Search results for: isolated word recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3975

Search results for: isolated word recognition

3495 Towards a Dialogical Approach between Christianity and Hinduism: A Comparative Theological Analysis of the Concept of Logos, and Shabd

Authors: Abraham Kuruvilla

Abstract:

Since the inception of Christianity, one of the most important precepts has been that of the ‘word becoming flesh.’ Incarnation, as we understand it, is that the ‘word became flesh.’ As we know, it is a commonly held understanding that the concept of Logos was borrowed from the Greek religion. Such understanding has dominated our thought process. This is problematic as it does not draw out the deep roots of Logos. The understanding of Logos also existed in religion such as Hinduism. For the Hindu faith, the understanding of Shabd is pivotal. It could be arguably equated with the understanding of the Logos. The paper looks into the connection of the primal Christian doctrine of the Logos with that of the Hindu understanding of Shabd. The methodology of the paper would be a comparative theological analysis with the New Testament understanding of the Logos with that of the understanding of Shabd as perceived in the different Vedas of the Hindu faith. The paper would come to the conclusion that there is a conceptual connectivity between Logos and the Shabd. As such the understanding of Logos cannot just be attributed to the Greek understanding of Logos, but rather it predates the Greek understanding of Logos by being connected to the Hindu understanding of Shabd. Accordingly, such comparison brings out the implication for a constructive dialogue between Christianity and the Hindu faith.

Keywords: Christianity, Hinudism, Logos, Shabd

Procedia PDF Downloads 224
3494 From Shallow Semantic Representation to Deeper One: Verb Decomposition Approach

Authors: Aliaksandr Huminski

Abstract:

Semantic Role Labeling (SRL) as shallow semantic parsing approach includes recognition and labeling arguments of a verb in a sentence. Verb participants are linked with specific semantic roles (Agent, Patient, Instrument, Location, etc.). Thus, SRL can answer on key questions such as ‘Who’, ‘When’, ‘What’, ‘Where’ in a text and it is widely applied in dialog systems, question-answering, named entity recognition, information retrieval, and other fields of NLP. However, SRL has the following flaw: Two sentences with identical (or almost identical) meaning can have different semantic role structures. Let consider 2 sentences: (1) John put butter on the bread. (2) John buttered the bread. SRL for (1) and (2) will be significantly different. For the verb put in (1) it is [Agent + Patient + Goal], but for the verb butter in (2) it is [Agent + Goal]. It happens because of one of the most interesting and intriguing features of a verb: Its ability to capture participants as in the case of the verb butter, or their features as, say, in the case of the verb drink where the participant’s feature being liquid is shared with the verb. This capture looks like a total fusion of meaning and cannot be decomposed in direct way (in comparison with compound verbs like babysit or breastfeed). From this perspective, SRL looks really shallow to represent semantic structure. If the key point in semantic representation is an opportunity to use it for making inferences and finding hidden reasons, it assumes by default that two different but semantically identical sentences must have the same semantic structure. Otherwise we will have different inferences from the same meaning. To overcome the above-mentioned flaw, the following approach is suggested. Assume that: P is a participant of relation; F is a feature of a participant; Vcp is a verb that captures a participant; Vcf is a verb that captures a feature of a participant; Vpr is a primitive verb or a verb that does not capture any participant and represents only a relation. In another word, a primitive verb is a verb whose meaning does not include meanings from its surroundings. Then Vcp and Vcf can be decomposed as: Vcp = Vpr +P; Vcf = Vpr +F. If all Vcp and Vcf will be represented this way, then primitive verbs Vpr can be considered as a canonical form for SRL. As a result of that, there will be no hidden participants caught by a verb since all participants will be explicitly unfolded. An obvious example of Vpr is the verb go, which represents pure movement. In this case the verb drink can be represented as man-made movement of liquid into specific direction. Extraction and using primitive verbs for SRL create a canonical representation unique for semantically identical sentences. It leads to the unification of semantic representation. In this case, the critical flaw related to SRL will be resolved.

Keywords: decomposition, labeling, primitive verbs, semantic roles

Procedia PDF Downloads 366
3493 Little Retrieval Augmented Generation for Named Entity Recognition: Toward Lightweight, Generative, Named Entity Recognition Through Prompt Engineering, and Multi-Level Retrieval Augmented Generation

Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira

Abstract:

We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models Mistral-v0.3, Llama-3, and Phi-3, for Generative Named Entity Recognition (GNER). Our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We consider recent developments at the cross roads of prompt engineering and Retrieval Augmented Generation (RAG), such as EmotionPrompt. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.

Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification

Procedia PDF Downloads 46
3492 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle

Authors: Megan Weisbart

Abstract:

Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.

Keywords: burnout, NICU, nurse, wellness

Procedia PDF Downloads 86
3491 Extracellular Laccase Production by Co-culture between Galactomyces reesii IFO 10823 and Filamentous Fungal Strains Isolated from Fungus Comb Using Natural Inducer

Authors: P. Chaijak, M. Lertworapreecha, C. Sukkasem

Abstract:

Extracellular laccases are copper-containing microbial enzymes with many industrial biotechnological applications. This study evaluated the ability of nutrients in coconut coir to enhance the yield of extracellular laccase of Galactomyces reesii IFO 10823 and develop a co-culture between this yeast and other filamentous fungi isolated from the fungus comb of Macrotermes sp. The co-culture between G. reesii IFO 10823 and M. indicus FJ-M-5 (G3) gave the highest activity at 580.20 U/mL. When grown in fermentation media prepared from coconut coir and distilled water at 70% of initial moisture without supplement addition, G3 produced extracellular laccase of 113.99 U/mL.

Keywords: extracellular laccase, production, yeast, natural inducer

Procedia PDF Downloads 266
3490 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition

Authors: Umair Rashid

Abstract:

Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.

Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter

Procedia PDF Downloads 101
3489 A Pink-Pigmented Facultative Methylobacterium sp Isolated from Retama monosperma Root Nodules

Authors: N. Selami, M. Kaid Harche

Abstract:

A pink-pigmented, aerobic, facultatively methylotrophic bacterium, was isolated from Retama monosperma root nodules and identified as a member of the genus Methylobacterium. Inoculation of R. monosperma plants by a pure culture of isolate strain under a hydroponic condition, resulted, 10 dpi, the puffiness at lateral roots. The observation in detail the anatomy and ultra-structure of infection sites by light and electron microscopy show that the bacteria induce stimulation of the division of cortical cells and digestion of epidermis cells then, Methylobacterium was observed in the inter and intracellular spaces of the outer cortex root. These preliminary results allow us to suggest the establishment of an epi-endosymbiotic interaction between Methylobacterium sp and R. monosperma.

Keywords: endophytic colonization, Methylobacterium, microscopy, nodule, pink pigmented, Retama monosperma

Procedia PDF Downloads 364
3488 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 199
3487 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status

Authors: Rosa Figueroa, Christopher Flores

Abstract:

Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).

Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm

Procedia PDF Downloads 297
3486 Dermatophytoses: Spectrum Evolution of Dermatophytes in Sfax, Tunisia, Between 1999 and 2019

Authors: Khemakhem Nahed, Hammami Fatma, Trabelsi Houaida, Neji Sourour, Sellami Hayet, Makni Fattouma, Turki Hamida, Ayadi Ali

Abstract:

Dermatophytoses are considered a public health problem and represent 10% of dermatological consultations in our region. Their epidemiology is influenced by various factors, such as lifestyle, human migration patterns, changes in the environment and the host relationship. The understanding of epidemiology has a major impact on their prevention and treatment. The aim of the study is to determine the prevalence pattern of aetiological agents and to describe the clinical characteristics of dermatophytoses between 1999 and 2019. Out of 65 059 subjects suspected to have superficial mycoses, 36 220 (55.67%) were affected with dermatophytoses. The mean age was 40.1 years (range: 10 days to 99 years). The sex ratio was 0.8. Our patients were from urban regions in 80.9% of cases. The most common type of infection was onychomycosis (42.64%), followed by tinea pedis (20.8%), intertrigo (18.3%), tinea corporis (8.48%) and tinea capitis (7.87%). The most isolated dermatophyte was Trichophyton rubrum (76.5%), followed by T. mentagrophytes complex (6.3%), Microsporum canis (5.8%), T. violaceum (5.3%), T. verrucosum (0.83%) and Epidermophyton floccosum (0.3%). Zoophilic agents have become more prevalent and their frequency has been increased from 6.46% in 1999 to 13% in 2019. It is interesting to note that M. canis has been on the rise since 2010 and it was the first etiological agent of tinea capitis (48%), while infections caused by T. violaceum continued to decrease from 1999 (16.2%) to 2019 (4.7%). Other dermatophytes have been rarely isolated: T. tonsurans (9 cases), T. schoenleinii (3 cases), T. soudanense (2 cases), M. fulvum (1 case), M. audouinii (1 case) and M. ferrugineum (2 cases).T. mentagrophytes var. quinckeanum was isolated from an inflammatory tinea capitis lesion in an a-3-year-old girl. T. mentagrophytes var. erinacei was isolated from the first case of tinea manuum, in-a-10-year-old girl. The same fungus was isolated from the hair and scales of the hedgehog. Our study showed significant changes in the dermatophytes spectrum in our region. The prevalence of zoophilic species increased in recent years due to people's behavioral changes with the adoption of pets and animal husbandry in urban settings. Molecular methods are often crucial that help us to refine the identification strains of dermatophytes and to identify their origin of the contamination.

Keywords: dermatophytoses, PCR-sequencing, spectrum, Sfax, Tunisia

Procedia PDF Downloads 113
3485 Meaning Interpretation of Persian Noun-Noun Compounds: A Conceptual Blending Approach

Authors: Bahareh Yousefian, Laurel Smith Stvan

Abstract:

Linguistic structures have two facades: form and meaning. These structures could have either literal meaning or figurative meaning (although it could also depend on the context in which that structure appears). The literal meaning is understandable more easily, but for the figurative meaning, a word or concept is understood from a different word or concept. In linguistic structures with a figurative meaning, it’s more difficult to relate their forms to the meanings than structures with literal meaning. In these cases, the relationship between form and figurative meaning could be studied from different perspectives. Various linguists have been curious about what happens in someone’s mind to understand figurative meaning through the forms; they have used different perspectives and theories to explain this process. It has been studied through cognitive linguistics as well, in which mind and mental activities are really important. In this viewpoint, meaning (in other words, conceptualization) is considered a mental process. In this descriptive-analytic study, 20 Persian compound nouns with figurative meanings have been collected from the Persian-language Moeen Encyclopedic Dictionary and other sources. Examples include [“Sofreh Xaneh”] (traditional restaurant) and [“Dast Yar”] (Assistant). These were studied in a cognitive semantics framework using “Conceptual Blending Theory” which hasn’t been tested on Persian compound nouns before. It was noted that “Conceptual Blending Theory” could lead to the process of understanding the figurative meanings of Persian compound nouns. Many cognitive linguists believe that “Conceptual Blending” is not only a linguistic theory but it’s also a basic human cognitive ability that plays important roles in thought, imagination, and even everyday life as well (though unconsciously). The ability to use mental spaces and conceptual blending (which is exclusive to humankind) is such a basic but unconscious ability that we are unaware of its existence and importance. What differentiates Conceptual Blending Theory from other ways of understanding figurative meaning, are arising new semantic aspects (emergent structure) that lead to a more comprehensive and precise meaning. In this study, it was found that Conceptual Blending Theory could explain reaching the figurative meanings of Persian compound nouns from their forms, such as [talkative for compound word of “Bolbol + Zabani” (nightingale + tongue)] and [wage for compound word of “Dast + Ranj” (hand + suffering)].

Keywords: cognitive linguistics, conceptual blending, figurative meaning, Persian compound nouns

Procedia PDF Downloads 77
3484 Inhibitory Effect of Potential Bacillus Probiotic Strains against Pathogenic Bacteria and Yeast Isolated from Oral Cavity

Authors: Fdhila Walid, Bayar Sihem, Khouidi Bochra, Maâtouk Fethi, Ben Amor Feten, Hajer Hentati, Mahdhi Abdelkarim

Abstract:

The presence of resistant bacteria in the oral cavity can be the major cause of dental antibiotic prophylaxis failure. Multidrug efflux has been described for many organisms, including bacteria and fungi as part of their drugs resistance strategy. The potential use of probiotic bacteria can be considered as a new alternative in the prevention or cure of oral cavity diseases. In this study, different Bacillus strains isolated from the environment were isolated and characterized using biochemical and molecular procedures. The inhibitory activity against different pathogenic bacteria and yeast strains was tested using diffusion agar assay method. Our data revealed that the tested strains have an antimicrobial effect against the pathogenic strains such as Streptococcus mutants. The inhibitory effect was variable depending from the probiotic and pathogenic strains. The obtained result demonstrated that Bacillus can be used as a potential candidates probiotic and help in the prevention and treatment of oral infections, including dental caries, periodontal disease and halitosis. Our data, partly encourage the use of probiotic strains because they do not produce acid which can contribute to faster installation decay and these are spore-forming bacteria that can withstand the stress of the oral cavity (acids, alkalis, and salty foods).

Keywords: probiotic, pathogenic bacteria, yeast, oral cavity

Procedia PDF Downloads 378
3483 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Diseases

Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang

Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level, as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.

Keywords: Alzheimer’s disease, speech emotion recognition, longitudinal biomarker, machine learning

Procedia PDF Downloads 113
3482 Preparation and Evaluation of Herbal Extracts for Washing of Vegetables and Fruits

Authors: Pareshkumar Umedbhai Patel

Abstract:

Variety of microbes were isolated from surface of fruit and vegetables to get idea about normal flora of their surface. The process of isolation of microbes involved use of sterilized cotton swabs to wipe the surface of the samples. For isolation of Bacteria, yeast and fungi microbiological media used were nutrient agar medium, GYE agar medium and MRBA agar medium respectively. The microscopical and macroscopical characteristics of all the isolates were studied. Different plants with known antimicrobial activity were selected for obtaining samples for extraction e.g. Ficus (Ficus religosa) stem, Amla (Phyllanthus emblica) fruit, Tulsi (Ocimum tenuiflorum) leaves and Lemon grass (Cymbopogon citratus) oil. Antimicrobial activity of these samples was tested initially against known bacteria followed by study against microbes isolated from surface of vegetables and fruits. During the studies carried out throughout the work, lemongrass oil and Amla extract were found superior. Lemongrass oil and Amla extract respectively inhibited growth of 65% and 42% microbes isolated from fruit and vegetable surfaces. Rest two studied plant extracts showed only 11% of inhibition against the studied isolates. The results of isolate inhibition show the antibacterial effect of lemongrass oil better than the rest of the studied plant extracts.

Keywords: herbal extracts, vegetables, fruits, antimicrobial activity

Procedia PDF Downloads 166
3481 Locomotion, Object Exploration, Social Communicative Skills, and Improve in Language Abilities

Authors: Wanqing He

Abstract:

The current study explores aspects of exploratory behaviors and social capacities in urban Chinese infants to examine whether these factors mediate the link between infant walking and receptive and productive vocabularies. The linkage between the onset of walking and language attainment proves solid, but little is known about the factors that drive such link. This study examined whether joint attention, gesture use, and object activities mediate the association between locomotion and language development. Results showed that both the frequency (p = .05) and duration (p = .03) of carrying an object are strong mediators that afford opportunities for word comprehension. Also, accessing distal objects may be beneficial to infants’ language expression. Further studies on why object carrying may account for word comprehension and why infants with autism could not benefit from walking onset in terms of language development may yield valuable clinical implications.

Keywords: exploratory behaviors, infancy, language acquisition, motor development, social communicative skills

Procedia PDF Downloads 121
3480 Selection of Endophytcs Fungi Isolated from Date Palm, Halotolerants and Productors of Secondary Metabolite

Authors: Fadila Mohamed Mahmoud., Derkaoui I., Krimi Z.

Abstract:

Date palm is a plant which presents a very good adaptation to the difficult conditions of the environment in particular to the drought and saline stress even at high temperatures. This adaptation is related on the biology of the plant and to the presence of a microflora endophyte which live inside its tissues. Fifteen endophytics fungi isolated from date palm were tested in vitro in the presence of various NaCl concentrations to select halotolerantes isolates. These same endophytes were tested for their colonizing capacity by the description of the production of secondary metabolites more particularly the enzymes (pectinases, proteases, and phosphorylases), and the production of antibiotics and growth hormones. Significant difference was observed between the isolates with respect to the tests carried out.

Keywords: Date palm, Halotolerantes, endophyte, Secondary metabolites.

Procedia PDF Downloads 519
3479 Phylogenetic Analyses of Newcastle Disease Virus Isolated from Unvaccinated Chicken Flocks in Kyrgyzstan from 2015 to 2016

Authors: Giang Tran Thi Huong, Hieu Dong Van, Tung Dao Duy, Saadanov Iskender, Isakeev Mairambek, Tsutomu Omatsu, Yukie Katayama, Tetsuya Mizutani, Yuki Ozeki, Yohei Takeda, Haruko Ogawa, Kunitoshi Imai

Abstract:

Newcastle disease virus (NDV) is a contagious viral disease of the poultry industry and other birds throughout the world. At present, very little is known about molecular epidemiological data regarding the causes of ND outbreak in commercial poultry farms in Kyrgyzstan. In the current study, the NDV isolated from the one out of three samples from the unvaccinated flock was confirmed as NDV. Phylogenetic analysis indicated that this NDV strain is clustered in the Class II subgenotype VIId, and closely related to the Chinese NDV isolate. Phylogenetic analyses revealed that the isolated NDV strain has an origin different from the 4 NDV strains previously identified in Kyrgyzstan. According to the mean death time (MDT: 61.1 h) and a multibasic amino acid (aa) sequence at the F0 proteolytic cleavage site (¹¹²R-R-Q-K-R-F¹¹⁷), the NDV isolate was determined as mesogenic strain. Several mutations in the neutralizing epitopes (notably, ³⁴⁷E→K) and the global head were observed in the hemagglutinin-neuraminidase (HN) protein of the current isolate. The present study represents the molecular characterization of the coding gene region of NDV in Kyrgyzstan. Additionally, further study will be investigated on the antigenic characterization using monoclonal antibody.

Keywords: Kyrgyzstan, Newcastle disease, genotype, genome characterization

Procedia PDF Downloads 142
3478 Neologisms and Word-Formation Processes in Board Game Rulebook Corpus: Preliminary Results

Authors: Athanasios Karasimos, Vasiliki Makri

Abstract:

This research focuses on the design and development of the first text Corpus based on Board Game Rulebooks (BGRC) with direct application on the morphological analysis of neologisms and tendencies in word-formation processes. Corpus linguistics is a dynamic field that examines language through the lens of vast collections of texts. These corpora consist of diverse written and spoken materials, ranging from literature and newspapers to transcripts of everyday conversations. By morphologically analyzing these extensive datasets, morphologists can gain valuable insights into how language functions and evolves, as these extensive datasets can reflect the byproducts of inflection, derivation, blending, clipping, compounding, and neology. This entails scrutinizing how words are created, modified, and combined to convey meaning in a corpus of challenging, creative, and straightforward texts that include rules, examples, tutorials, and tips. Board games teach players how to strategize, consider alternatives, and think flexibly, which are critical elements in language learning. Their rulebooks reflect not only their weight (complexity) but also the language properties of each genre and subgenre of these games. Board games are a captivating realm where strategy, competition, and creativity converge. Beyond the excitement of gameplay, board games also spark the art of word creation. Word games, like Scrabble, Codenames, Bananagrams, Wordcraft, Alice in the Wordland, Once uUpona Time, challenge players to construct words from a pool of letters, thus encouraging linguistic ingenuity and vocabulary expansion. These games foster a love for language, motivating players to unearth obscure words and devise clever combinations. On the other hand, the designers and creators produce rulebooks, where they include their joy of discovering the hidden potential of language, igniting the imagination, and playing with the beauty of words, making these games a delightful fusion of linguistic exploration and leisurely amusement. In this research, more than 150 rulebooks in English from all types of modern board games, either language-independent or language-dependent, are used to create the BGRC. A representative sample of each genre (family, party, worker placement, deckbuilding, dice, and chance games, strategy, eurogames, thematic, role-playing, among others) was selected based on the score from BoardGameGeek, the size of the texts and the level of complexity (weight) of the game. A morphological model with morphological networks, multi-word expressions, and word-creation mechanics based on the complexity of the textual structure, difficulty, and board game category will be presented. In enabling the identification of patterns, trends, and variations in word formation and other morphological processes, this research aspires to make avail of this creative yet strict text genre so as to (a) give invaluable insight into morphological creativity and innovation that (re)shape the lexicon of the English language and (b) test morphological theories. Overall, it is shown that corpus linguistics empowers us to explore the intricate tapestry of language, and morphology in particular, revealing its richness, flexibility, and adaptability in the ever-evolving landscape of human expression.

Keywords: board game rulebooks, corpus design, morphological innovations, neologisms, word-formation processes

Procedia PDF Downloads 97
3477 English Learning Speech Assistant Speak Application in Artificial Intelligence

Authors: Albatool Al Abdulwahid, Bayan Shakally, Mariam Mohamed, Wed Almokri

Abstract:

Artificial intelligence has infiltrated every part of our life and every field we can think of. With technical developments, artificial intelligence applications are becoming more prevalent. We chose ELSA speak because it is a magnificent example of Artificial intelligent applications, ELSA speak is a smartphone application that is free to download on both IOS and Android smartphones. ELSA speak utilizes artificial intelligence to help non-native English speakers pronounce words and phrases similar to a native speaker, as well as enhance their English skills. It employs speech-recognition technology that aids the application to excel the pronunciation of its users. This remarkable feature distinguishes ELSA from other voice recognition algorithms and increase the efficiency of the application. This study focused on evaluating ELSA speak application, by testing the degree of effectiveness based on survey questions. The results of the questionnaire were variable. The generality of the participants strongly agreed that ELSA has helped them enhance their pronunciation skills. However, a few participants were unconfident about the application’s ability to assist them in their learning journey.

Keywords: ELSA speak application, artificial intelligence, speech-recognition technology, language learning, english pronunciation

Procedia PDF Downloads 106
3476 Isolation, Identification and Characterization of 1,2-Dichlorobenzene Degrading Bacteria from Consortium

Authors: Ge Cui, Mei Fang Chien, Chihiro Inoue

Abstract:

In this research, enrichment culture using an inorganic liquid medium collected soil contaminated with 1,2-dichlorobenzene (1,2-DCB) in Sendai, Japan, was added 1,2-DCB as the sole carbon source to create a stable consortium. The purpose of this research is to analysis dominant microorganisms in the stable consortium and enzyme system which play a role in the degradation of DCBs. The consortium is now at 30 generation and is still being cultured. By the result of PCR-DGGE and clone library, two bacteria are dominant. The bacteria named sk1 was isolated. 40mg/l of 1,2-DCB and 40mg/l of 1,4-DCB were completely degraded after 32 hours and 50 hours, respectively, but no degradation occurred in the case of 1,3-DCB. By PCR, tecA1 (α-subunit of DCB dioxygenase) gene which plays a role degrading DCB to DCB dihydrodiol, and tecB (dehydrogenase) gene which plays a role degrading DCB dihydrodiol to dichlorocatechol were amplified from strain sk1. Bacteria named sk100 was also isolated. 40mg/l of 1,2-DCB was completely degraded after 32 hours, but no degradation occurred in case of 1,3-DCB and 1,4-DCB. By the result of the catalytic core region of dioxygenase amplified by PCR, gene played a role degrading DCB was analyzed. The results of this study concluded that the isolated strains which have not been reported are able to degrade 1,2-DCB stably, and the characterization of degradation and the genomic analysis which is now in progress is helpful to have an overall view of this microbial degradation.

Keywords: DCB, 1, 2-DCB degrading strains, DCB dioxygenase, enrichment culture

Procedia PDF Downloads 203
3475 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 256
3474 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 348
3473 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot

Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan

Abstract:

With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.

Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots

Procedia PDF Downloads 545
3472 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform

Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez

Abstract:

Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.

Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments

Procedia PDF Downloads 265
3471 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth

Authors: Valentina Zhang

Abstract:

While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.

Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning

Procedia PDF Downloads 147
3470 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 406
3469 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek

Abstract:

Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 26
3468 Chaotic Sequence Noise Reduction and Chaotic Recognition Rate Improvement Based on Improved Local Geometric Projection

Authors: Rubin Dan, Xingcai Wang, Ziyang Chen

Abstract:

A chaotic time series noise reduction method based on the fusion of the local projection method, wavelet transform, and particle swarm algorithm (referred to as the LW-PSO method) is proposed to address the problem of false recognition due to noise in the recognition process of chaotic time series containing noise. The method first uses phase space reconstruction to recover the original dynamical system characteristics and removes the noise subspace by selecting the neighborhood radius; then it uses wavelet transform to remove D1-D3 high-frequency components to maximize the retention of signal information while least-squares optimization is performed by the particle swarm algorithm. The Lorenz system containing 30% Gaussian white noise is simulated and verified, and the phase space, SNR value, RMSE value, and K value of the 0-1 test method before and after noise reduction of the Schreiber method, local projection method, wavelet transform method, and LW-PSO method are compared and analyzed, which proves that the LW-PSO method has a better noise reduction effect compared with the other three common methods. The method is also applied to the classical system to evaluate the noise reduction effect of the four methods and the original system identification effect, which further verifies the superiority of the LW-PSO method. Finally, it is applied to the Chengdu rainfall chaotic sequence for research, and the results prove that the LW-PSO method can effectively reduce the noise and improve the chaos recognition rate.

Keywords: Schreiber noise reduction, wavelet transform, particle swarm optimization, 0-1 test method, chaotic sequence denoising

Procedia PDF Downloads 198
3467 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment

Procedia PDF Downloads 224
3466 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification

Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor

Abstract:

Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.

Keywords: additive parameter, angular softmax, speaker verification, PLDA

Procedia PDF Downloads 102