Search results for: angiotensin converting enzyme inhibition
1597 Antimicrobial Action and Its Underlying Mechanism by Methanolic Seed Extract of Syzygium cumini on Bacillus subtilis
Authors: Alok Kumar Yadav, Saurabh Saraswat, Preeti Sirohi, Manjoo Rani, Sameer Srivastava, Manish Pratap Singh, Nand K. Singh
Abstract:
The development of antibiotic resistance in bacteria is increasing at an alarming rate, and this is considered as one of the most serious threats in the history of medicine, and an alternative solution should be derived so as to tackle this problem. In many countries, people use the medicinal plants for the treatment of various diseases as these are cheaper, easily available and least toxic. Syzygium cumini is used for the treatment of various kinds of diseases but their mechanism of action is not reported. The antimicrobial activity of Syzygium cumini was tested by the well diffusion assay and zone of inhibition was reported to be 20.06 mm as compared to control with MIC of 0.3 mg/ml. Genomic DNA fragmentation of Bacillus subtilis revealed apoptosis and FE-SEM indicate cell wall cracking on several intervals of time. Propidium iodide staining results showed that few bacterial cells were stained in the control and population of stained cells increase after exposing them for various period of time. Flow cytometric kinetic data analysis on the membrane permeabilization in bacterial cell showed the significant contribution of antimicrobial potential of the seed extract on antimicrobial-induced permeabilization. Two components of Syzygium cumini methanolic seed extract was found to be quite active against four enzymes like PDB ID- 1W5D, 4OX3, 3MFD and 5E2F which have a very crucial role in membrane synthesis in Bacillus subtilis by in silico analysis. Through in silico analysis, lupeol showed highest binding energy for macromolecule 1W5D and 4OX3 whereas stigmasterol showed the highest binding energy for macromolecule 3MFD and 5E2F respectively. It showed that methanolic seed extract of Syzygium cumini can be used for the inhibition of foodborne infections caused by Bacillus subtilis and also as an alternative of prevalent antibiotics.Keywords: antibiotics, Bacillus subtilis, inhibition, Syzygium cumini
Procedia PDF Downloads 1991596 Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating STP Wastewater
Authors: Hammad Khan, Wookeun Bae
Abstract:
The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~600 mg-NH4+-N/L and biodegradable contents of ~0.35 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to 7.5 and further 7.2, removal rate can be easily controlled as 95%, 75%, and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH effect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation
Procedia PDF Downloads 3121595 Biocontrol Potential of Trichoderma sp. against Macrophomina phaseolina
Authors: Jayarama Reddy, Anand S., H., Sundaram, Jeldi Hemachandran
Abstract:
Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore and analyzed for their antagonistic potential against Macrophomina phaseolina. The potential of biocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were hence conducted using chickpea (Cicer arientum c.v. Annigeri) as an experimental plant by the roll paper towel method. Overall the isolates T6, T35, T30, and T25 showed better antagonistic potential in addition to enhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plant pathogens has been implicated as a major cause of biocontrol activity. In order to study the mechanism of biocontrol against Macrophomina phaseolina, ten better performing strains were plated on media, amended with colloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day three as well as day five. Production of endochitinase and exochitinase were assayed in liquid media using colloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinase activity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35 and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.Keywords: biocontrol, bioefficacy, cellulase, chitinase
Procedia PDF Downloads 3771594 Determination of the Phosphate Activated Glutaminase Localization in the Astrocyte Mitochondria Using Kinetic Approach
Authors: N. V. Kazmiruk, Y. R. Nartsissov
Abstract:
Phosphate activated glutaminase (GA, E.C. 3.5.1.2) plays a key role in glutamine/glutamate homeostasis in mammalian brain, catalyzing the hydrolytic deamidation of glutamine to glutamate and ammonium ions. GA is mainly localized in mitochondria, where it has the catalytically active form on the inner mitochondrial membrane (IMM) and the other soluble form, which is supposed to be dormant. At present time, the exact localization of the membrane glutaminase active site remains a controversial and an unresolved issue. The first hypothesis called c-side localization suggests that the catalytic site of GA faces the inter-membrane space and products of the deamidation reaction have immediate access to cytosolic metabolism. According to the alternative m-side localization hypothesis, GA orients to the matrix, making glutamate and ammonium available for the tricarboxylic acid cycle metabolism in mitochondria directly. In our study, we used a multi-compartment kinetic approach to simulate metabolism of glutamate and glutamine in the astrocytic cytosol and mitochondria. We used physiologically important ratio between the concentrations of glutamine inside the matrix of mitochondria [Glnₘᵢₜ] and glutamine in the cytosol [Glncyt] as a marker for precise functioning of the system. Since this ratio directly depends on the mitochondrial glutamine carrier (MGC) flow parameters, key observation was to investigate the dependence of the [Glnmit]/[Glncyt] ratio on the maximal velocity of MGC at different initial concentrations of mitochondrial glutamate. Another important task was to observe the similar dependence at different inhibition constants of the soluble GA. The simulation results confirmed the experimental c-side localization hypothesis, in which the glutaminase active site faces the outer surface of the IMM. Moreover, in the case of such localization of the enzyme, a 3-fold decrease in ammonium production was predicted.Keywords: glutamate metabolism, glutaminase, kinetic approach, mitochondrial membrane, multi-compartment modeling
Procedia PDF Downloads 1201593 Achieving the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating STP Wastewater
Authors: Hammad Khan, Wookeun Bae
Abstract:
The objective of this study was to optimize, achieve and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~600 mg-NH4+-N/L and biodegradable contents of ~0.35 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to7.5 and further 7.2, removal rate can be easily controlled as 95%, 75%, and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.Keywords: stable nitritation, high loading, autrophic denitritation, CSTR
Procedia PDF Downloads 2401592 Establish Co-Culture System of Dehalococcoides and Sulfate-Reducing Bacteria to Generate Ferrous Sulfide for Reversing Sulfide-Inhibited Reductive Dechlorination
Authors: Po-Sheng Kuo, Che-Wei Lu, Ssu-Ching Chen
Abstract:
Chlorinated ethenes (CEs) constitute a predominant contaminant in Taiwan's native polluted sites, particularly in groundwater inundated with sulfate salts that substantially impede remediation efforts. The reduction of sulfate by sulfate-reducing bacteria (SRB) impairs the dechlorination efficiency of Dehalococcoides by generating hydrogen sulfide (H₂S), resulting in incomplete chloride degradation and thereby leading to the failure of bioremediation. In order to elucidate interactions between sulfate reduction and dechlorination, this study aims to establish a co-culture system of Dehalococcoides and SRB, overcoming H₂S inhibition by employing the synthesis of ferrous sulfide (FeS), which is commonly utilized in chemical remediation due to its high reduction potential. Initially, the study demonstrates that the addition of ferrous chloride (FeCl₂) effectively removed H₂S production from SRB and enhanced the degradation of trichloroethylene to ethene. This process overcomes the inhibition caused by H₂S produced by SRB in high sulfate environments. Compared to different concentrations of ferrous dosages for the biogenic generation of FeS, the efficiency was optimized by adding FeCl₂ at an equal ratio to the concentration of sulfate in the environment. This was more effective in removing H₂S and crystal particles under 10 times smaller than those synthesized under excessive FeCl₂ dosages, addressing clogging issues in situ remediation. Finally, utilizing Taiwan's indigenous dechlorinating consortium in a simulated high sulfate-contaminated environment, the biodiversity of microbial species was analyzed to reveal a higher species richness within the FeS group, conducive to ecological stability. This study validates the potential of the co-culture system in generating biogenic FeS under sulfate and CEs co-contamination, removing sulfate-reducing products, and improving CE remediation through integrated chemical and biological remediations.Keywords: biogenic ferrous sulfide, chlorinated ethenes, Dehalococcoides, sulfate-reducing bacteria, sulfide inhibition
Procedia PDF Downloads 511591 Biological Activity of Bilberry Pomace
Authors: Gordana S. Ćetković, Vesna T. Tumbas Šaponjac, Sonja M. Djilas, Jasna M. Čanadanović-Brunet, Sladjana M. Stajčić, Jelena J. Vulić
Abstract:
Bilberry is one of the most important dietary sources of phenolic compounds, including anthocyanins, phenolic acids, flavonol glycosides and flavan-3-ols. These phytochemicals have different biological activities and therefore may improve our health condition. Also, anthocyanins are interesting to the food industry as colourants. In the present study, bilberry pomace, a by-product of juice processing, was used as a potential source of bioactive compounds. The contents of total phenolic acids, flavonoids and anthocyanins in bilberry pomace were determined by HPLC/UV-Vis. The biological activities of bilberry pomace were evaluated by reducing power (RP) and α-glucosidase inhibitory potential (α-GIP), and expressed as RP0.5 value (the effective concentration of bilberry pomace extract assigned at 0.5 value of absorption) and IC50 value (the concentration of bilberry pomace extract necessary to inhibit 50% of α-glucosidase enzyme activity). Total phenolic acids content was 807.12 ± 25.16 mg/100 g pomace, flavonoids 54.36 ± 1.83mg/100 g pomace and anthocyanins 3426.18 ± 112.09 mg/100 g pomace. The RP0.5 value of bilberry pomace was 0.38 ± 0.02 mg/ml, while IC50 value was 1.82 ± 0.11 mg/ml. These results have revealed the potential for valorization of bilberry juice production by-products for further industrial use as a rich source of bioactive compounds and natural colourants (mainly anthocyanins).Keywords: bilberry pomace, phenolics, antioxidant activity, reducing power, α-glucosidase enzyme activity
Procedia PDF Downloads 5991590 Computational Elucidation of β-endo-Acetylglucosaminidase (LytB) Inhibition by Kaempferol, Apigenin, and Quercetin in Streptococcus pneumoniae: Anti-Pneumonia Mechanism
Authors: Singh Divya, Rohan Singh, Anjana Pandey
Abstract:
Reviewers' Comments: The study provides valuable insights into the anti-pneumonia properties of flavonoids against LytB. Authors could further validate findings through in vitro studies and consider exploring combination therapies for enhanced efficacy Response: Thankyou for your valuable comments. This study has been conducted further via experimental validation of the in-silico findings. The study uses Streptococcus pneumoniae D39 strain and examine the anti-pneumonia effect of kaempferol, quercetin and apigenin at various concentrations ranging from 9ug/ml to 200ug/ml. From results, it can be concluded that the kaempferol has shown the highest cytotoxic effect (72.1% of inhibition) against S. pneumoniae at concentration of 40ug/ml compare to apigenin and quercetin. The treatment of S. pneumoniae with concoction of kaempferol, quercetin and apigenin has also been performed, it is noted that conc. of 200ug/ml was most effect in achieving 75% inhibition. As S. pneumoniae D39 is a virulent encapsulated strain, the capsule interferes with the uptake of large size drug formulation. For instance, S. pneumoniae D39 with kaempferol and gold nano urchin (GNU) formulation, but the large size of GNU has resulted in reduced cytotoxic effect of kaempferol (27%). To achieve near 100% cytotoxic effect on the MDR S. pneumoniae D39 strain, the study will target the development of kaempferol-engineered gold nano-urchin’ conjugates, where gold nanocrystal will be of small size (less than or equal to 5nm) and decorated with hydroxyl, sulfhydryl, carboxyl, amine and groups. This approach is expected to enhance the anti-pneumonia effect of kaempferol (polyhydroxylated flavonoid). The study will also examine the interactive study among lung epithelial cell line (A549), kaempferol-engineered gold nano urchins, and S. pneumoniae for exploring the colonization, invasion, and biofilm formation of S. pneumoniae on A549 cells resembling the upper respiratory surface of humans.Keywords: streptococcus pneumoniae, β-endo-Acetylglucosaminidase, apigenin, quercetin kaempferol, molecular dynamic simulation, interactome study and GROMACS
Procedia PDF Downloads 21589 Malate Dehydrogenase Enabled ZnO Nanowires as an Optical Tool for Malic Acid Detection in Horticultural Products
Authors: Rana Tabassum, Ravi Kant, Banshi D. Gupta
Abstract:
Malic acid is an extensively distributed organic acid in numerous horticultural products in minute amounts which significantly contributes towards taste determination by balancing sugar and acid fractions. An enhanced concentration of malic acid is utilized as an indicator of fruit maturity. In addition, malic acid is also a crucial constituent of several cosmetics and pharmaceutical products. An efficient detection and quantification protocol for malic acid is thus highly demanded. In this study, we report a novel detection scheme for malic acid by synergistically collaborating fiber optic surface plasmon resonance (FOSPR) and distinctive features of nanomaterials favorable for sensing applications. The design blueprint involves the deposition of an assembly of malate dehydrogenase enzyme entrapped in ZnO nanowires forming the sensing route over silver coated central unclad core region of an optical fiber. The formation and subsequent decomposition of the enzyme-analyte complex on exposure of the sensing layer to malic acid solutions of diverse concentration results in modification of the dielectric function of the sensing layer which is manifested in terms of shift in resonance wavelength. Optimization of experimental variables such as enzyme concentration entrapped in ZnO nanowires, dip time of probe for deposition of sensing layer and working pH range of the sensing probe have been accomplished through SPR measurements. The optimized sensing probe displays high sensitivity, broad working range and a minimum limit of detection value and has been successfully tested for malic acid determination in real samples of fruit juices. The current work presents a novel perspective towards malic acid determination as the unique and cooperative combination of FOSPR and nanomaterials provides myriad advantages such as enhanced sensitivity, specificity, compactness together with the possibility of online monitoring and remote sensing.Keywords: surface plasmon resonance, optical fiber, sensor, malic acid
Procedia PDF Downloads 3801588 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease
Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette
Abstract:
Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment
Procedia PDF Downloads 3381587 Ultrasensitive Detection and Discrimination of Cancer-Related Single Nucleotide Polymorphisms Using Poly-Enzyme Polymer Bead Amplification
Authors: Lorico D. S. Lapitan Jr., Yihan Xu, Yuan Guo, Dejian Zhou
Abstract:
The ability of ultrasensitive detection of specific genes and discrimination of single nucleotide polymorphisms is important for clinical diagnosis and biomedical research. Herein, we report the development of a new ultrasensitive approach for label-free DNA detection using magnetic nanoparticle (MNP) assisted rapid target capture/separation in combination with signal amplification using poly-enzyme tagged polymer nanobead. The sensor uses an MNP linked capture DNA and a biotin modified signal DNA to sandwich bind the target followed by ligation to provide high single-nucleotide polymorphism discrimination. Only the presence of a perfect match target DNA yields a covalent linkage between the capture and signal DNAs for subsequent conjugation of a neutravidin-modified horseradish peroxidase (HRP) enzyme through the strong biotin-nuetravidin interaction. This converts each captured DNA target into an HRP which can convert millions of copies of a non-fluorescent substrate (amplex red) to a highly fluorescent product (resorufin), for great signal amplification. The use of polymer nanobead each tagged with thousands of copies of HRPs as the signal amplifier greatly improves the signal amplification power, leading to greatly improved sensitivity. We show our biosensing approach can specifically detect an unlabeled DNA target down to 10 aM with a wide dynamic range of 5 orders of magnitude (from 0.001 fM to 100.0 fM). Furthermore, our approach has a high discrimination between a perfectly matched gene and its cancer-related single-base mismatch targets (SNPs): It can positively detect the perfect match DNA target even in the presence of 100 fold excess of co-existing SNPs. This sensing approach also works robustly in clinical relevant media (e.g. 10% human serum) and gives almost the same SNP discrimination ratio as that in clean buffers. Therefore, this ultrasensitive SNP biosensor appears to be well-suited for potential diagnostic applications of genetic diseases.Keywords: DNA detection, polymer beads, signal amplification, single nucleotide polymorphisms
Procedia PDF Downloads 2491586 Inhibition of Escherichia coli and Salmonella spp. By Traditional Phytomedicines That Are Commonly Used to Treat Gastroenteritis in Zimbabwe
Authors: Constance Chivengwa, Tinashe Mandimutsira, Jephris Gere, Charles Magogo, Irene Chikanza, Jerneja Vidmar, Walter Chingwaru
Abstract:
The use of traditional methods in the management of diarrhoea has remained a common practice among the indigenous African tribes of Southern Africa. Despite the widespread use of traditional medicines in Zimbabwe, very little research validating the activities of phytomedicines against diarrhoea, as claimed by the Shona people of Zimbabwe, has been reported. This study sought to determine the efficacies of the plants that are frequently used to treat stomach complaints, namely Dicoma anomala, Cassia abbreviata, Lannea edulis and Peltophorum africanum against Escherichia coli (an indicator of faecal contamination of water, and whose strains such as EHEC (O157), ETEC and EPEC, are responsible for a number of outbreaks of diarrhoea) and Salmonella spp. Ethanol and aqueous extracts from these plants were obtained, evaporated, dried and stored. The dried extracts were reconstituted and diluted 10-fold in nutrient broth (from 100 to 0.1 microgram/mL) and tested for inhibition against the bacteria. L. edulis exhibited the best antimicrobial effect (minimum inhibition concentration = 10 microgram/mL for both extracts and microorganisms). Runners up to L. edulis were C. abbreviata (20 microgram/mL for both microorganisms) and P. africanum (20 and 30 microgram/mL respectively). Interestingly, D. anomala, which is widely considered panacea in African medicinal practices, showed low antimicrobial activity (60 and 100 microgram/mL respectively). The high antimicrobial activity of L. edulis can be explained by its content of flavonoids, tannins, alkylphenols (cardonol 7 and cardonol 13) and dihydroalkylhexenones. The antimicrobial activities of C. abbreviata can be linked to its content of anthraquinones and triterpenoids. P. africanum is known to contain benzenoids, flavanols, flavonols, terpenes, xanthone and coumarins. This study therefore demonstrated that, among the plants that are used against diarrhoea in African traditional medicine, L. edulis is a clear winner against E. coli and Salmonella spp. Activity guided extraction is encouraged to establish the complement of compounds that have antimicrobial activities.Keywords: diarrhoea, Escherichia coli, Salmonella, phytomedicine, MIC, Zimbabwe
Procedia PDF Downloads 3741585 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein
Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel
Abstract:
γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design
Procedia PDF Downloads 2681584 Assessment of cellulase and xylanase Production by chryseobacterium sp. Isolated from Decaying Biomass in Alice, Eastern Cape, South Africa
Authors: A. Nkohla, U. Nwodo, L. V. Mabinya, A. I. Okoh
Abstract:
A potential source for low-cost production of value added products is the utilization of lignocellulosic materials. However, the huddle needing breaching would be the dismantlement of the complex lignocellulosic structure as to free sugar base therein. the current lignocellosic material treatment process is expensive and not eco-friendly hence, the advocacy for enzyme based technique which is both cheap and eco-friendly is highly imperative. Consequently, this study aimed at the screening of cellulose and xylan degrading bacterial strain isolated from decaying sawdust samples. This isolate showed high activity for cellulase and xylanase when grown on carboxymethyl cellulose and birtchwood xylan as the sole carbon source respectively. The 16S rDNA nucleotide sequence of the isolate showed 98% similarity with that of Chryseobacterium taichungense thus, it was identified as a Chryseobacterium sp. Optimum culture conditions for cellulase and xylanase production were medium pH 6, incubation temperature of 25 °C at 50 rpm and medium pH 6, incubation temperature of 25 °C at 150 rpm respectively. The high enzyme activity obtained from this bacterial strain portends it as a good candidate for industrial use in the degradation of complex biomass for value added products.Keywords: lignocellulosic material, chryseobacterium sp., submerged fermentation, cellulase, xylanase
Procedia PDF Downloads 3101583 Interrelationship between Quadriceps' Activation and Inhibition as a Function of Knee-Joint Angle and Muscle Length: A Torque and Electro and Mechanomyographic Investigation
Authors: Ronald Croce, Timothy Quinn, John Miller
Abstract:
Incomplete activation, or activation failure, of motor units during maximal voluntary contractions is often referred to as muscle inhibition (MI), and is defined as the inability of the central nervous system to maximally drive a muscle during a voluntary contraction. The purpose of the present study was to assess the interrelationship amongst peak torque (PT), muscle inhibition (MI; incomplete activation of motor units), and voluntary muscle activation (VMA) of the quadriceps’ muscle group as a function of knee angle and muscle length during maximal voluntary isometric contractions (MVICs). Nine young adult males (mean + standard deviation: age: 21.58 + 1.30 years; height: 180.07 + 4.99 cm; weight: 89.07 + 7.55 kg) performed MVICs in random order with the knee at 15, 55, and 95° flexion. MI was assessed using the interpolated twitch technique and was estimated by the amount of additional knee extensor PT evoked by the superimposed twitch during MVICs. Voluntary muscle activation was estimated by root mean square amplitude electromyography (EMGrms) and mechanomyography (MMGrms) of agonist (vastus medialis [VM], vastus lateralis [VL], and rectus femoris [RF]) and antagonist (biceps femoris ([BF]) muscles during MVICs. Data were analyzed using separate repeated measures analysis of variance. Results revealed a strong dependency of quadriceps’ PT (p < 0.001), MI (p < 0.001) and MA (p < 0.01) on knee joint position: PT was smallest at the most shortened muscle position (15°) and greatest at mid-position (55°); MI and MA were smallest at the most shortened muscle position (15°) and greatest at the most lengthened position (95°), with the RF showing the greatest change in MA. It is hypothesized that the ability to more fully activate the quadriceps at short compared to longer muscle lengths (96% contracted at 15°; 91% at 55°; 90% at 95°) might partly compensate for the unfavorable force-length mechanics at the more extended position and consequent declines in VMA (decreases in EMGrms and MMGrms muscle amplitude during MVICs) and force production (PT = 111-Nm at 15°, 217-NM at 55°, 199-Nm at 95°). Biceps femoris EMG and MMG data showed no statistical differences (p = 0.11 and 0.12, respectively) at joint angles tested, although there were greater values at the extended position. Increased BF muscle amplitude at this position could be a mechanism by which anterior shear and tibial rotation induced by high quadriceps’ activity are countered. Measuring and understanding the degree to which one sees MI and VMA in the QF muscle has particular clinical relevance because different knee-joint disorders, such ligament injuries or osteoarthritis, increase levels of MI observed and markedly reduced the capability of full VMA.Keywords: electromyography, interpolated twitch technique, mechanomyography, muscle activation, muscle inhibition
Procedia PDF Downloads 3471582 Evaluation of Lactobacillus helveticus as an Adjunct Culture for Removal of Bitterness in Iranian White-Brined Cheese
Authors: F. Nejati, Sh. Dokhani
Abstract:
Bitterness is a flavor defect encountered in some cheeses, such as Iranian white brined cheese and is responsible for reducing acceptability of the cheeses. The objective of this study was to investigate the effect of an adjunct culture on removal of bitterness fro, Iranian white-brined cheese. The chemical and proteolysis characteristics of the cheese were also monitored. Bitter cheeses were made using overdose of clotting enzyme with and without L. helveticus CH-1 as an adjunct culture. Cheese made with normal doses of clotting enzyme was used as the control. Adjunct culture was applied in two different forms: attenuated and non-attenuated. Proteolysis was assessed by measuring the amount of water soluble nitrogen, 12% trichloroacetic acid soluble nitrogen and total free amino acids during ripening. A taste panel group also evaluated the cheeses at the end of ripening period. Results of the statistical analysis showed that the adjunct caused considerable proteolysis and the level of water soluble nitrogen and 12% soluble nitrogen fractions were found to be significantly higher in the treatment involving L. helveticus (respectively P < 0.05 and P < 0.01). Regarding to organoleptic evaluations, the non-shocked adjunct culture caused reduction in bitterness and enhancement of flavor in cheese.Keywords: bitterness, Iranian white brined cheese, Lactobacillus helveticus, ripening
Procedia PDF Downloads 3731581 Lactobacillus Helveticus as an Adjunct Culture for Removal of Bitterness in White-Brined Cheese
Authors: Fatemeh Nejati, Shahram Dokhani
Abstract:
Bitterness is a flavor defect encountered in some cheeses, such as Iranian white brined cheese and is responsible for reducing acceptability of the cheeses. The objective of this study was to investigate the effect of an adjunct culture on removal of bitterness fro, Iranian white-brined cheese. The chemical and proteolysis characteristics of the cheese were also monitored. Bitter cheeses were made using overdose of clotting enzyme with and without L. helveticus CH-1 as an adjunct culture. Cheese made with normal doses of clotting enzyme was used as the control. Adjunct culture was applied in two different forms: attenuated and non-attenuated. Proteolysis was assessed by measuring the amount of water soluble nitrogen, 12% trichloroacetic acid soluble nitrogen and total free amino acids during ripening. A taste panel group also evaluated the cheeses at the end of ripening period. Results of the statistical analysis showed that the adjunct caused considerable proteolysis and the level of water soluble nitrogen and 12% soluble nitrogen fractions were found to be significantly higher in the treatment involving L. helveticus (respectively P < 0.05 and P < 0.01). Regarding to organoleptic evaluations, the non-shocked adjunct culture caused reduction in bitterness and enhancement of flavor in cheese.Keywords: Bitterness, Iranian white brined Cheese, Lactobacillus helveticus, Ripening
Procedia PDF Downloads 4621580 Evaluation of the Hepatitis C Virus and Classical and Modern Immunoassays Used Nowadays to Diagnose It in Tirana
Authors: Stela Papa, Klementina Puto, Migena Pllaha
Abstract:
HCV is a hepatotropic RNA virus, transmitted primarily via the blood route, which causes progressive disease such as chronic hepatitis, liver cirrhosis, or hepatocellular carcinoma. HCV nowadays is a global healthcare problem. A variety of immunoassays including old and new technologies are being applied to detect HCV in our country. These methods include Immunochromatography assays (ICA), Fluorescence immunoassay (FIA), Enzyme linked fluorescent assay (ELFA), and Enzyme linked immunosorbent assay (ELISA) to detect HCV antibodies in blood serum, which lately is being slowly replaced by more sensitive methods such as rapid automated analyzer chemiluminescence immunoassay (CLIA). The aim of this study is to estimate HCV infection in carriers and chronic acute patients and to evaluate the use of new diagnostic methods. This study was realized from September 2016 to May 2018. During this study period, 2913 patients were analyzed for the presence of HCV by taking samples from their blood serum. The immunoassays performed were ICA, FIA, ELFA, ELISA, and CLIA assays. Concluding, 82% of patients taken in this study, resulted infected with HCV. Diagnostic methods in clinical laboratories are crucial in the early stages of infection, in the management of chronic hepatitis and in the treatment of patients during their disease.Keywords: CLIA, ELISA, Hepatitis C virus, immunoassay
Procedia PDF Downloads 1531579 Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating Livestock Wastewater
Authors: Hammad Khan, Wookeun Bae
Abstract:
The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~2000 mg-NH4+-N/L and biodegradable contents of ~0.8 g-COD/L. The experiments were performed at 30°C, pH: 8.0 DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i.e. from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to7.5 and further 7.2, removal rate can be easily controlled as 95%, 75% and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA and FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model presents relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation
Procedia PDF Downloads 3271578 Evaluation of Physical Parameters and in-Vitro and in-Vivo Antidiabetic Activity of a Selected Combined Medicinal Plant Extracts Mixture
Authors: S. N. T. I. Sampath, J. M. S. Jayasinghe, A. P. Attanayake, V. Karunaratne
Abstract:
Diabetes mellitus is one of the major public health posers throughout the world today that incidence and associated with increasing mortality. Insufficient regulation of the blood glucose level might be serious effects for health and its necessity to identify new therapeutics that have ability to reduce hyperglycaemic condition in the human body. Even though synthetic antidiabetic drugs are more effective to control diabetes mellitus, there are considerable side effects have been reported. Thus, there is an increasing demand for searching new natural products having high antidiabetic activity with lesser side effects. The purposes of the present study were to evaluate different physical parameters and in-vitro and in-vivo antidiabetic potential of the selected combined medicinal plant extracts mixture composed of leaves of Murraya koenigii, cloves of Allium sativum, fruits of Garcinia queasita and seeds of Piper nigrum. The selected plants parts were mixed and ground together and extracted sequentially into the hexane, ethyl acetate and methanol. Solvents were evaporated and they were further dried by freeze-drying to obtain a fine powder of each extract. Various physical parameters such as moisture, total ash, acid insoluble ash and water soluble ash were evaluated using standard test procedures. In-vitro antidiabetic activity of combined plant extracts mixture was screened using enzyme assays such as α-amylase inhibition assay and α-glucosidase inhibition assay. The acute anti-hyperglycaemic activity was performed using oral glucose tolerance test for the streptozotocin induced diabetic Wistar rats to find out in-vivo antidiabetic activity of combined plant extracts mixture and it was assessed through total oral glucose tolerance curve (TAUC) values. The percentage of moisture content, total ash content, acid insoluble ash content and water soluble ash content were ranged of 7.6-17.8, 8.1-11.78, 0.019-0.134 and 6.2-9.2 respectively for the plant extracts and those values were less than standard values except the methanol extract. The hexane and ethyl acetate extracts exhibited highest α-amylase (IC50 = 25.7 ±0.6; 27.1 ±1.2 ppm) and α-glucosidase (IC50 = 22.4 ±0.1; 33.7 ±0.2 ppm) inhibitory activities than methanol extract (IC50 = 360.2 ±0.6; 179.6 ±0.9 ppm) when compared with the acarbose positive control (IC50 = 5.7 ±0.4; 17.1 ±0.6 ppm). The TAUC values for hexane, ethyl acetate, and methanol extracts and glibenclamide (positive control) treated rats were 8.01 ±0.66; 8.05 ±1.07; 8.40±0.50; 5.87 ±0.93 mmol/L.h respectively, whereas in diabetic control rats the TAUC value was 13.22 ±1.07 mmol/L.h. Administration of plant extracts treated rats significantly suppressed (p<0.05) the rise in plasma blood glucose levels compared to control rats but less significant than glibenclamide. The obtained results from in-vivo and in-vitro antidiabetic study showed that the hexane and ethyl acetate extracts of selected combined plant mixture might be considered as a potential source to isolate natural antidiabetic agents and physical parameters of hexane and ethyl acetate extracts will helpful to develop antidiabetic drug with further standardize properties.Keywords: diabetes mellitus, in-vitro antidiabetic assays, medicinal plants, standardization
Procedia PDF Downloads 1311577 Enhanced Peroxidase Production by Raoultella Species
Authors: Ayodeji O. Falade, Leonard V. Mabinya, Uchechukwu U. Nwodo, Anthony I. Okoh
Abstract:
Given the high-utility of peroxidase, its production in large amount is of utmost importance. Over the years, actinomycetes have been the major peroxidase-producing bacteria. Consequently, other classes of bacteria with peroxidase production potentials are underexplored. This study, therefore, sought to enhance peroxidase production by a Raoultella species, a new ligninolytic proteobacteria strain, by determining the optimum culture conditions (initial pH, incubation temperature and agitation speed) for peroxidase production under submerged fermentation using the classical process of one variable at a time and supplementing the fermentation medium with some lignin model and inorganic nitrogen compounds. Subsequently, the time-course assay was carried out under optimized conditions. Then, some agricultural residues were valorized for peroxidase production under solid state fermentation. Peroxidase production was optimal at initial pH 5, incubation temperature of 35 °C and agitation speed of 150 rpm with guaiacol and ammonium chloride as the best inducer and nitrogen supplement respectively. Peroxidase production by the Raoultella species was optimal at 72 h with specific productivity of 16.48 ± 0.89 U mg⁻¹. A simultaneous production of a non-peroxide dependent extracellular enzyme which suggests probable laccase production was observed with specific productivity of 13.63 ± 0.45 U mg⁻¹ while sawdust gave the best peroxidase yield under solid state fermentation. In conclusion, peroxidase production by the Raoultella species was increased by 3.40-fold.Keywords: enzyme production, ligninolytic bacteria, peroxidase, proteobacteria
Procedia PDF Downloads 2711576 Purification and Characterization of a Novel Extracellular Chitinase from Bacillus licheniformis LHH100
Authors: Laribi-Habchi Hasiba, Bouanane-Darenfed Amel, Drouiche Nadjib, Pausse André, Mameri Nabil
Abstract:
Chitin, a linear 1, 4-linked N-acetyl-d-glucosamine (GlcNAc) polysaccharide is the major structural component of fungal cell walls, insect exoskeletons and shells of crustaceans. It is one of the most abundant naturally occurring polysaccharides and has attracted tremendous attention in the fields of agriculture, pharmacology and biotechnology. Each year, a vast amount of chitin waste is released from the aquatic food industry, where crustaceans (prawn, crab, Shrimp and lobster) constitute one of the main agricultural products. This creates a serious environmental problem. This linear polymer can be hydrolyzed by bases, acids or enzymes such as chitinase. In this context an extracellular chitinase (ChiA-65) was produced and purified from a newly isolated LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75◦C. Among the inhibitors and metals tested p-chloromercuribenzoic acid, N-ethylmaleimide, Hg2+ and Hg + completelyinhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc) n (n = 2–4) was p-NP-(GlcNAc)2> p-NP-(GlcNAc)4> p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc) n. ChiA-65 obeyed Michaelis Menten kinetics the Km and kcat values being 0.385 mg, colloidal chitin/ml and5000 s−1, respectively. ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste.Keywords: Bacillus licheniformis LHH100, characterization, extracellular chitinase, purification
Procedia PDF Downloads 4371575 Essential Oil Composition and Antimicrobial Activity of Rosmarinus officinalis L. Grown in Algeria (Djelfa)
Authors: Samah Lakehal, A. Meliani, F. Z. Benrebiha, C. Chaouia
Abstract:
In the last few years, due to the misuse of antibiotics and an increasing incidence of immunodeficiency-related diseases, the development of microbial drug resistance has become more and more of a pressing problem. Recently, natural products from medicinal plants represent a fertile ground for the development of novel antibacterial agents. Plants essential oils have come more into the focus of phytomedicine. The present study describes antimicrobial activity of Rosmarinus officinalis L. essential oil known medicinally for its powerful antibacterial properties. The essential oil of rosemary obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (Djelfa city of south Algeria) was investigated by GC-MS. The essential oil yield of the study was 1.4 %. The major components were found to be camphor, camphene, 1,8-cineole. The essential oil has been tested for antimicrobial activity against eight bacteria (Gram-negative and Gram-positive), and three fungi including Candida albicans. Inhibition of growth was tested by the agar diffusion method based on the determination of the diameter of inhibition. The oil was found to have significant antibacterial activity and therefore can be used as a natural antimicrobial agent for the treatment of several infectious diseases caused by those germs, which have developed resistance to antibiotics.Keywords: antimicrobial activity, Rosmarinus officinalis L., essential oils, GC/MS, camphor
Procedia PDF Downloads 3911574 Biological Activities of Gentiana brachyphylla Vill. Herba from Turkey
Authors: Hulya Tuba Kiyan, Nilgun Ozturk
Abstract:
Gentiana, a member of Gentianaceae, is represented by approximately 400 species in the world and 12 species in Turkey. Flavonoids, iridoids, triterpenoids and also xanthones are the major compounds of this genus, have been previously reported to have antiinflammatory, antimicrobial, antioxidant, hepatoprotective, hypotensive, hypoglycaemic, DNA repair and immunomodulatory properties. The methanolic extract of the aerial parts of Gentiana brachyphylla Vill. from Turkey was evaluated for its biological activities and its total phenolic content in the present study. According to the antioxidant activity results, G. brachyphylla methanolic extract showed very strong anti-DNA damage antioxidant activity with an inhibition of 81.82%. It showed weak ferric-reducing power with a EC50 value of 0.65 when compared to BHT (EC50 = 0.2). Also, at 0.5 mg/ml concentration, the methanolic extract inhibited ABTS radical cation activity with an inhibition of 20.13% when compared to Trolox (79.01%). Chelating ability of G. brachyphylla was 44.71% whereas EDTA showed 78.87% chelating activity at 0.2 mg/ml. Also G. brachyphylla showed weak 27.21% AChE, 20.23% BChE, strong 67.86% MAO-A and moderate 50.06% MAO-B, weak 19.14% COX-1, 29.11% COX-2 inhibitory activities at 0.25 mg/ml. The total phenolic content of G. brachyphylla was 156.23 ± 2.73 mg gallic acid equivalent/100 g extract.Keywords: antioxidant activity, cholinesterase inhibitory activity, Gentiana brachyphylla Vill., total phenolic content
Procedia PDF Downloads 2011573 Achieving the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating Livestock Wastewater
Authors: Hammad Khan, Wookeun Bae
Abstract:
The objective of this study was to achieve, optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~2000 mg-NH4+-N/L and biodegradable contents of ~0.8 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to 7.5 and further 7.2, removal rate can be easily controlled as 95%, 75% and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation
Procedia PDF Downloads 2741572 Comparative Study in Evaluating the Antioxidation Efficiency for Native Types Antioxidants Extracted from Crude Oil with the Synthesized Class
Authors: Mohammad Jamil Abd AlGhani
Abstract:
The natural native antioxidants N,N-P-methyl phenyl acetone and N,N-phenyl acetone were isolated from the Iraqi crude oil region of Kirkuk by ion exchange and their structure was characterized by spectral and chemical analysis methods. Tetraline was used as a liquid hydrocarbon to detect the efficiency of isolated molecules at elevated temperature (393 K) that it has physicochemical specifications and structure closed to hydrocarbons fractionated from crude oil. The synthesized universal antioxidant 2,6-ditertiaryisobutyl-p-methyl phenol (Unol) with known stochiometric coefficient of inhibition equal to (2) was used as a model for comparative evaluation at the same conditions. Modified chemiluminescence method was used to find the amount of absorbed oxygen and the induction periods in and without the existence of isolated antioxidants molecules. The results of induction periods and quantity of absorbed oxygen during the oxidation process were measured by manometric installation. It was seen that at specific equal concentrations of N,N-phenyl acetone and N, N-P-methyl phenyl acetone in comparison with Unol at 393 K were with (2) and (2.5) times efficient than do Unol. It means that they had the ability to inhibit the formation of new free radicals and prevent the chain reaction to pass from the propagation to the termination step rather than decomposition of formed hydroperoxides.Keywords: antioxidants, chemiluminescence, inhibition, Unol
Procedia PDF Downloads 2001571 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations
Authors: Meziane Belkacem
Abstract:
We aim at converting the original 3D Lorenz-Haken equations, which describe laser dynamics –in terms of self-pulsing and chaos- into 2-second-order differential equations, out of which we extract the so far missing mathematics and corroborations with respect to nonlinear interactions. Leaning on basic trigonometry, we pull out important outcomes; a fundamental result attributes chaos to forbidden periodic solutions inside some precisely delimited region of the control parameter space that governs the bewildering dynamics.Keywords: Physics, optics, nonlinear dynamics, chaos
Procedia PDF Downloads 1561570 Molecular and Serological Diagnosis of Newcastle and Ornithobacterium rhinotracheale Broiler in Chicken in Fars Province, Iran
Authors: Mohammadjavad Mehrabanpour, Maryam Ranjbar Bushehri, Dorsa Mehrabanpour
Abstract:
Respiratory diseases are the most important problems in the country’s poultry industry, particularly when it comes to broiler flocks. Ornithobacterium rhinotracheale (ORT) is a species that causes poor performance in growth rate, egg production, and mortality. This pathogen causes a respiratory infection including pulmonary alveolar inflammation, and pneumonia of birds throughout the world. Newcastle disease (ND) is a highly contagious disease in poultry, and also, it causes considerable losses to the poultry industry. The aim of this study was to evaluate the simultaneous occurrence of ORT and ND and NDV isolation by inoculation in embryonated eggs and confirmed by RT-PCR in broiler chicken flocks in Fars province. In this study, 318 blood and 85 tissue samples (brain, trachea, liver, and cecal tonsils) were collected from 15 broiler chicken farms. Survey serum antibody titers against ORT by using a commercial enzyme-linked immunosorbent assay (ELISA) kit performed. Evaluation of antibody titer against ND virus is performed by hemagglutination inhibition test. Virus isolation with chick embryo eggs 9-11 and RT-PCR method were carried out. A total of 318 serum samples, 135 samples (42.5%) were positive for antibodies to ORT and titer of HI antibodies against NDV in 122 serum samples (38/4%) were 7-10 (log2) and 61 serum samples (19/2%) had occurrence antibody titer against Newcastle virus and ORT. Results of the present study indicated that 20 tissue samples were positive in embryonated egg and in rapid hemagglutination (HA) test. HI test with specific ND positive serum confirmed that 6 of 20 samples. PCR confirmed that all six samples were positive and PCR products of samples indicated 535-base pair fragments in electrophrosis. Due to the great economic importance of these two diseases in the poultry industry, it is necessary to design and implement a comprehensive plan for prevention and control of these diseases.Keywords: ELISA, Ornithobacterium rhinotracheale, newcastle disease, seroprevalence
Procedia PDF Downloads 3091569 Wet Processing of Algae for Protein and Carbohydrate Recovery as Co-Product of Algal Oil
Authors: Sahil Kumar, Rajaram Ghadge, Ramesh Bhujade
Abstract:
Historically, lipid extraction from dried algal biomass remained a focus area of the algal research. It has been realized over the past few years that the lipid-centric approach and conversion technologies that require dry algal biomass have several challenges. Algal culture in cultivation systems contains more than 99% water, with algal concentrations of just a few hundred milligrams per liter ( < 0.05 wt%), which makes harvesting and drying energy intensive. Drying the algal biomass followed by extraction also entails the loss of water and nutrients. In view of these challenges, focus has shifted toward developing processes that will enable oil production from wet algal biomass without drying. Hydrothermal liquefaction (HTL), an emerging technology, is a thermo-chemical conversion process that converts wet biomass to oil and gas using water as a solvent at high temperature and high pressure. HTL processes wet algal slurry containing more than 80% water and significantly reduces the adverse cost impact owing to drying the algal biomass. HTL, being inherently feedstock agnostic, i.e., can convert carbohydrates and proteins also to fuels and recovers water and nutrients. It is most effective with low-lipid (10--30%) algal biomass, and bio-crude yield is two to four times higher than the lipid content in the feedstock. In the early 2010s, research remained focused on increasing the oil yield by optimizing the process conditions of HTL. However, various techno-economic studies showed that simply converting algal biomass to only oil does not make economic sense, particularly in view of low crude oil prices. Making the best use of every component of algae is a key for economic viability of algal to oil process. On investigation of HTL reactions at the molecular level, it has been observed that sequential HTL has the potential to recover value-added products along with biocrude and improve the overall economics of the process. This potential of sequential HTL makes it a most promising technology for converting wet waste to wealth. In this presentation, we will share our experience on the techno-economic and engineering aspects of sequential HTL for conversion of algal biomass to algal bio-oil and co-products.Keywords: algae, biomass, lipid, protein
Procedia PDF Downloads 2141568 Effect of Radioprotectors on DNA Repair Enzyme and Survival of Gamma-Irradiated Cell Division Cycle Mutants of Saccharomyces pombe
Authors: Purva Nemavarkar, Badri Narain Pandey, Jitendra Kumar
Abstract:
Introduction: The objective was to understand the effect of various radioprotectors on DNA damage repair enzyme and survival in gamma-irradiated wild and cdc mutants of S. pombe (fission yeast) cultured under permissive and restrictive conditions. DNA repair process, as influenced by radioprotectors, was measured by activity of DNA polymerase in the cells. The use of single cell gel electrophoresis assay (SCGE) or Comet Assay to follow gamma-irradiation induced DNA damage and effect of radioprotectors was employed. In addition, studying the effect of caffeine at different concentrations on S-phase of cell cycle was also delineated. Materials and Methods: S. pombe cells grown at permissive temperature (250C) and/or restrictive temperature (360C) were followed by gamma-radiation. Percentage survival and activity of DNA Polymerase (yPol II) were determined after post-irradiation incubation (5 h) with radioprotectors such as Caffeine, Curcumin, Disulphiram, and Ellagic acid (the dose depending on individual D 37 values). The gamma-irradiated yeast cells (with and without the radioprotectors) were spheroplasted by enzyme glusulase and subjected to electrophoresis. Radio-resistant cells were obtained by arresting cells in S-phase using transient treatment of hydroxyurea (HU) and studying the effect of caffeine at different concentrations on S-phase of cell cycle. Results: The mutants of S. pombe showed insignificant difference in survival when grown under permissive conditions. However, growth of these cells under restrictive temperature leads to arrest in specific phases of cell cycle in different cdc mutants (cdc10: G1 arrest, cdc22: early S arrest, cdc17: late S arrest, cdc25: G2 arrest). All the cdc mutants showed decrease in survival after gamma radiation when grown at permissive and restrictive temperatures. Inclusion of the radioprotectors at respective concentrations during post irradiation incubation showed increase in survival of cells. Activity of DNA polymerase enzyme (yPol II) was increased significantly in cdc mutant cells exposed to gamma-radiation. Following SCGE, a linear relationship was observed between doses of irradiation and the tail moments of comets. The radioprotection of the fission yeast by radioprotectors can be seen by the reduced tail moments of the yeast comets. Caffeine also exhibited its radio-protective ability in radio-resistant S-phase cells obtained after HU treatment. Conclusions: The radioprotectors offered notable radioprotection in cdc mutants when added during irradiation. The present study showed activation of DNA damage repair enzyme (yPol II) and an increase in survival after treatment of radioprotectors in gamma irradiated wild type and cdc mutants of S. pombe cells. Results presented here showed feasibility of applying SCGE in fission yeast to follow DNA damage and radioprotection at high doses, which are not feasible with other eukaryotes. Inclusion of caffeine at 1mM concentration to S phase cells offered protection and did not decrease the cell viability. It can be proved that at minimal concentration, caffeine offered marked radioprotection.Keywords: radiation protection, cell cycle, fission yeast, comet assay, s-phase, DNA repair, radioprotectors, caffeine, curcumin, SCGE
Procedia PDF Downloads 113