Search results for: green analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29266

Search results for: green analysis

28786 LEED Empirical Evidence in Northern and Southern Europe

Authors: Svetlana Pushkar

Abstract:

The Leadership in Energy and Environmental Design (LEED) green building rating system is recognized in Europe. LEED uses regional priority (RP) points that are adapted to different environmental conditions. However, the appropriateness of the RP points is still a controversial question. To clarify this issue, two different parts of Europe: northern Europe (Finland and Sweden) and southern Europe (Turkey and Spain) were considered. Similarities and differences in the performances of LEED 2009-new construction (LEED-NC 2009) in these four countries were analyzed. It was found that LEED-NC 2009 performances in northern and southern parts of Europe in terms of Sustainable Sites (SS), Water Efficiency (WE), Materials and Resources (MR), and Indoor Environmental Quality (EQ) were similar, whereas in Energy and Atmosphere (EA), their performances were different. WE and SS revealed high performances (70-100%); EA and EQ demonstrated intermediate performance (40-60%); and MR displayed low performance (20-40%). It should be recommended introducing the following new RP points: for Turkey - water-related points and for all four observed countries - green power-related points for improving the LEED adaptation in Europe.

Keywords: green building, Europe, LEED, leadership in energy and environmental design, regional priority points

Procedia PDF Downloads 252
28785 Bioprophylaxis of Saprolegniasis in Incubated Clarias gariepinus Eggs Using Pyocyanin Extracted from Pseudomonas aeruginosa

Authors: G. A. Oladosu1, P. O. Ogbodogbo, C. I. Makinde1, M. O. Tijani, O. A. Adegboyega

Abstract:

Saprolegniasis is a major pathogenic infection that contributes significantly to poor hatching rates in incubated fish eggs in the Africa catfish hatchery in Nigeria. Malachite green known to be very effective against this condition has been banned because it is carcinogenic. There is, therefore, the need for other effective yet safer methods of controlling saprolegniasis in incubated fish eggs. A total of 50 ml crude, chloroform extract of pyocyanin from which solvent was removed to attain 30 ml, having a concentration of 12.16 ug/ml was produced from 700 ml broth culture of Pseudomonas aeruginosa isolated from a previous study. In-vitro susceptibility of the fungus was investigated by exposing fungal infected eggs to two different time-concentration ratios of pyocyanin; 0.275 ug/ml and 2.75 ug/ml for 1 and 24 hours, and 5 mg/L malachite green as positive control while normal saline was the control. The efficacy of pyocyanin was evaluated using the degree of mycelial growth inhibition in different treatments. Fertilized Clarias gariepinus eggs (between 45 to 64 eggs) were then incubated in 20 ml of medium containing similar concentrations of pyocyanin and malachite green, with freshwater as a control for 24 hours. Hatching rates of the incubated eggs were observed. Three samples of un-hatched eggs were taken from each medium and observed for the presence of fungal pathogens using microscopy. Another batch of three samples of un-hatched eggs from each treatment was also inoculated on Sabourand dextrose agar (SDA) using Egg-Agar Transfer Technique to observe for fungal growth. Mycelial growth was inhibited in fungal infected eggs treated with 2.75 ug/ml for 24 hrs and the 5 mg/L malachite green for both 1 hr and 24 hrs. The mortality rate was 100% in fertilized C. gariepinus eggs exposed for 24 hrs to 0.275 and 2.75 ug/ml of pyocyanin. The mortality rate was least in malachite green followed by the control treatment. Embryonic development was observed to be arrested in the eggs treated with the two pyocyanin concentrations as they maintain their colour but showed no development beyond the gastrula stage, whereas viable eggs in the control and malachite green treatments developed fully into healthy hatchlings. Furthermore, microscopy of the un-hatched eggs revealed the presence of a protozoan ciliate; Colpidium sp, (Tetrahymenidae), as well as a pathogenic fungus; Saprolegnia sp. in the control but not in the malachite green and pyocyanin treatments. Growth of Saprolegnia sp was also observed in SDA culture of un-hatched eggs from the control, but not from pyocyanin and malachite green treated eggs. Pyocyanin treatment of incubated eggs of Clarias gariepinus effectively prevented fungal infection in the eggs, but also arrested the development of the embryo. Therefore, crude chloroform extract of pyocyanin from Pseudomonas aeruginosa cannot be used in the control of Saprolegniasis in incubated Clarias gariepinus eggs at the concentration and duration tested in this study.

Keywords: African catfish, bioprophylaxis, catfish embryo, Saprolegniasis

Procedia PDF Downloads 115
28784 A Study on Green Building Certification Systems within the Context of Anticipatory Systems

Authors: Taner Izzet Acarer, Ece Ceylan Baba

Abstract:

This paper examines green building certification systems and their current processes in comparison with anticipatory systems. Rapid growth of human population and depletion of natural resources are causing irreparable damage to urban and natural environment. In this context, the concept of ‘sustainable architecture’ has emerged in the 20th century so as to establish and maintain standards for livable urban spaces, to improve quality of urban life, and to preserve natural resources for future generations. The construction industry is responsible for a large part of the resource consumption and it is believed that the ‘green building’ designs that emerge in construction industry can reduce environmental problems and contribute to sustainable development around the world. A building must meet a specific set of criteria, set forth through various certification systems, in order to be eligible for designation as a green building. It is disputable whether methods used by green building certification systems today truly serve the purposes of creating a sustainable world. Accordingly, this study will investigate the sets of rating systems used by the most popular green building certification programs, including LEED (Leadership in Energy and Environmental Design), BREEAM (Building Research Establishment's Environmental Assessment Methods), DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen System), in terms of ‘Anticipatory Systems’ in accordance with the certification processes and their goals, while discussing their contribution to architecture. The basic methodology of the study is as follows. Firstly analyzes of brief historical and literature review of green buildings and certificate systems will be stated. Secondly, processes of green building certificate systems will be disputed by the help of anticipatory systems. Anticipatory Systems is a set of systems designed to generate action-oriented projections and to forecast potential side effects using the most current data. Anticipatory Systems pull the future into the present and take action based on future predictions. Although they do not have a claim to see into the future, they can provide foresight data. When shaping the foresight data, Anticipatory Systems use feedforward instead of feedback, enabling them to forecast the system’s behavior and potential side effects by establishing a correlation between the system’s present/past behavior and projected results. This study indicates the goals and current status of LEED, BREEAM and DGNB rating systems that created by using the feedback technique will be examined and presented in a chart. In addition, by examining these rating systems with the anticipatory system that using the feedforward method, the negative influences of the potential side effects on the purpose and current status of the rating systems will be shown in another chart. By comparing the two obtained data, the findings will be shown that rating systems are used for different goals than the purposes they are aiming for. In conclusion, the side effects of green building certification systems will be stated by using anticipatory system models.

Keywords: anticipatory systems, BREEAM, certificate systems, DGNB, green buildings, LEED

Procedia PDF Downloads 220
28783 Establishing Community-Based Pro-Biodiversity Enterprise in the Philippines: A Climate Change Adaptation Strategy towards Agro-Biodiversity Conservation and Local Green Economic Development

Authors: Dina Magnaye

Abstract:

In the Philippines, the performance of the agricultural sector is gauged through crop productivity and returns from farm production rather than the biodiversity in the agricultural ecosystem. Agricultural development hinges on the overall goal of increasing productivity through intensive agriculture, monoculture system, utilization of high yielding varieties in plants, and genetic upgrading in animals. This merits an analysis of the role of agro-biodiversity in terms of increasing productivity, food security and economic returns from community-based pro-biodiversity enterprises. These enterprises conserve biodiversity while equitably sharing production income in the utilization of biological resources. The study aims to determine how community-based pro-biodiversity enterprises become instrumental in local climate change adaptation and agro-biodiversity conservation as input to local green economic development planning. It also involves an assessment of the role of agrobiodiversity in terms of increasing productivity, food security and economic returns from community-based pro-biodiversity enterprises. The perceptions of the local community members both in urban and upland rural areas on community-based pro-biodiversity enterprises were evaluated. These served as a basis in developing a planning modality that can be mainstreamed in the management of local green economic enterprises to benefit the environment, provide local income opportunities, conserve species diversity, and sustain environment-friendly farming systems and practices. The interviews conducted with organic farmer-owners, entrepreneur-organic farmers, and organic farm workers revealed that pro-biodiversity enterprise such as organic farming involved the cyclic use of natural resources within the carrying capacity of a farm; recognition of the value of tradition and culture especially in the upland rural area; enhancement of socio-economic capacity; conservation of ecosystems in harmony with nature; and climate change mitigation. The suggested planning modality for community-based pro-biodiversity enterprises for a green economy encompasses four (4) phases to include community resource or capital asset profiling; stakeholder vision development; strategy formulation for sustained enterprises; and monitoring and evaluation.

Keywords: agro-biodiversity, agro-biodiversity conservation, local green economy, organic farming, pro-biodiversity enterprise

Procedia PDF Downloads 362
28782 The Green Synthesis AgNPs from Basil Leaf Extract

Authors: Wanida Wonsawat

Abstract:

Bioreduction of silver nanoparticles (AgNPs) from silver ions (Ag+) using water extract of Thai basil leaf was successfully carried out. The basil leaf extract provided a reducing agent and stabilizing agent for a synthesis of metal nanoparticles. Silver nanoparticles received from cut and uncut basil leaf was compared. The resulting silver nanoparticles are characterized by UV-Vis spectroscopy. The maximum intensities of silver nanoparticle from cut and uncut basil leaf were 410 and 420, respectively. The techniques involved are simple, eco-friendly and rapid.

Keywords: basil leaves, silver nanoparticles, green synthesis, plant extract

Procedia PDF Downloads 588
28781 Green Electrochemical Nitration of Bioactive Compounds: Biological Evaluation with Molecular Modelling

Authors: Sara Torabi, Sadegh Khazalpour, Mahdi Jamshidi

Abstract:

Nitro aromatic compounds are valuable materials because of their applications in the preparation of chemical intermediates for the synthesis of dyes, plastics, perfumes, energetic materials, and pharmaceuticals. Chemical and electrochemical procedures are reported for nitration of aromatic compounds. Flavonoid derivatives are present in many vegetables and fruits and are constituent of many common pharmaceuticals and dietary supplements. Electrochemistry provides very versatile means for the electrosynthesis, mechanistic and kinetic studies. To the best of our knowledge, and despite the importance of these compounds in numerous scientific fields, there are no reports on the electrochemical nitration of Quercetin derivatives. Herein, we describe a green electrochemical synthesis of a nitro compound. In this work, electrochemical oxidation of Quercetin has been studied in the presence of nitrite ion as a nucleophile in acetate buffer solution (c = 0.2 M, pH = 6.0), by means of cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of produced o-benzoquinones in Michael reaction with nitrite ion (in the divided cell) to form the corresponding nitro diol (EC mechanism). The purity of product and characterization was done using ¹H NMR, ¹³C NMR, FTIR spectroscopic techniques. The presented strategies use a water/ethanol mixture as solvent. Ethanol as cosolvent was also used in the previous studies because of its low cost, safety, easy availability, recyclability, bioproductability, and biodegradability. These strategies represent a one-pot and facile process for the synthesis of nitro compound in high yield and purity under green conditions.

Keywords: electrochemical synthesis, green chemistry, cyclic voltammetry, molecular docking

Procedia PDF Downloads 144
28780 Green Space and Their Possibilities of Enhancing Urban Life in Dhaka City, Bangladesh

Authors: Ummeh Saika, Toshio Kikuchi

Abstract:

Population growth and urbanization is a global phenomenon. As the rapid progress of technology, many cities in the international community are facing serious problems of urbanization. There is no doubt that the urbanization will proceed to have significant impact on the ecology, economy and society at local, regional, and global levels. The inhabitants of Dhaka city suffer from lack of proper urban facilities. The green spaces are needed for different functional and leisure activities of the urban dwellers. Again growing densification, a number of green space are transferred into open space in the Dhaka city. As a result greenery of the city's decreases gradually. Moreover, the existing green space is frequently threatened by encroachment. The role of green space, both at community and city level, is important to improve the natural environment and social ties for future generations. Therefore, it seems that the green space needs to be more effective for public interaction. The main objective of this study is to address the effectiveness of urban green space (Urban Park) of Dhaka City. Two approaches are selected to fulfill the study. Firstly, analyze the long-term spatial changes of urban green space using GIS and secondly, investigate the relationship of urban park network with physical and social environment. The case study site covers eight urban parks of Dhaka metropolitan area of Bangladesh. Two aspects (Physical and Social) are applied for this study. For physical aspect, satellite images and aerial photos of different years are used to find out the changes of urban parks. And for social aspect, methods are used as questionnaire survey, interview, observation, photographs, sketch and previous information of parks to analyze about the social environment of parks. After calculation of all data by descriptive statistics, result is shown by maps using GIS. According to physical size, parks of Dhaka city are classified into four types: Small, Medium, Large and Extra Large parks. The observed result showed that the physical and social environment of urban parks varies with their size. In small size parks physical environment is moderate by newly tree plantation and area expansion. However, in medium size parks physical environment are poor, example- tree decrease, exposed soil increase. On the other hand, physical environment of large size and extra large size parks are in good condition, because of plenty of vegetation and well management. Again based on social environment, in small size parks people mainly come from surroundings area and mainly used as waiting place. In medium-size parks, people come to attend various occasion from different places. In large size and extra large size parks, people come from every part of the city area for tourism purpose. Urban parks are important source of green space. Its influence both physical and social environment of urban area. Nowadays green space area gradually decreases and transfer into open space. The consequence of this research reveals that changes of urban parks influence both physical and social environment and also impact on urban life.

Keywords: physical environment, social environment, urban life, urban parks

Procedia PDF Downloads 428
28779 Urban Greenery in the Greatest Polish Cities: Analysis of Spatial Concentration

Authors: Elżbieta Antczak

Abstract:

Cities offer important opportunities for economic development and for expanding access to basic services, including health care and education, for large numbers of people. Moreover, green areas (as an integral part of sustainable urban development) present a major opportunity for improving urban environments, quality of lives and livelihoods. This paper examines, using spatial concentration and spatial taxonomic measures, regional diversification of greenery in the cities of Poland. The analysis includes location quotients, Lorenz curve, Locational Gini Index, and the synthetic index of greenery and spatial statistics tools: (1) To verify the occurrence of strong concentration or dispersion of the phenomenon in time and space depending on the variable category, and, (2) To study if the level of greenery depends on the spatial autocorrelation. The data includes the greatest Polish cities, categories of the urban greenery (parks, lawns, street greenery, and green areas on housing estates, cemeteries, and forests) and the time span 2004-2015. According to the obtained estimations, most of cites in Poland are already taking measures to become greener. However, in the country there are still many barriers to well-balanced urban greenery development (e.g. uncontrolled urban sprawl, poor management as well as lack of spatial urban planning systems).

Keywords: greenery, urban areas, regional spatial diversification and concentration, spatial taxonomic measure

Procedia PDF Downloads 286
28778 Green Synthesis of Silver Nanoparticles from Citrus aurantium Aqueous Pollen Extract and Their Antibacterial Activity

Authors: Mohammad Ali Karimi, Hossein Tavallali, Abdolhamid Hatefi-Mehrjardi

Abstract:

Pollen extract of in vitro plants raised of Citrus aurantium as reducer and stabilizer was assessed for the green synthesis of silver nanoparticles (AgNPs). The synthesis of AgNPs was performed at room temperature assisting in solutions by reduction takes place rapidly for 10 min. Surface plasmon resonance (SPR) peaks in UV–Vis spectra indicated the formation of polydispersive AgNPs. Silver ions concentration, pH, temperature and reaction time were optimized in the synthesis of AgNPs. The nanoparticles obtained were characterized by UV-Vis spectrophotometer, transmission electron microscopy (TEM). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. The synthesized AgNPs were mostly spherical in shape with an average size of 15 nm. XRD study shows that the AgNPs are crystalline in nature with face-centered cubic (fcc) geometry. It shows the significant antibacterial efficacy against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by disk diffusion method using Mueller-Hinton Agar.

Keywords: green synthesis, Citrus aurantium, silver nanoparticles, antibacterial activity

Procedia PDF Downloads 287
28777 Riverine Urban Heritage: A Basis for Green Infrastructure

Authors: Ioanna H. Lioliou, Despoina D. Zavraka

Abstract:

The radical reformation that Greek urban space, has undergone over the last century, due to the socio-historical developments, technological development and political–geographic factors, has left its imprint on the urban landscape. While the big cities struggle to regain urban landscape balance, small towns are considered to offer high quality lifescapes, ensuring sustainable development potential. However, their unplanned urbanization process led to the loss of significant areas of nature, lack of essential infrastructure, chaotic built environment, incompatible land uses and urban cohesiveness. Natural environment reference points, such as springs, streams, rivers, forests, suburban greenbelts, and etc.; seems to be detached from urban space, while the public, open and green spaces, unequally distributed in the built environment, they are no longer able to offer a complete experience of nature in the city. This study focuses on Greek mainland, a small town Elassona, and aims to restore spatial coherence between the city’s homonymous river and its urban space surroundings. The existence of a linear aquatic ecosystem, is considered a precious greenway, also referred as blueway, able to initiate natural penetrations and ecosystems empowering. The integration of disconnected natural ecosystems forms the basis of a strategic intervention scheme, where the river becomes the urban integration tool / feature, constituting the main urban corridor and an indispensible part of a wider green network that connects open and green spaces, ensuring the function of all the established networks (transportation, commercial, social) of the town. The proposed intervention, introduces a green network highlighting the old stone bridge at the ‘entrance’ of the river in the town and expanding throughout the town with strategic uses and activities, providing accessibility for all the users. The methodology used, is based on the collection of design tools used in related urban river-design interventions around the world. The reinstallation/reactivation of the balance between natural and urban landscape, besides the environmental benefits, contributes decisively to the illustration/projection of urban green identity and re-enhancement of the quality of lifescape qualities and social interaction.

Keywords: green network, rehabilitation scheme, urban landscape, urban streams

Procedia PDF Downloads 280
28776 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center

Authors: Ira Irawati, Muhammad Rangga Sururi

Abstract:

The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.

Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation

Procedia PDF Downloads 258
28775 Developing a Framework to Aid Sustainable Assessment in Indian Buildings

Authors: P. Amarnath, Albert Thomas

Abstract:

Buildings qualify to be the major consumer of energy and resources thereby urging the designers, architects and policy makers to place a great deal of effort in achieving and implementing sustainable building strategies in construction. Green building rating systems help a great deal in this by measuring the effectiveness of these strategies along with the escalation of building performance in social, environmental and economic perspective, and construct new sustainable buildings. However, for a country like India, enormous population and its rapid rate of growth impose an increasing burden on the country's limited and continuously degrading natural resource base, which also includes the land available for construction. In general, the number of sustainable rated buildings in India is very minimal primarily due to the complexity and obstinate nature of the assessment systems/regulations that restrict the stakeholders and designers in proper implementation and utilization of these rating systems. This paper aims to introduce a data driven and user-friendly framework which cross compares the present prominent green building rating systems such as LEED, BREEAM, and GRIHA and subsequently help the users to rate their proposed building design as per the regulations of these assessment frameworks. This framework is validated using the input data collected from green buildings constructed globally. The proposed system has prospects to encourage the users to test the efficiency of various sustainable construction practices and thereby promote more sustainable buildings in the country.

Keywords: BREEAM, GRIHA, green building rating systems, LEED, sustainable buildings

Procedia PDF Downloads 138
28774 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 54
28773 Sustainable Production of Tin Oxide Nanoparticles: Exploring Synthesis Techniques, Formation Mechanisms, and Versatile Applications

Authors: Yemane Tadesse Gebreslassie, Henok Gidey Gebretnsae

Abstract:

Nanotechnology has emerged as a highly promising field of research with wide-ranging applications across various scientific disciplines. In recent years, tin oxide has garnered significant attention due to its intriguing properties, particularly when synthesized in the nanoscale range. While numerous physical and chemical methods exist for producing tin oxide nanoparticles, these approaches tend to be costly, energy-intensive, and involve the use of toxic chemicals. Given the growing concerns regarding human health and environmental impact, there has been a shift towards developing cost-effective and environmentally friendly processes for tin oxide nanoparticle synthesis. Green synthesis methods utilizing biological entities such as plant extracts, bacteria, and natural biomolecules have shown promise in successfully producing tin oxide nanoparticles. However, scaling up the production to an industrial level using green synthesis approaches remains challenging due to the complexity of biological substrates, which hinders the elucidation of reaction mechanisms and formation processes. Thus, this review aims to provide an overview of the various sources of biological entities and methodologies employed in the green synthesis of tin oxide nanoparticles, as well as their impact on nanoparticle properties. Furthermore, this research delves into the strides made in comprehending the mechanisms behind the formation of nanoparticles as documented in existing literature. It also sheds light on the array of analytical techniques employed to investigate and elucidate the characteristics of these minuscule particles.

Keywords: nanotechnology, tin oxide, green synthesis, formation mechanisms

Procedia PDF Downloads 53
28772 Green Building for Positive Energy Districts in European Cities

Authors: Paola Clerici Maestosi

Abstract:

Positive Energy District (PED) is a rather recent concept whose aim is to contribute to the main objectives of the Energy Union strategy. It is based on an integrated multi-sectoral approach in response to Europe's most complex challenges. PED integrates energy efficiency, renewable energy production, and energy flexibility in an integrated, multi-sectoral approach at the city level. The core idea behind Positive Energy Districts (PEDs) is to establish an urban area that can generate more energy than it consumes. Additionally, it should be flexible enough to adapt to changes in the energy market. This is crucial because a PED's goal is not just to achieve an annual surplus of net energy but also to help reduce the impact on the interconnected centralized energy networks. It achieves this by providing options to increase on-site load matching and self-consumption, employing technologies for short- and long-term energy storage, and offering energy flexibility through smart control. Thus, it seems that PEDs can encompass all types of buildings in the city environment. Given this which is the added value of having green buildings being constitutive part of PEDS? The paper will present a systematic literature review identifying the role of green building in Positive Energy District to provide answer to following questions: (RQ1) the state of the art of PEDs implementation; (RQ2) penetration of green building in Positive Energy District selected case studies. Methodological approach is based on a broad holistic study of bibliographic sources according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) further data will be analysed, mapped and text mining through VOSviewer. Main contribution of research is a cognitive framework on Positive Energy District in Europe and a selection of case studies where green building supported the transition to PED. The inclusion of green buildings within Positive Energy Districts (PEDs) adds significant value for several reasons. Firstly, green buildings are designed and constructed with a focus on environmental sustainability, incorporating energy-efficient technologies, materials, and design principles. As integral components of PEDs, these structures contribute directly to the district's overall ability to generate more energy than it consumes. Secondly, green buildings typically incorporate renewable energy sources, such as solar panels or wind turbines, further boosting the district's capacity for energy generation. This aligns with the PED objective of achieving a surplus of net energy. Moreover, green buildings often feature advanced systems for on-site energy management, load-matching, and self-consumption. This enhances the PED's capability to respond to variations in the energy market, making the district more agile and flexible in optimizing energy use. Additionally, the environmental considerations embedded in green buildings align with the broader sustainability goals of PEDs. By reducing the ecological footprint of individual structures, PEDs with green buildings contribute to minimizing the overall impact on centralized energy networks and promote a more sustainable urban environment. In summary, the incorporation of green buildings within PEDs not only aligns with the district's energy objectives but also enhances environmental sustainability, energy efficiency, and the overall resilience of the urban environment.

Keywords: positive energy district, renewables energy production, energy flexibility, energy efficiency

Procedia PDF Downloads 48
28771 Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls

Authors: Tamar Trop, Michal Roffeh

Abstract:

One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers.

Keywords: green façade, green wall, living wall, willingness to pay

Procedia PDF Downloads 30
28770 Exploration of an Environmentally Friendly Form of City Development Combined with a River: An Example of a Four-Dimensional Analysis Based on the Expansion of the City of Jinan across the Yellow River

Authors: Zhaocheng Shang

Abstract:

In order to study the topic of cities crossing rivers, a Four-Dimensional Analysis Method consisting of timeline, X-axis, Y-axis, and Z-axis is proposed. Policies, plans, and their implications are summarized and researched along with the timeline. The X-axis is the direction which is parallel to the river. The research area was chosen because of its important connection function. It is proposed that more surface water network should be built because of the ecological orientation of the research area. And the analysis of groundwater makes it for sure that the proposal is feasible. After the blue water network is settled, the green landscape network which is surrounded by it could be planned. The direction which is transversal to the river (Y-axis) should run through the transportation axis so that the urban texture could stretch in an ecological way. Therefore, it is suggested that the work of the planning bureau and river bureau should be coordinated. The Z-axis research is on the section view of the river, especially on the Yellow River’s special feature of being a perched river. Based on water control safety demands, river parks could be constructed on the embankment buffer zone, whereas many kinds of ornamental trees could be used to build the buffer zone. City Crossing River is a typical case where we make use of landscaping to build a symbiotic relationship between the urban landscape architecture and the environment. The local environment should be respected in the process of city expansion. The planning order of "Benefit- Flood Control Safety" should be replaced by "Flood Control Safety - Landscape Architecture- People - Benefit".

Keywords: blue-green landscape network, city crossing river, four-dimensional analysis method, planning order

Procedia PDF Downloads 159
28769 Virtualizing Attendance and Reducing Impacts on the Environment with a Mobile Application

Authors: Paulo R. M. Andrade, Adriano B. Albuquerque, Otávio F. Frota, Robson V. Silveira, Fátima A. da Silva

Abstract:

Information technology has been gaining more and more space whether in industry, commerce or even for personal use, but the misuse of it brings harm to the environment and human health as a result. Contribute to the sustainability of the planet is to compensate the environment, all or part of what withdraws it. The green computing also came to propose practical for use in IT in an environmentally correct way in aid of strategic management and communication. This work focuses on showing how a mobile application can help businesses reduce costs and reduced environmental impacts caused by its processes, through a case study of a public company in Brazil.

Keywords: green computing, information technology, e-government, sustainable development, mobile computing

Procedia PDF Downloads 419
28768 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 189
28767 Development and Analysis of Multigeneration System by Using Combined Solar and Geothermal Energy Resources

Authors: Muhammad Umar Khan, Mahesh Kumar, Faraz Neakakhtar

Abstract:

Although industrialization marks to the economy of a country yet it increases the pollution and temperature of the environment. The world is now shifting towards green energy because the utilization of fossil fuels is resulting in global warming. So we need to develop systems that can operate on renewable energy resources and have low heat losses. The combined solar and geothermal multigeneration system can solve this issue. Rather than making rankine cycle purely a solar-driven, heat from solar is used to drive vapour absorption cycle and reheated to generate power using geothermal reservoir. The results are displayed by using Engineering Equation Solver software, where inputs are varied to optimize the energy and exergy efficiencies of the system. The cooling effect is 348.2 KW, while the network output is 23.8 MW and reducing resultant emission of 105553 tons of CO₂ per year. This eco-friendly multigeneration system is capable of eliminating the use of fossil fuels and increasing the geothermal energy efficiency.

Keywords: cooling effect, eco-friendly, green energy, heat loses, multigeneration system, renewable energy, work output

Procedia PDF Downloads 264
28766 The Use of Sustainability Criteria on Infrastructure Design to Encourage Sustainable Engineering Solutions on Infrastructure Projects

Authors: Shian Saroop, Dhiren Allopi

Abstract:

In order to stay competitive and to meet upcoming stricter environmental regulations and customer requirements, designers have a key role in designing civil infrastructure so that it is environmentally sustainable. There is an urgent need for engineers to apply technologies and methods that deliver better and more sustainable performance of civil infrastructure as well as a need to establish a standard of measurement for greener infrastructure, rather than merely use tradition solutions. However, there are no systems in place at the design stage that assesses the environmental impact of design decisions on township infrastructure projects. This paper identifies alternative eco-efficient civil infrastructure design solutions and developed sustainability criteria and a toolkit to analyse the eco efficiency of infrastructure projects. The proposed toolkit is aimed at promoting high-performance, eco-efficient, economical and environmentally friendly design decisions on stormwater, roads, water and sanitation related to township infrastructure projects. These green solutions would bring a whole new class of eco-friendly solutions to current infrastructure problems, while at the same time adding a fresh perspective to the traditional infrastructure design process. A variety of projects were evaluated using the green infrastructure toolkit and their results are compared to each other, to assess the results of using greener infrastructure verses the traditional method of designing infrastructure. The application of ‘green technology’ would ensure a sustainable design of township infrastructure services assisting the design to consider alternative resources, the environmental impacts of design decisions, ecological sensitivity issues, innovation, maintenance and materials, at the design stage of a project.

Keywords: eco-efficiency, green infrastructure, infrastructure design, sustainable development

Procedia PDF Downloads 227
28765 Assess and Improve Building Energy Efficiency– a Case Study on the Office of Research and Graduate Studies at Qatar University

Authors: Mohamed Youssef

Abstract:

The proliferation of energy consumption in the built environment has made energy efficiency and savings strategies a priority objective for energy policies in most countries. Qatar is a clear example, where it has initiated several programs and institutions to mitigate the overuse of electricity consumption and control the energy load of the building by following global standards and spreading awareness campaigns. A Case study on the Office of Research and Graduate Studies at Qatar University has been investigated in this paper. The paper studied the rating load of existing buildings before and after retrofitting by using Carrier’s Hourly Analysis Program (HAP). The performance of the building has increased especially after using the LED light system instead of fluorescent light with a low payback period. GINAN paint and green roof have shown a considerable contribution to the reduction of electrical load in the building. In comparison, the double HR window had the least effect on the reduction of electricity consumption.

Keywords: energy conservation in Qatar, HAP, LED light, GINAN paint, green roof, double HR window

Procedia PDF Downloads 172
28764 Effect of Green Manuring Jantar (Sesbania acculata. L.) on the Growth and Yield of Crops Grown in Wheat-Based Cropping Systems

Authors: Javed Kamal

Abstract:

A proposed field study of wheat-based cropping systems was conducted at Faisalabad (Post-Graduate Research Station). We used 7 treatments and Jantar as a green manuring crop to increase the fertility status of soil; after the vegetative phases of wheat, rice, sorghum, and mungbean, the agronomic parameters of these crops were recorded. Hopefully, all increased with jantar treatment when compared with controls. The benefit: cost ratio and physicochemical characteristics of the soil before and after the crop harvest were also calculated.

Keywords: benifit cost ratio, jantar, sunflower, rice, wheat

Procedia PDF Downloads 402
28763 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar

Abstract:

Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.

Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation

Procedia PDF Downloads 111
28762 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 79
28761 Consumer Behavior and Attitudes of Green Advertising: A Collaborative Study with Three Companies to Educate Consumers

Authors: Mokhlisur Rahman

Abstract:

Consumers' understanding of the products depends on what levels of information the advertisement contains. Consumers' attitudes vary widely depending on factors such as their level of environmental awareness, their perception of the company's motives, and the perceived effectiveness of the advertising campaign. Considering the growing eco-consciousness among consumers and their concern for the environment, strategies for green advertising have become equally significant for companies to attract new consumers. It is important to understand consumers' habits of purchasing, knowledge, and attitudes regarding eco-friendly products depending on promotion because of the limitless options of the products in the market. Additionally, encouraging consumers to buy sustainable products requires a platform that can message the world that being a stakeholder in sustainability is possible if consumers show eco-friendly behavior on a larger scale. Social media platforms provide an excellent atmosphere to promote companies' sustainable efforts to be connected engagingly with their potential consumers. The unique strategies of green advertising use techniques to carry information and rewards for the consumers. This study aims to understand the consumer behavior and effectiveness of green advertising by experimenting in collaboration with three companies in promoting their eco-friendly products using green designs on the products. The experiment uses three sustainable personalized offerings, Nike shoes, H&M t-shirts, and Patagonia school bags. The experiment uses a pretest and posttest design. 300 randomly selected participants take part in this experiment and survey through Facebook, Twitter, and Instagram. Nike, H&M, and Patagonia share the post of the experiment on their social media homepages with a video advertisement for the three products. The consumers participate in a pre-experiment online survey before making a purchase decision to assess their attitudes and behavior toward eco-friendly products. The audio-only feature explains the product's information, like their use of recycled materials, their manufacturing methods, sustainable packaging, and their impact on the environment during the purchase while the consumer watches the product video. After making a purchase, consumers take a post-experiment survey to know their perception and behavior toward eco-friendly products. For the data analysis, descriptive statistical tools mean, standard deviation, and frequencies measure the pre- and post-experiment survey data. The inferential statistical tool paired sample t-test measures the difference in consumers' behavior and attitudes between pre-purchase and post-experiment survey results. This experiment provides consumers ample time to consider many aspects rather than impulses. This research provides valuable insights into how companies can adopt sustainable and eco-friendly products. The result set a target for the companies to achieve a sustainable production goal that ultimately supports companies' profit-making and promotes consumers' well-being. This empowers consumers to make informed choices about the products they purchase and support their companies of interest.

Keywords: green-advertising, sustainability, consumer-behavior, social media

Procedia PDF Downloads 86
28760 An Investigation into the Gaps in Green Building Education and Training Offerings in Nigeria

Authors: Adebayo A. Abimbola, Anifowose O. Joseph, Olanrewaju S. Taiwo

Abstract:

Green building (GB) practices have the potential to save energy, save money, and improve the quality of human habitat. They can also contribute to water conservation, more efficient use of raw materials, and ecosystem health around the globe. The Intergovernmental Panel on Climate Change (IPCC) singled out the building sector as having the most cost-effective opportunities for reducing carbon emissions—in fact, many building-related opportunities are cost-neutral, or even cost-positive, to the building owner. These benefits have made green building practices the fastest-growing trend in the building industry, but they still represent only a fraction of new construction, and the enormous stock of existing buildings has barely been touched at all. To effectively deliver the kind of (GB) that can become a force for positive change at global, regional and local scales, all workforce sectors need new skills that are both technical and interpersonal in nature. A prominent bottleneck is seen to be education and training. This paper investigates the major gaps in current GB education and training offerings in Nigeria. A questionnaire survey was developed to capture the perception of construction professionals and academics in relevant professions regarding the significance of the identified gaps as it affects GB education and training. Based on Likert scale ranking, research result shows that perception of training in specific technical fields and financial benefits and evaluation are identified as the top gaps in GB training and education offerings. The paper concludes with suggestions and actions that can enhance capabilities of the GB workforce in Nigeria.

Keywords: education and training, gaps, green building, workforce

Procedia PDF Downloads 318
28759 The Aspect of the Digital Formation in the Solar Community as One Prototype to Find the Algorithmic Sustainable Conditions in the Global Environment

Authors: Kunihisa Kakumoto

Abstract:

Purpose: The global environmental problem is now raised in the global dimension. The sprawl phenomenon over the natural limitation is to be made a forecast beforehand in an algorithmic way so that the condition of our social life can hopefully be protected under the natural limitation. The sustainable condition in the globe is now to be found to keep the balance between the capacity of nature and the possibility of our social lives. The amount of water on the earth is limited. Therefore, on the reason, sustainable conditions are strongly dependent on the capacity of water. The amount of water can be considered in relation to the area of the green planting because a certain volume of the water can be obtained in the forest, where the green planting can be preserved. We can find the sustainable conditions of the water in relation to the green planting area. The reduction of CO₂ by green planting is also possible. Possible Measure and the Methods: Until now, by the opportunity of many international conferences, the concept of the solar community as one prototype has been introduced by technical papers. The algorithmic trial calculation on the basic concept of the solar community can be taken into consideration. The concept of the solar community is based on the collected data of the solar model house. According to the algorithmic results of the prototype, the simulation work in the globe can be performed as the algorithmic conversion results. This algorithmic study can be simulated by the amount of water, also in relation to the green planting area. Additionally, the submission of CO₂ in the solar community and the reduction of CO₂ by green planting can be calculated. On the base of these calculations in the solar community, the sustainable conditions on the globe can be simulated as the conversion results in an algorithmic way. The digital formation in the solar community can also be taken into consideration by this opportunity. Conclusion: For the finding of sustainable conditions around the globe, the solar community as one prototype has been taken into consideration. The role of the water is very important because the capacity of the water supply is very limited. But, at present, the cycle of the social community is not composed by the point of the natural mechanism. The simulative calculation of this study can be shown by the limitation of the total water supply. According to this process, the total capacity of the water supply and the capable residential number of the population and the areas can be taken into consideration by the algorithmic calculation. For keeping enough water, the green planting areas are very important. The planting area is also very important to keep the balance of CO₂. The simulative calculation can be performed by the relation between the submission and the reduction of CO₂ in the solar community. For the finding of this total balance and the sustainable conditions, the green planting area and the total amount of water can be recognized by the algorithmic simulative calculation. The study for the finding of sustainable conditions can be performed by the simulative calculations on the algorithmic model in the solar community as one prototype. The example of one prototype can be in balance. The activity of the social life must be in the capacity of the natural mechanism. The capable capacity of the natural environment in our world is very limited.

Keywords: the solar community, the sustainable condition, the natural limitation, the algorithmic calculation

Procedia PDF Downloads 110
28758 Construction and Optimization of Green Infrastructure Network in Mountainous Counties Based on Morphological Spatial Pattern Analysis and Minimum Cumulative Resistance Models: A Case Study of Shapingba District, Chongqing

Authors: Yuning Guan

Abstract:

Under the background of rapid urbanization, mountainous counties need to break through mountain barriers for urban expansion due to undulating topography, resulting in ecological problems such as landscape fragmentation and reduced biodiversity. Green infrastructure networks are constructed to alleviate the contradiction between urban expansion and ecological protection, promoting the healthy and sustainable development of urban ecosystems. This study applies the MSPA model, the MCR model and Linkage Mapper Tools to identify eco-sources and eco-corridors in the Shapingba District of Chongqing and combined with landscape connectivity assessment and circuit theory to delineate the importance levels to extract ecological pinch point areas on the corridors. The results show that: (1) 20 ecological sources are identified, with a total area of 126.47 km², accounting for 31.88% of the study area, and showing a pattern of ‘one core, three corridors, multi-point distribution’. (2) 37 ecological corridors are formed in the area, with a total length of 62.52km, with a ‘more in the west, less in the east’ pattern. (3) 42 ecological pinch points are extracted, accounting for 25.85% of the length of the corridors, which are mainly distributed in the eastern new area. Accordingly, this study proposes optimization strategies for sub-area protection of ecological sources, grade-level construction of ecological corridors, and precise restoration of ecological pinch points.

Keywords: green infrastructure network, morphological spatial pattern, minimal cumulative resistance, mountainous counties, circuit theory, shapingba district

Procedia PDF Downloads 43
28757 Mediating Role of 'Investment Recovery' and 'Competitiveness' on the Impact of Green Supply Chain Management Practices over Firm Performance: An Empirical Study Based on Textile Industry of Pakistan

Authors: Mehwish Jawaad

Abstract:

Purpose: The concept of GrSCM (Green Supply Chain Management) in the academic and research field is still thought to be in the development stage especially in Asian Emerging Economies. The purpose of this paper is to contribute significantly to the first wave of empirical investigation on GrSCM Practices and Firm Performance measures in Pakistan. The aim of this research is to develop a more holistic approach towards investigating the impact of Green Supply Chain Management Practices (Ecodesign, Internal Environmental Management systems, Green Distribution, Green Purchasing and Cooperation with Customers) on multiple dimensions of Firm Performance Measures (Economic Performance, Environmental Performance and Operational Performance) with a mediating role of Investment Recovery and Competitiveness. This paper also serves as an initiative to identify if the relationship between Investment Recovery and Firm Performance Measures is mediated by Competitiveness. Design/ Methodology/Approach: This study is based on survey Data collected from 272, ISO (14001) Certified Textile Firms Based in Lahore, Faisalabad, and Karachi which are involved in Spinning, Dyeing, Printing or Bleaching. A Theoretical model was developed incorporating the constructs representing Green Activities and Firm Performance Measures of a firm. The data was analyzed using Partial Least Square Structural Equation Modeling. Senior and Mid-level managers provided the data reflecting the degree to which their organizations deal with both internal and external stakeholders to improve the environmental sustainability of their supply chain. Findings: Of the 36 proposed Hypothesis, 20 are considered valid and significant. The statistics result reveal that GrSCM practices positively impact Environmental Performance followed by Economic and Operational Performance. Investment Recovery acts as a strong mediator between Intra organizational Green activities and performance outcomes. The relationship of Reverse Logistics influencing outcomes is significantly mediated by Competitiveness. The pressure originating from customers exert significant positive influence on the firm to adopt Green Practices consequently leading to higher outcomes. Research Contribution/Originality: Underpinning the Resource dependence theory and as a first wave of investigating the impact of Green Supply chain on performance outcomes in Pakistan, this study intends to make a prominent mark in the field of research. Investment and Competitiveness together are tested as a mediator for the first time in this arena. Managerial implications: Practitioner is provided with a framework for assessing the synergistic impact of GrSCM practices on performance. Upgradation of Accreditations and Audit Programs on regular basis are the need of the hour. Making the processes leaner with the sale of excess inventories and scrap helps the firm to work more efficiently and productively.

Keywords: economic performance, environmental performance, green supply chain management practices, operational performance, sustainability, a textile sector of Pakistan

Procedia PDF Downloads 224