-factor security, PFS, user’s unlinkability, and resistance to database attack. In addition, Key Compromise Impersonation (KCI) resilience is achieved in our scheme. We also prove the security of our proposed scheme formally using both Real-Or-Random (RoR) model and the ProVerif analysis tool. For the usability of our scheme, we conducted a performance analysis and showed that our scheme has the least communication cost compared to the previous CB-based scheme. The computational cost of our scheme is also acceptable for the IoT environment.

Keywords: IoT, two-factor security, cancelable biometric, key compromise impersonation resilience, perfect forward secrecy, database attack, real-or-random model, ProVerif

Procedia PDF Downloads 77
1188 Failure Analysis of Laminated Veneer Bamboo Dowel Connections

Authors: Niloufar Khoshbakht, Peggi L. Clouston, Sanjay R. Arwade, Alexander C. Schreyer

Abstract:

Laminated veneer bamboo (LVB) is a structural engineered composite made from glued layers of bamboo. A relatively new building product, LVB is currently employed in similar sizes and applications as dimensional lumber. This study describes the results of a 3D elastic Finite Element model for halfhole specimens when loaded in compression parallel-to-grain per ASTM 5764. The model simulates LVB fracture initiation due to shear stresses in the dowel joint and predicts displacement at failure validated through comparison with experimental results. The material fails at 1mm displacement due to in-plane shear stresses. The paper clarifies the complex interactive state of in-plane shear, tension perpendicular-to-grain, and compression parallel-to-grain stresses that form different distributions in the critical zone beneath the bolt hole for half-hole specimens. These findings are instrumental in understanding key factors and fundamental failure mechanisms that occur in LVB dowel connections to help devise safe standards and further LVB product adoption and design.

Keywords: composite, dowel connection, embedment strength, failure behavior, finite element analysis, Moso bamboo

Procedia PDF Downloads 248
1187 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chlef

Authors: Messaoudi Mohammed Amin

Abstract:

The reduction of available land resources and the increased cout associated with the use of hight quality materials have led to the need for local soils to be used in geotecgnical construction however, poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in oyher works unsuitable soils with low bearing capacity, high plasticity coupled with high insatbility are frequently encountered hense, there is a need to improve the physical and mechanical charateristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for quite sometime bu mixing additives, such us cement, lime and fly ash to the soil to increase its strength. The aim of this project is to study the effect of using lime, natural pozzolana or combination of both on the geotecgnical cherateristics of clayey soil. Test specimen were subjected to atterberg limits test, compaction test, box shear test and uncomfined compression test Lime or natural pozzolana was added to clayey soil at rangs of 0-8% and 0-20% respectively. In addition combinations of lime –natural pozzolana were added to clayey soil at the same ranges specimen were cured for 1-7, and 28 days after which they were tested for uncofined compression tests. Based on the experimental results, it was concluded that an important decrease of plasticity index was observed for thr samples stabilized with the combinition lime-natural pozzolana in addition, the use of the combination lime-natural pozzolana modifies the clayey soil classification according to casagrand plasiticity chart. Moreover, based on the favourable results of shear and compression strength obtained, it can be concluded that clayey soil can be successfuly stabilized by combined action of lime and natural pozzolana also this combination showed an appreciable improvement of the shear parameters. Finally, since natural pozzolana is much cheaper than lime ,the addition of natural pozzolana in lime soil mix may particulary become attractive and can result in cost reduction of construction.

Keywords: clay, soil stabilization, natural pozzolana, atterberg limits, compaction, compressive strength shear strength, curing

Procedia PDF Downloads 290
1186 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well

Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao

Abstract:

When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.

Keywords: air compression, foaming agents, gas well, liquid loading

Procedia PDF Downloads 118
1185 Conflation Methodology Applied to Flood Recovery

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: community resilience, conflation, flood risk, nuisance flooding

Procedia PDF Downloads 75
1184 Mainland China and Taiwan’s Strategies for Overcoming the Middle/High Income Trap: Domestic Consensus-Building and the Foundations of Cross-Strait Interactions

Authors: Mingke Ma

Abstract:

The recent discovery of the High-Income Trap phenomena and the established Middle-Income Trap literature have identified the similarity of the structural challenges that both Mainland China and Taiwan have been facing since the simultaneous growth slowdown from the 2000s. Mainland China and Taiwan’s ineffectiveness in productivity growth weakened their overall competitiveness in Global Value Chains. With the subsequent decline of industrial profitability, social compression from late development persists and jeopardises the social cohesion. From Ma Ying-jeou’s ‘633’ promise and Tsai Ing-wen’s ‘5+2’ industrial framework to Mainland China’s 11th to 14th Five-Year Plans, leaderships across the Strait have been striving to constitute new models for inclusive and sustainable development through policy responses. This study argues that social consensuses that have been constructed by the domestic political processes define the feasibility of the reform strategies, which further construct the conditions for Cross-Strait interactions. Based on the existing literature of New Institutional Economics, Middle/High Income Trap, and Compressed Development, this study adopts a Historical Institutionalist analytical framework to identify how the historical path-dependency contributes to the contemporary growth constraints in both economies and the political difficulty on navigating the institutional and Organisational change. It continues by tracing the political process of economic reform to examine the sustainability and resilience of the manifested social consensus that had empowered the proposed policy frameworks. Afterwards, it examines how the political outcomes in such a simultaneous process shared by both Mainland China and Taiwan construct the social, economic, institutional, and political foundations of contemporary Cross-Strait engagement.

Keywords: historical institutionalism, political economy, cross-strait relations, high/middle income trap

Procedia PDF Downloads 173
1183 Community Resilience in Response to the Population Growth in Al-Thahabiah Neighborhood

Authors: Layla Mujahed

Abstract:

Amman, the capital of Jordan, is the main political, economic, social and cultural center of Jordan and beyond. The city faces multitude demographic challenges related to the unstable political situation in the surrounded countries. It has regional and local migrants who left their homes to find better life in the capital. This resulted with random and unequaled population distribution. Some districts have high population and pressure on the infrastructure and services more than other districts.Government works to resolve this challenge in compliance with 100 Cities Resilience Framework (CRF). Amman participated in this framework as a member in December 2014 to work in achieving the four goals: health and welfare, infrastructure and utilities, economy and education as well as administration and government.  Previous research studies lack in studying Amman resilient work in neighborhood scale and the population growth as resilient challenge. For that, this study focuses on Al-Thahabiah neighborhood in Shafa Badran district in Amman. This paper studies the reasons and drivers behind this population growth during the selected period in this area then provide strategies to improve the resilient work in neighborhood scale. The methodology comprises of primary and secondary data. The primary data consist of interviews with chief officer in the executive part in Great Amman Municipality and resilient officer. The secondary data consist of papers, journals, newspaper, articles and book’s reading. The other part of data consists of maps and statistical data which describe the infrastructural and social situation in the neighborhood and district level during the studying period. Based upon those data, more detailed information will be found, e.g., the centralizing position of population and the provided infrastructure for them. This will help to provide these services and infrastructure to other neighborhoods and enhance population distribution. This study develops an analytical framework to assess urban demographical time series in accordance with the criteria of CRF to make accurate detailed projections on the requirements for the future development in the neighborhood scale and organize the human requirements for affordable quality housing, employment, transportation, health and education in this neighborhood to improve the social relations between its inhabitants and the community. This study highlights on the localization of resilient work in neighborhood scale and spread the resilient knowledge related to the shortage of its research in Jordan. Studying the resilient work from population growth challenge perspective helps improve the facilities provide to the inhabitants and improve their quality of life.

Keywords: city resilience framework, demography, population growth, stakeholders, urban resilience

Procedia PDF Downloads 155
1182 A Review of Ethanol-Diesel Blend as a Fuel in Compression-Ignition Engine

Authors: Ibrahim Yahuza, Habou Dandakouta

Abstract:

The use of ethanol blended with diesel is receiving more attention by many researchers in the recent time. It was shown that ethanol–diesel blends were technically acceptable for existing diesel engines. Ethanol, as an attractive alternative fuel, is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression–ignition engines. In this review, the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may require special materials and modification of the fuel tank design. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol–diesel blends.

Keywords: ethanol, renewable, blend, bio-fuel, diesel engines

Procedia PDF Downloads 308
1181 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 221