Search results for: nano-particle reinforced composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2343

Search results for: nano-particle reinforced composites

1863 Numerical Analysis of Reinforced Embankment on Algeria Sabkha Subgrade

Authors: N. Benmebarek, F. Berrabah, S. Benmebarek

Abstract:

This paper is interested by numerical analysis using PLAXIS code of geosynthetic reinforced embankment crossing a section about 11 km on sabkha soil of Chott El Hodna in Algeria. The site observations indicated that the surface soil of this sabkha is very sensitive to moisture and complicated by the presence of locally weak zones. Therefore, serious difficulties were encountered during building the first embankment layer. This paper focuses on the use of geosynthetic to mitigate the difficulty encountered. Due to the absence of an accepted design methods, parametric studies are carried out to assess the effect of basal embankment reinforcement on both the bearing capacity and compaction conditions. The results showed the contribution conditions of geosynthetics to improve the bearing capacity of sabkha soil.

Keywords: reinforced embankment, numerical modelling, geosynthetics, weak bearing capacity

Procedia PDF Downloads 279
1862 Fiber Based Pushover Analysis of Reinforced Concrete Frame

Authors: Shewangizaw Tesfaye Wolde

Abstract:

The current engineering community has developed a method called performance based seismic design in which we design structures based on predefined performance levels set by the parties. Since we design our structures economically for the maximum actions expected in the life of structures they go beyond their elastic limit, in need of nonlinear analysis. In this paper conventional pushover analysis (nonlinear static analysis) is used for the performance assessment of the case study Reinforced Concrete (RC) Frame building located in Addis Ababa City, Ethiopia where proposed peak ground acceleration value by RADIUS 1999 project and others is more than twice as of EBCS-8:1995 (RADIUS 1999 project) by taking critical planar frame. Fiber beam-column model is used to control material nonlinearity with tension stiffening effect. The reliability of the fiber model and validation of software outputs are checked under verification chapter. Therefore, the aim of this paper is to propose a way for structural performance assessment of existing reinforced concrete frame buildings as well as design check.

Keywords: seismic, performance, fiber model, tension stiffening, reinforced concrete

Procedia PDF Downloads 53
1861 Elastodynamic Response of Shear Wave Dispersion in a Multi-Layered Concentric Cylinders Composed of Reinforced and Piezo-Materials

Authors: Sunita Kumawat, Sumit Kumar Vishwakarma

Abstract:

The present study fundamentally focuses on analyzing the limitations and transference of horizontally polarized Shear waves(SH waves) in a four-layered compounded cylinder. The geometrical structure comprises of concentric cylinders of infinite length composed of self-reinforced (SR), fibre-reinforced (FR), piezo-magnetic (PM), and piezo-electric(PE) materials. The entire structure is assumed to be pre stressed along the azimuthal direction. In order to make the structure sensitive to the application pertaining to sensors and actuators, the PM and PE cylinders have been categorically placed in the outer part of the geometry. Whereas in order to provide stiffness and stability to the structure, the inner part consists of self-reinforced and fibre-reinforced media. The common boundary between each of the cylinders has been essentially considered as imperfectly bounded. At the interface of PE and PM media, mechanical, electrical, magnetic, and inter-coupled types of imperfections have been exhibited. The closed-form of dispersion relation has been deduced for two contrast cases i.e. electrically open magnetically short(EOMS) and electrically short and magnetically open ESMO circuit conditions. Dispersion curves have been plotted to illustrate the salient features of parameters like normalized imperfect interface parameters, initial stresses, and radii of the concentric cylinders. The comparative effect of each one of these parameters on the phase velocity of the wave has been enlisted and marked individually. Every graph has been presented with two consecutive modes in succession for a comprehensive understanding. This theoretical study may be implemented to improvise the performance of surface acoustic wave (SAW) sensors and actuators consisting of piezo-electric quartz and piezo-composite concentric cylinders.

Keywords: self-reinforced, fibre-reinforced, piezo-electric, piezo-magnetic, interfacial imperfection

Procedia PDF Downloads 91
1860 Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles and Potential Antibacterial Applications

Authors: Tesfay Gebremicheal Reda, K. Samatha, Paul Douglas Sanasi, D. Parajuli

Abstract:

Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the Niₓ Co₁₋ₓ Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm⁻¹) and tetrahedral (653-603 cm⁻¹) locales. As the Co²⁺ cation is substituted with Ni²⁺, the coercive fields HC decrease from 2384 Oe to 241.93 Oe. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²⁺ ions are smaller than that of Co²⁺ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles are composed of Ni₀.₄ Co₀.₆ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a source of antibacterial agent.

Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle

Procedia PDF Downloads 41
1859 Using Sugar Mill Waste for Biobased Epoxy Composites

Authors: Ulku Soydal, Mustafa Esen Marti, Gulnare Ahmetli

Abstract:

In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER.

Keywords: epoxy resin, biocomposite, lime waste, properties

Procedia PDF Downloads 295
1858 Gold Nanoparticle Conjugated with Andrographolide Ameliorates Viper Venom-Induced Inflammatory Response and Organ Toxicity in Animal Model

Authors: Sourav Ghosh, Antony Gomes

Abstract:

Since 1894 anti-snake venom serum (ASVS) is the only available treatment against snake envenomation, although there are many side effects and limitations. The need for a supportive treatment was felt for a long time to overcome the side effects and limitations of ASVS. Andrographolide conjugated with gold nanoparticle (A-GNP) has been found to antagonize viper venom-induced local damages. The present study was aimed to study the protective efficacy of A-GNP against Viper venom-induced inflammatory response and organ toxicity in animal model. Ethical clearance was obtained from animal experiments. Physico-chemical characterization of A-GNP was done by DLS (diameter and zeta potential), FE-SEM and XRD. Swiss albino male mice were divided into 4 groups: Gr.1-Sham control, Gr.2- Russell’s Viper venom (RVV) control, Gr.3- andrographolide treated and Gr.4- A-GNP treated. The 1/5th minimum lethal dose of RVV (500µg/kg, s.c.) was induced in animals of group 2, 3 & 4 animals, followed by treatment with andrographolide (100mg/kg, i.p.) and A-GNP (100mg/kg, i.v.) in group 3 & 4 animals, respectively. Blood was collected after 18 h, serum was prepared, and inflammatory markers (IL 1β, 6, 17a, 10, TNF α) and biochemical markers (AST, ACP, LDH, urea, creatinine) were assessed. Values were expressed as mean±SEM (n=4), one way ANOVA was done, P<0.05 was considered as statistically significant. DLS size showed the hydrodynamic diameter of A-GNP to be 230-260nm with polydispersity index of 0.103 and zeta potential was -18.32mV. XRD data confirmed the presence of crystalline gold in A-GNP, and FESEM indicated the presence of nearly spherical particle with size18-24nm.Treatment with A-GNP significantly decreased viper venom-induced proinflammatory markers (IL 1β, 6, 17, TNF α) increased anti-inflammatory markers (IL 10) and decreased organ toxicity markers (AST, ACP, LDH, urea, creatinine) in animal model. Venom neutralization efficacy of A-GNP was > andrographolide, which confirmed the increased efficacy of andrographolide after gold nanoparticle conjugation. Venom neutralization by A-GNP was due to anti-oxidant/anti-inflammatory activity of andrographolide, which showed increased efficacy after gold nanoparticle tagging. Thus, A-GNP may serve as a supportive therapy in snake-bite (against inflammatory response and organ toxicity) subject to further detail studies.

Keywords: andrographolide, gold nanoparticle, inflammatory response, organ toxicity, snake venom, snake venom neutralization, viper venom

Procedia PDF Downloads 353
1857 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete

Authors: Žymantas Rudžionis, Paulius Grigaliūnas, Danutė Vaičiukynienė

Abstract:

By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.

Keywords: self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological, properties of concrete, slump flow

Procedia PDF Downloads 349
1856 Analysis of a Strengthening of a Building Reinforced Concrete Structure

Authors: Nassereddine Attari

Abstract:

Each operation to strengthen or repair requires special consideration and requires the use of methods, tools and techniques appropriate to the situation and specific problems of each of the constructs. The aim of this paper is to study the pathology of building of reinforced concrete towards the earthquake and the vulnerability assessment using a non-linear Pushover analysis and to develop curves for a medium capacity building in order to estimate the damaged condition of the building.

Keywords: pushover analysis, earthquake, damage, strengthening

Procedia PDF Downloads 413
1855 Parameters Affecting Load Capacity of Reinforced Concrete Ring Deep Beams

Authors: Atef Ahmad Bleibel

Abstract:

Most codes of practice, like ACI 318-14, require the use of strut-and-tie modeling to analyze and design reinforced concrete deep beams. Though, investigations that conducted on deep beams do not include ring deep beams of influential parameters. This work presents an analytical parametric study using strut-and-tie modeling stated by ACI 318-14 to predict load capacity of 20 reinforced concrete ring deep beam specimens with different parameters. The parameters that were under consideration in the current work are ring diameter (Dc), number of supports (NS), width of ring beam (bw), concrete compressive strength (f'c) and width of bearing plate (Bp). It is found that the load capacity decreases by about 14-36% when ring diameter increases by about 25-75%. It is also found that load capacity increases by about 62-189% when number of supports increases by about 33-100%, while the load capacity increases by about 25-75% when the beam ring width increases by about 25-75%. Finally, it is found that load capacity increases by about 24-76% when compressive strength increases by about 24-76%, while the load capacity increases by about 5-16% when Bp increases by about 25-75%.

Keywords: load parameters, reinforced concrete, ring deep beam, strut and tie

Procedia PDF Downloads 88
1854 Microstructure and Mechanical Evaluation of PMMA/Al₂O₃ Nanocomposite Fabricated via Friction Stir Processing

Authors: Reham K. El Sawah, N. S. M. El-Tayeb

Abstract:

This study aims to produce a polymer matrix composite reinforced with Al₂O₃ nanoparticles in order to enhance the mechanical properties of PMMA. The composite was fabricated via Friction stir processing to ensure homogenous dispersion of Al₂O₃ nanoparticles in the polymer, and the processing was submerged to prevent the sputtering of nanoparticles. The surface quality, microstructure, impact energy and hardness of the prepared samples were investigated. Good surface quality and dispersion of nanoparticles were attained through employing sufficient processing conditions. The experimental results indicated that as the percentage of nanoparticles increased, the impact energy and hardness increased, reaching 2 kJ/m2 and 14.7 HV at a nanoparticle concentration of 25%, which means that the toughness and the hardness of the polymer-ceramic produced composite is higher than unprocessed PMMA by 66% and 33% respectively.

Keywords: friction stir processing, polymer matrix nanocomposite, mechanical properties, microstructure

Procedia PDF Downloads 153
1853 Review of Affected Parameters on Flexural Behavior of Hollow Concrete Beams Reinforced by Steel/GFRP Rebars

Authors: Shahrad Ebrahimzadeh

Abstract:

Nowadays, the main efforts of the researchers aim to constantly evolve new, optimized and efficient construction materials and methods related to reinforced concrete beams. Due to the fewer applied materials and offering a higher structural efficiency compared to solid concrete beams with the same concrete area, hollow reinforced concrete beams (HRCB) internally reinforced with steel rebars have been employed extensively for bridge structural members and high-rise buildings. Many experimental studies have been conducted to investigate the behavior of hollow beams subjected to bending loading and found that the structural performance of HRCBs is critically affected by many design parameters. While the proper design of the HRCBs demonstrated comparable behavior to solid sections, inappropriate design leads beams to be extremely prone to brittle failure. Another potential issue that needs to be further investigated is the replacement of steel bars with suitable materials due to their susceptibility to corrosion. Hence, to develop a reliable construction system, the application of GFRP bars as a non-corroding material has been utilized. Furthermore, this study aims to critically review the different design parameters that affect the flexural performance of the HRCBs and recognize the gaps of knowledge in the better design and more effective use of this construction system.

Keywords: design parameters, experimental investigations, hollow reinforced concrete beams, steel, GFRP, flexural strength

Procedia PDF Downloads 175
1852 Analytical Model for Columns in Existing Reinforced Concrete Buildings

Authors: Chang Seok Lee, Sang Whan Han, Girbo Ko, Debbie Kim

Abstract:

Existing reinforced concrete structures are designed and built without considering seismic loads. The columns in such buildings generally exhibit widely spaced transverse reinforcements without using seismic hooks. Due to the insufficient reinforcement details in columns, brittle shear failure is expected in columns that may cause pre-mature building collapse mechanism during earthquakes. In order to retrofit those columns, the accurate seismic behavior of the columns needs to be predicted with proper analytical models. In this study, an analytical model is proposed for accurately simulating the cyclic behavior of shear critical columns. The parameters for pinching and cyclic deterioration in strength and stiffness are calibrated using test data of column specimens failed by shear.

Keywords: analytical model, cyclic deterioration, existing reinforced concrete columns, shear failure

Procedia PDF Downloads 247
1851 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 59
1850 Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressed axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibrereinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 484
1849 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: composite, epoxy, polyester, relining, sewage

Procedia PDF Downloads 323
1848 Influence of Behavior Models on the Response of a Reinforced Concrete Frame: Multi-Fiber Approach

Authors: A. Kahil, A. Nekmouche, N. Khelil, I. Hamadou, M. Hamizi, Ne. Hannachi

Abstract:

The objective of this work is to study the influence of the nonlinear behavior models of the concrete (concrete_BAEL and concrete_UNI) as well as the confinement brought by the transverse reinforcement on the seismic response of reinforced concrete frame (RC/frame). These models as well as the confinement are integrated in the Cast3m finite element calculation code. The consideration of confinement (TAC, taking into account the confinement) provided by the transverse reinforcement and the non-consideration of confinement (without consideration of containment, WCC) in the presence and absence of a vertical load is studied. The application was made on a reinforced concrete frame (RC/frame) with 3 levels and 2 spans. The results show that on the one hand, the concrete_BAEL model slightly underestimates the resistance of the RC/frame in the plastic field, whereas the concrete_uni model presents the best results compared to the simplified model "concrete_BAEL", on the other hand, for the concrete-uni model, taking into account the confinement has no influence on the behavior of the RC/frame under imposed displacement up to a vertical load of 500 KN.

Keywords: reinforced concrete, nonlinear calculation, behavior laws, fiber model confinement, numerical simulation

Procedia PDF Downloads 146
1847 Mechanical Properties of Fibre Reinforced High Performance Concrete

Authors: Laura Dembovska, Diana Bajare, Vitalijs Lusis, Genadijs Sahmenko, Aleksandrs Korjakins

Abstract:

This study focused on the mechanical properties of the fibre reinforced High Performance Concrete. The most important benefits of addition of fibres to the concrete mix are the hindrance of the development of microcracks, the delay of the propagation of microcracks to macroscopic cracks and the better ductility after microcracks have been occurred. This work presents an extensive comparative experimental study on six different types of fibres (alkali resistant glass, polyvinyl alcohol fibres, polypropylene fibres and carbon fibres) with the same binding High Performance Concrete matrix. The purpose was to assess the influence of the type of fibre on the mechanical properties of Fibre Reinforced High Performance Concrete. Therefore, in this study three main objectives have been chosen: 1) analyze the structure of the bulk cementitious matrix, 2) determine the influence of fibres and distribution in the matrix on the mechanical properties of fibre reinforced High Performance Concrete and 3) characterize the microstructure of the fibre-matrix interface. Acknowledgement: This study was partially funded by European Regional Development Fund project Nr.1.1.1.1/16/A/007 “A New Concept for Sustainable and Nearly Zero-Energy Buildings” and COST Action TU1404 Conference grants project.

Keywords: high performance concrete, fibres, mechanical properties, microstructure

Procedia PDF Downloads 263
1846 Elaboration and Characterization of PP/TiO2 Composites

Authors: F. Z. Benabid, S. Kridi, F. Zouai, D. Benachour

Abstract:

The aim of present work is to characterize the PP/TiO2 blends as composites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the impact strength results which increased about 39% compared to neat PP. The rheological study showed an increase in the fluidity in all developed composite compositions, involved by the good dispersion of TiO2 particles.

Keywords: composites, PP, TiO2, comixing, mechanical treatment

Procedia PDF Downloads 258
1845 Electrical Investigations of Polyaniline/Graphitic Carbon Nitride Composites Using Broadband Dielectric Spectroscopy

Authors: M. A. Moussa, M. H. Abdel Rehim, G.M. Turky

Abstract:

Polyaniline composites with carbon nitride, to overcome compatibility restriction with graphene, were prepared with the solution method. FTIR and Uv-vis spectra were used for structural conformation. While XRD and XPS confirmed the structures in addition to estimation of nitrogen atom surroundings, the pore sizes and the active surface area were determined from BET adsorption isotherm. The electrical and dielectric parameters were measured and calculated with BDS .

Keywords: carbon nitride, dynamic relaxation, electrical conductivity, polyaniline

Procedia PDF Downloads 123
1844 Nanotechnology-Based Treatment of Klebsiella pneumoniae Infections

Authors: Lucian Mocan, Teodora Mocan, Matea Cristian, Cornel Iancu

Abstract:

We present method of nanoparticle enhanced laser thermal ablation of Klebsiella pneumoniae infections, using gold nanoparticles combined with a specific growth factor and demonstrate its selective therapeutic efficacy. Ab (antibody solution) bound to GNPs (gold nanoparticles) was administered in vitro and determined the specific delivery of the nano-bioconjugate into the microorganism. The extent of necrosis was considerable following laser therapy, and at the same time, normal cells were not seriously affected. The selective photothermal ablation of the infected tissue was obtained after the selective accumulation of Ab bound to GNPs into bacteria following perfusion. These results may represent a major step in antibiotherapy treatment using nanolocalized thermal ablation by laser heating.

Keywords: gold nanoparticles, Klebsiella pneumoniae, nanoparticle functionalization, laser irradiation, antibody

Procedia PDF Downloads 406
1843 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites

Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate

Abstract:

In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.

Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity

Procedia PDF Downloads 342
1842 Design and Development of Constant Stress Composite Cantilever Beam

Authors: Vinod B. Suryawanshi, Ajit D. Kelkar

Abstract:

Glass fiber reinforced composites materials, due their unique properties such as high mechanical strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. In this paper, a cost effective design and manufacturing approach for a composite cantilever beam structure is presented. A constant stress (variable cross section) beam concept has been used to design and optimize the shape of composite cantilever beam and thus obtain the reduction in material used. The variable cross section beam was fabricated from the glass epoxy prepregs using cost effective out of autoclave process. The drop ply technique has been successfully used to obtain the variation in the cross section along the span of the beam. In order to test the beam and validate the design, the beam was subjected to different end loads. Strain gauges were mounted along the length of the beam to obtain strains in the beam at different sections and loads. The strain values were used to calculate the flexural strength and bending stresses in the beam. The stresses obtained through strain measurements from the experiment were found to be uniform along the span of the beam, and thus validates the design. Finally, the finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results.

Keywords: beams, composites, constant cross-section, structures

Procedia PDF Downloads 332
1841 Numerical Investigation of Geotextile Application in Clay Reinforcement in ABAQUS Software

Authors: Seyed Abolhasan Naeini, Eisa Aliagahei

Abstract:

Today, the use of geosynthetic materials in geotechnical activities is increasing significantly. One of the main uses of these materials is to increase the compressive strength of clay reinforced by geotextile layers. In the present study, the effect of clay reinforcement by geotextile layers in increasing the compressive strength of clay has been investigated using modeling in ABAQUS 6.11.3 software. For this purpose, the modified Drager Prager model has been chosen to simulate the stress-strain behavior of soil layers and the linear elastic model for the geotextile layer. Unreinforced samples and reinforced samples are modeled by geotextile layers (1, 2 and 3 geotextile layers) by software. In order to validate the results, an article in the same field was used and the numerical modeling results were calibrated with the laboratory results. Based on the obtained results, the software has a suitable capability for modeling and the results of the numerical model overlap with the laboratory results to a very acceptable extent, by increasing the number of geotextile layers, the error between the results of the laboratory sample and the software model increases. The highest amount of error is related to the sample reinforced with three layers of geotextile and is 7.3%.

Keywords: Abaqus, cap model, clay, geotextile layer, reinforced soil

Procedia PDF Downloads 73
1840 Optimal Retrofit Design of Reinforced Concrete Frame with Infill Wall Using Fiber Reinforced Plastic Materials

Authors: Sang Wook Park, Se Woon Choi, Yousok Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

Various retrofit techniques for reinforced concrete frame with infill wall have been steadily developed. Among those techniques, strengthening methodology based on diagonal FRP strips (FRP bracings) has numerous advantages such as feasibility of implementing without interrupting the building under operation, reduction of cost and time, and easy application. Considering the safety of structure and retrofit cost, the most appropriate retrofit solution is needed. Thus, the objective of this study is to suggest pareto-optimal solution for existing building using FRP bracings. To find pareto-optimal solution analysis, NSGA-II is applied. Moreover, the seismic performance of retrofit building is evaluated. The example building is 5-storey, 3-bay RC frames with infill wall. Nonlinear static pushover analyses are performed with FEMA 356. The criterion of performance evaluation is inter-story drift ratio at the performance level IO, LS, CP. Optimal retrofit solutions is obtained for 32 individuals and 200 generations. Through the proposed optimal solutions, we confirm the improvement of seismic performance of the example building.

Keywords: retrofit, FRP bracings, reinforced concrete frame with infill wall, seismic performance evaluation, NSGA-II

Procedia PDF Downloads 416
1839 Advanced Separation Process of Hazardous Plastics and Metals from End-Of-Life Vehicles Shredder Residue by Nanoparticle Froth Flotation

Authors: Srinivasa Reddy Mallampati, Min Hee Park, Soo Mim Cho, Sung Hyeon Yoon

Abstract:

One of the issues of End of Life Vehicles (ELVs) recycling promotion is technology for the appropriate treatment of automotive shredder residue (ASR). Owing to its high heterogeneity and variable composition (plastic (23–41%), rubber/elastomers (9–21%), metals (6–13%), glass (10–20%) and dust (soil/sand) etc.), ASR can be classified as ‘hazardous waste’, on the basis of the presence of heavy metals (HMs), PCBs, BFRs, mineral oils, etc. Considering their relevant concentrations, these metals and plastics should be properly recovered for recycling purposes before ASR residues are disposed of. Brominated flame retardant additives in ABS/HIPS and PVC may generate dioxins and furans at elevated temperatures. Moreover, these BFRs additives present in plastic materials may leach into the environment during landfilling operations. ASR thermal process removes some of the organic material but concentrates, the heavy metals and POPs present in the ASR residues. In the present study, Fe/Ca/CaO nanoparticle assisted ozone treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing its wettability and thereby promoting its separation from ASR plastics by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR respectively. Under froth flotation conditions at 50 rpm, about 99.5% and 99.5% of HIPS in ASR samples sank, resulting in a purity of 98% and 99%. Furthermore, at 150 rpm a 100% PVC separation in the settled fraction, with 98% of purity in ASR, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. This process improved the quality of recycled ASR plastics by removing surface contaminants or impurities. Further, a hybrid ball-milling and with Fe/Ca/CaO nanoparticle froth flotation process was established for the recovery of HMs from ASR. After ball-milling with Fe/Ca/CaO nanoparticle additives, the flotation efficiency increased to about 55 wt% and the HMs recovery were also increased about 90% for the 0.25 mm size fractions of ASR. Coating with Fe/Ca/CaO nanoparticles associated with subsequent microbubble froth flotation allowed the air bubbles to attach firmly on the HMs. SEM–EDS maps showed that the amounts of HMs were significant on the surface of the floating ASR fraction. This result, along with the low HM concentration in the settled fraction, was confirmed by elemental spectra and semi-quantitative SEM–EDS analysis. Developed hybrid preferential hazardous plastics and metals separation process from ASR is a simple, highly efficient, and sustainable procedure.

Keywords: end of life vehicles shredder residue, hazardous plastics, nanoparticle froth flotation, separation process

Procedia PDF Downloads 260
1838 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 181
1837 Geometric Model to Study the Mechanism of Machining and Predict the Damage Occurring During Milling of Unidirectional CFRP

Authors: Faisal Islam, J. Ramkumar

Abstract:

The applications of composite materials in aerospace, sporting and automotive industries need high quality machined surfaces and dimensional accuracy. Some studies have been done to understand the fiber failure mechanisms encountered during milling machining of CFRP composites but none are capable of explaining the exact nature of the orientation-based fiber failure mechanisms encountered in the milling machining process. The objective of this work is to gain a better understanding of the orientation-based fiber failure mechanisms occurring on the slot edges during CFRP milling machining processes. The occurrence of damage is predicted by a schematic explanation based on the mechanisms of material removal which in turn depends upon fiber cutting angles. A geometric model based on fiber cutting angle and fiber orientation angle is proposed that defines the critical and safe zone during machining and predicts the occurrence of delamination. Milling machining experiments were performed on composite samples of varying fiber orientations to verify the proposed theory. Mean fiber pulled out length was measured from the microscopic images of the damaged area to quantify the amount of damage produced. By observing the damage occurring for different fiber orientation angles and fiber cutting angles for up-milling and down-milling edges and correlating it with the material removal mechanisms as described earlier, it can be concluded that the damage/delamination mainly depends on the portion of the fiber cutting angles that lies within the critical cutting angle zone.

Keywords: unidirectional composites, milling, machining damage, delamination, carbon fiber reinforced plastics (CFRPs)

Procedia PDF Downloads 507
1836 Electrochemical Deposition of Pb and PbO2 on Polymer Composites Electrodes

Authors: A. Merzouki, N. Haddaoui

Abstract:

Polymers have a large reputation as electric insulators. These materials are characterized by weak weight, reduced price and a large domain of physical and chemical properties. They conquered new application domains that were until a recent past the exclusivity of metals. In this work, we used some composite materials (polymers/conductive fillers), as electrodes and we try to cover them with metallic lead layers in order to use them as courant collector grids in lead-acid battery plates.

Keywords: electrodeposition, polymer composites, carbon black, acetylene black

Procedia PDF Downloads 436
1835 Bond Strength of Different Strengthening Systems: Concrete Elements under Freeze–Thaw Cycles and Salt Water Immersion Exposure

Authors: Firas Al-Mahmoud, Jean-Michel Mechling, Mohamed Shaban

Abstract:

The long-term durability of fibre reinforced polymer (FRP) composites is often stated as being the main reason for the use of these materials. Indeed, structures externally or Near Surface Mounted (NSM) reinforced with Carbon Fibre Reinforcement Polymer CFRP are often in contact with temperature cycles and salt water immersion and other environmental conditions that reduce the expected durability of the system. Bond degradation is a frequent cause of premature failure of structural elements and environmental conditions are known to relate to such failures. The purpose of this study is to investigate the effect of environmental exposure on the bond for different CFRP strengthening systems. Bending tests were conducted to evaluate the bond with and without environmental exposure. The specimens were strengthened with CFRP sheets, CFRP plates and NSM CFRP rods embedded in two filling materials: epoxy resin and mortar. Then, they were exposed to up to 300 freeze–thaw cycles. One freeze–thaw cycle consisted of four stages according to ASTM or immersed in 3.5% salted tap water. A total of thirty-six specimens were prepared for this purpose. Results showed a decrease in ultimate bond strength for specimens strengthened by CFRP sheets that were immersed in salt water for 120 days, while a reduction was shown for CFRP sheet and plate bonded specimens that were subjected to 300 freeze–thaw cycles. Exposing NSM CFRP rod strengthened specimens, embedded in resin or mortar, to freeze–thaw cycles or to immersion in salt water does not affect the bond strength.

Keywords: durability, strengthening, FRP, bond, freeze–thaw

Procedia PDF Downloads 331
1834 Micro-Meso 3D FE Damage Modelling of Woven Carbon Fibre Reinforced Plastic Composite under Quasi-Static Bending

Authors: Aamir Mubashar, Ibrahim Fiaz

Abstract:

This research presents a three-dimensional finite element modelling strategy to simulate damage in a quasi-static three-point bending analysis of woven twill 2/2 type carbon fibre reinforced plastic (CFRP) composite on a micro-meso level using cohesive zone modelling technique. A meso scale finite element model comprised of a number of plies was developed in the commercial finite element code Abaqus/explicit. The interfaces between the plies were explicitly modelled using cohesive zone elements to allow for debonding by crack initiation and propagation. Load-deflection response of the CRFP within the quasi-static range was obtained and compared with the data existing in the literature. This provided validation of the model at the global scale. The outputs resulting from the global model were then used to develop a simulation model capturing the micro-meso scale material features. The sub-model consisted of a refined mesh representative volume element (RVE) modelled in texgen software, which was later embedded with cohesive elements in the finite element software environment. The results obtained from the developed strategy were successful in predicting the overall load-deflection response and the damage in global and sub-model at the flexure limit of the specimen. Detailed analysis of the effects of the micro-scale features was carried out.

Keywords: woven composites, multi-scale modelling, cohesive zone, finite element model

Procedia PDF Downloads 120