Search results for: industrial/humanitarian organizations
557 Reverse Logistics Network Optimization for E-Commerce
Authors: Albert W. K. Tan
Abstract:
This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives.Keywords: reverse logistics, supply chain management, optimization, e-commerce
Procedia PDF Downloads 38556 Linguistic Insights Improve Semantic Technology in Medical Research and Patient Self-Management Contexts
Authors: William Michael Short
Abstract:
Semantic Web’ technologies such as the Unified Medical Language System Metathesaurus, SNOMED-CT, and MeSH have been touted as transformational for the way users access online medical and health information, enabling both the automated analysis of natural-language data and the integration of heterogeneous healthrelated resources distributed across the Internet through the use of standardized terminologies that capture concepts and relationships between concepts that are expressed differently across datasets. However, the approaches that have so far characterized ‘semantic bioinformatics’ have not yet fulfilled the promise of the Semantic Web for medical and health information retrieval applications. This paper argues within the perspective of cognitive linguistics and cognitive anthropology that four features of human meaning-making must be taken into account before the potential of semantic technologies can be realized for this domain. First, many semantic technologies operate exclusively at the level of the word. However, texts convey meanings in ways beyond lexical semantics. For example, transitivity patterns (distributions of active or passive voice) and modality patterns (configurations of modal constituents like may, might, could, would, should) convey experiential and epistemic meanings that are not captured by single words. Language users also naturally associate stretches of text with discrete meanings, so that whole sentences can be ascribed senses similar to the senses of words (so-called ‘discourse topics’). Second, natural language processing systems tend to operate according to the principle of ‘one token, one tag’. For instance, occurrences of the word sound must be disambiguated for part of speech: in context, is sound a noun or a verb or an adjective? In syntactic analysis, deterministic annotation methods may be acceptable. But because natural language utterances are typically characterized by polyvalency and ambiguities of all kinds (including intentional ambiguities), such methods leave the meanings of texts highly impoverished. Third, ontologies tend to be disconnected from everyday language use and so struggle in cases where single concepts are captured through complex lexicalizations that involve profile shifts or other embodied representations. More problematically, concept graphs tend to capture ‘expert’ technical models rather than ‘folk’ models of knowledge and so may not match users’ common-sense intuitions about the organization of concepts in prototypical structures rather than Aristotelian categories. Fourth, and finally, most ontologies do not recognize the pervasively figurative character of human language. However, since the time of Galen the widespread use of metaphor in the linguistic usage of both medical professionals and lay persons has been recognized. In particular, metaphor is a well-documented linguistic tool for communicating experiences of pain. Because semantic medical knowledge-bases are designed to help capture variations within technical vocabularies – rather than the kinds of conventionalized figurative semantics that practitioners as well as patients actually utilize in clinical description and diagnosis – they fail to capture this dimension of linguistic usage. The failure of semantic technologies in these respects degrades the efficiency and efficacy not only of medical research, where information retrieval inefficiencies can lead to direct financial costs to organizations, but also of care provision, especially in contexts of patients’ self-management of complex medical conditions.Keywords: ambiguity, bioinformatics, language, meaning, metaphor, ontology, semantic web, semantics
Procedia PDF Downloads 132555 The Development of a Precision Irrigation System for Durian
Authors: Chatrabhuti Pipop, Visessri Supattra, Charinpanitkul Tawatchai
Abstract:
Durian is one of the top agricultural products exported by Thailand. There is the massive market potential for the durian industry. While the global demand for Thai durians, especially the demand from China, is very high, Thailand's durian supply is far from satisfying strong demand. Poor agricultural practices result in low yields and poor quality of fruit. Most irrigation systems currently used by the farmers are fixed schedule or fixed rates that ignore actual weather conditions and crop water requirements. In addition, the technologies emerging are too difficult and complex and prices are too high for the farmers to adopt and afford. Many farmers leave the durian trees to grow naturally. With improper irrigation and nutrient management system, durians are vulnerable to a variety of issues, including stunted growth, not flowering, diseases, and death. Technical development or research for durian is much needed to support the wellbeing of the farmers and the economic development of the country. However, there are a limited number of studies or development projects for durian because durian is a perennial crop requiring a long time to obtain the results to report. This study, therefore, aims to address the problem of durian production by developing an autonomous and precision irrigation system. The system is designed and equipped with an industrial programmable controller, a weather station, and a digital flow meter. Daily water requirements are computed based on weather data such as rainfall and evapotranspiration for daily irrigation with variable flow rates. A prediction model is also designed as a part of the system to enhance the irrigation schedule. Before the system was installed in the field, a simulation model was built and tested in a laboratory setting to ensure its accuracy. Water consumption was measured daily before and after the experiment for further analysis. With this system, the crop water requirement is precisely estimated and optimized based on the data from the weather station. Durian will be irrigated at the right amount and at the right time, offering the opportunity for higher yield and higher income to the farmers.Keywords: Durian, precision irrigation, precision agriculture, smart farm
Procedia PDF Downloads 118554 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor
Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud
Abstract:
Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification
Procedia PDF Downloads 130553 Hydrodynamic and Water Quality Modelling to Support Alternative Fuels Maritime Operations Incident Planning & Impact Assessments
Authors: Chow Jeng Hei, Pavel Tkalich, Low Kai Sheng Bryan
Abstract:
Due to the growing demand for sustainability in the maritime industry, there has been a significant increase in focus on alternative fuels such as biofuels, liquefied natural gas (LNG), hydrogen, methanol and ammonia to reduce the carbon footprint of vessels. Alternative fuels offer efficient transportability and significantly reduce carbon dioxide emissions, a critical factor in combating global warming. In an era where the world is determined to tackle climate change, the utilization of methanol is projected to witness a consistent rise in demand, even during downturns in the oil and gas industry. Since 2022, there has been an increase in methanol loading and discharging operations for industrial use in Singapore. These operations were conducted across various storage tank terminals at Jurong Island of varying capacities, which are also used to store alternative fuels for bunkering requirements. The key objective of this research is to support the green shipping industries in the transformation to new fuels such as methanol and ammonia, especially in evolving the capability to inform risk assessment and management of spills. In the unlikely event of accidental spills, a highly reliable forecasting system must be in place to provide mitigation measures and ahead planning. The outcomes of this research would lead to an enhanced metocean prediction capability and, together with advanced sensing, will continuously build up a robust digital twin of the bunkering operating environment. Outputs from the developments will contribute to management strategies for alternative marine fuel spills, including best practices, safety challenges and crisis management. The outputs can also benefit key port operators and the various bunkering, petrochemicals, shipping, protection and indemnity, and emergency response sectors. The forecasted datasets provide a forecast of the expected atmosphere and hydrodynamic conditions prior to bunkering exercises, enabling a better understanding of the metocean conditions ahead and allowing for more refined spill incident management planningKeywords: clean fuels, hydrodynamics, coastal engineering, impact assessments
Procedia PDF Downloads 70552 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications
Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage
Abstract:
Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.Keywords: thermoplastic elastomer, natural rubber, high density polyethylene, roofing material
Procedia PDF Downloads 126551 Macroscopic Support Structure Design for the Tool-Free Support Removal of Laser Powder Bed Fusion-Manufactured Parts Made of AlSi10Mg
Authors: Tobias Schmithuesen, Johannes Henrich Schleifenbaum
Abstract:
The additive manufacturing process laser powder bed fusion offers many advantages over conventional manufacturing processes. For example, almost any complex part can be produced, such as topologically optimized lightweight parts, which would be inconceivable with conventional manufacturing processes. A major challenge posed by the LPBF process, however, is, in most cases, the need to use and remove support structures on critically inclined part surfaces (α < 45 ° regarding substrate plate). These are mainly used for dimensionally accurate mapping of part contours and to reduce distortion by absorbing process-related internal stresses. Furthermore, they serve to transfer the process heat to the substrate plate and are, therefore, indispensable for the LPBF process. A major challenge for the economical use of the LPBF process in industrial process chains is currently still the high manual effort involved in removing support structures. According to the state of the art (SoA), the parts are usually treated by simple hand tools (e.g., pliers, chisels) or by machining (e.g., milling, turning). New automatable approaches are the removal of support structures by means of wet chemical ablation and thermal deburring. According to the state of the art, the support structures are essentially adapted to the LPBF process and not to potential post-processing steps. The aim of this study is the determination of support structure designs that are adapted to the mentioned post-processing approaches. In the first step, the essential boundary conditions for complete removal by means of the respective approaches are identified. Afterward, a representative demonstrator part with various macroscopic support structure designs will be LPBF-manufactured and tested with regard to a complete powder and support removability. Finally, based on the results, potentially suitable support structure designs for the respective approaches will be derived. The investigations are carried out on the example of the aluminum alloy AlSi10Mg.Keywords: additive manufacturing, laser powder bed fusion, laser beam melting, selective laser melting, post processing, tool-free, wet chemical ablation, thermal deburring, aluminum alloy, AlSi10Mg
Procedia PDF Downloads 91550 A Simulated Evaluation of Model Predictive Control
Authors: Ahmed AlNouss, Salim Ahmed
Abstract:
Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)
Procedia PDF Downloads 407549 Macroeconomic Implications of Artificial Intelligence on Unemployment in Europe
Authors: Ahmad Haidar
Abstract:
Modern economic systems are characterized by growing complexity, and addressing their challenges requires innovative approaches. This study examines the implications of artificial intelligence (AI) on unemployment in Europe from a macroeconomic perspective, employing data modeling techniques to understand the relationship between AI integration and labor market dynamics. To understand the AI-unemployment nexus comprehensively, this research considers factors such as sector-specific AI adoption, skill requirements, workforce demographics, and geographical disparities. The study utilizes a panel data model, incorporating data from European countries over the last two decades, to explore the potential short-term and long-term effects of AI implementation on unemployment rates. In addition to investigating the direct impact of AI on unemployment, the study also delves into the potential indirect effects and spillover consequences. It considers how AI-driven productivity improvements and cost reductions might influence economic growth and, in turn, labor market outcomes. Furthermore, it assesses the potential for AI-induced changes in industrial structures to affect job displacement and creation. The research also highlights the importance of policy responses in mitigating potential negative consequences of AI adoption on unemployment. It emphasizes the need for targeted interventions such as skill development programs, labor market regulations, and social safety nets to enable a smooth transition for workers affected by AI-related job displacement. Additionally, the study explores the potential role of AI in informing and transforming policy-making to ensure more effective and agile responses to labor market challenges. In conclusion, this study provides a comprehensive analysis of the macroeconomic implications of AI on unemployment in Europe, highlighting the importance of understanding the nuanced relationships between AI adoption, economic growth, and labor market outcomes. By shedding light on these relationships, the study contributes valuable insights for policymakers, educators, and researchers, enabling them to make informed decisions in navigating the complex landscape of AI-driven economic transformation.Keywords: artificial intelligence, unemployment, macroeconomic analysis, european labor market
Procedia PDF Downloads 77548 EU-SOLARIS: The European Infrastructure for Concentrated Solar Thermal and Solar Chemistry Technologies
Authors: Vassiliki Drosou, Theoni Oikonomou
Abstract:
EU-SOLARIS will form a new legal entity to explore and implement improved rules and procedures for Research Infrastructures (RI) for Concentrated Solar Thermal (CST) and solar chemistry technologies, in order to optimize RI development and R&D coordination. It is expected to be the first of its kind, where industrial needs and private funding will play a significant role. The success of EU-SOLARIS initiative will be the establishment of a new governance body, aided by sustainable financial models. EU-SOLARIS is expected to be an important tool, which will provide the most complete, high quality scientific infrastructure portfolio at international level and to facilitate researchers' access to highly specialised research infrastructure through a single access point. This will be accomplished by linking scientific communities, industry and universities involved in the CST sector. The access to be offered by EU-SOLARIS will guarantee the direct contact of experienced scientists with newcomers and interested students. The set of RIs participating in EU-SOLARIS will offer access to state of the art infrastructures, high-quality services, and will enable users to conduct high quality research. Access to these facilities will contribute to the enhancement of the European research area by: -Opening installations to European and non-European scientists, coming from both academia and industry, thus improving co-operation. -Improving scientific critical mass in domains where knowledge is now widely dispersed. -Generating strong Europe-wide R&D project consortia, increasing the competitiveness of each member alone. EU-SOLARIS will be created in the framework of a European project, co-funded by the 7th Framework Programme of the European Union –whose initiative is to foster, contribute and promote the scientific and technological development of the CST and solar chemistry technologies. Primary objective of EU-SOLARIS is to contribute to the improvement of the state of the art of these technologies with the aim of preserving and reinforcing the European leadership in this field, in which EU-SOLARIS is expected to be a valuable instrument. EU-SOLARIS scope, activities, objectives, current status and vision will be given in the article. Moreover, the rules, processes and criteria regulating the access to the research infrastructures included in EU-SOLARIS will be presented.Keywords: concentrated solar thermal (CST) technology, renewable energy sources, research infrastructures, solar chemistry
Procedia PDF Downloads 238547 A Risk-Based Approach to Construction Management
Authors: Chloe E. Edwards, Yasaman Shahtaheri
Abstract:
Risk management plays a fundamental role in project planning and delivery. The purpose of incorporating risk management into project management practices is to identify and address uncertainties related to key project-related activities. The uncertainties, known as risk events, can relate to project deliverables that are quantifiable and are often measured by impact to project schedule, cost, or environmental impact. Risk management should be incorporated as an iterative practice throughout the planning, execution, and commissioning phases of a project. This paper specifically examines how risk management contributes to effective project planning and delivery through a case study of a transportation project. This case study focused solely on impacts to project schedule regarding three milestones: readiness for delivery, readiness for testing and commissioning, and completion of the facility. The case study followed the ISO 31000: Risk Management – Guidelines. The key factors that are outlined by these guidelines include understanding the scope and context of the project, conducting a risk assessment including identification, analysis, and evaluation, and lastly, risk treatment through mitigation measures. This process requires continuous consultation with subject matter experts and monitoring to iteratively update the risks accordingly. The risk identification process led to a total of fourteen risks related to design, permitting, construction, and commissioning. The analysis involved running 1,000 Monte Carlo simulations through @RISK 8.0 Industrial software to determine potential milestone completion dates based on the project baseline schedule. These dates include the best case, most likely case, and worst case to provide an estimated delay for each milestone. Evaluation of these results provided insight into which risks were the highest contributors to the projected milestone completion dates. Based on the analysis results, the risk management team was able to provide recommendations for mitigation measures to reduce the likelihood of risks occurring. The risk management team also provided recommendations for managing the identified risks and project activities moving forward to meet the most likely or best-case milestone completion dates.Keywords: construction management, monte carlo simulation, project delivery, risk assessment, transportation engineering
Procedia PDF Downloads 107546 Glycerol-Based Bio-Solvents for Organic Synthesis
Authors: Dorith Tavor, Adi Wolfson
Abstract:
In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.Keywords: glycerol, green chemistry, sustainability, catalysis
Procedia PDF Downloads 624545 Effective Doping Engineering of Na₃V₂(PO₄)₂F₃ as a High-Performance Cathode Material for Sodium-Ion Batteries
Authors: Ramon Alberto Paredes Camacho, Li Lu
Abstract:
Sustainable batteries are possible through the development of cheaper and greener alternatives whose most feasible option is epitomized by Sodium-Ion Batteries (SIB). Na₃V₂(PO₄)₂F₃ (NVPF) an important member of the Na-superionic-conductor (NASICON) materials, has recently been in the spotlight due to its interesting electrochemical properties when used as cathode namely, high specific capacity of 128 mA h g-¹, high energy density of 507 W h Kg-¹, increased working potential at which vanadium redox couples can be activated (with an average value around 3.9 V), and small volume variation of less than 2%. These traits grant NVPF an excellent perspective as a cathode material for the next generation of sodium batteries. Unfortunately, because of its low inherent electrical conductivity and a high energy barrier that impedes the mobilization of all the available Na ions per formula, the overall electrochemical performance suffers substantial degradation, finally obstructing its industrial use. Many approaches have been developed to remediate these issues where nanostructural design, carbon coating, and ion doping are the most effective ones. This investigation is focused on enhancing the electrochemical response of NVPF by doping metal ions in the crystal lattice, substituting vanadium atoms. A facile sol-gel process is employed, with citric acid as the chelator and the carbon source. The optimized conditions circumvent fluorine sublimation, ratifying the material’s purity. One of the reasons behind the large ionic improvement is the attraction of extra Na ions into the crystalline structure due to a charge imbalance produced by the valence of the doped ions (+2), which is lower than the one of vanadium (+3). Superior stability (higher than 90% at a current density of 20C) and capacity retention at an extremely high current density of 50C are demonstrated by our doped NVPF. This material continues to retain high capacity values at low and high temperatures. In addition, full cell NVPF//Hard Carbon shows capacity values and high stability at -20 and 60ºC. Our doping strategy proves to significantly increase the ionic and electronic conductivity of NVPF even at extreme conditions, delivering outstanding electrochemical performance and paving the way for advanced high-potential cathode materials.Keywords: sodium-ion batteries, cathode materials, NASICON, Na3V2(PO4)2F3, Ion doping
Procedia PDF Downloads 57544 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 438543 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation
Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga
Abstract:
Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.Keywords: classification, coastline, color, sea-land segmentation
Procedia PDF Downloads 247542 Comparative Analysis of Fused Deposition Modeling and Binding-Jet 3D Printing Technologies
Authors: Mohd Javaid, Shahbaz Khan, Abid Haleem
Abstract:
Purpose: Large numbers of 3D printing technologies are now available for sophisticated applications in different fields. Additive manufacturing has established its dominance in design, development, and customisation of the product. In the era of developing technologies, there is a need to identify the appropriate technology for different application. In order to fulfil this need, two widely used printing technologies such as Fused Deposition Modeling (FDM), and Binding-Jet 3D Printing are compared for effective utilisation in the current scenario for different applications. Methodology: Systematic literature review conducted for both technologies with applications and associated factors enabling for the same. Appropriate MCDM tool is used to compare critical factors for both the technologies. Findings: Both technologies have their potential and capabilities to provide better direction to the industry. Additionally, this paper is helpful to develop a decision support system for the proper selection of technologies according to their continuum of applications and associated research and development capability. The vital issue is raw materials, and research-based material development is key to the sustainability of the developed technologies. FDM is a low-cost technology which provides high strength product as compared to binding jet technology. Researcher and companies can take benefits of this study to achieve the required applications in lesser resources. Limitations: Study has undertaken the comparison with the opinion of experts, which may not always be free from bias, and some own limitations of each technology. Originality: Comparison between these technologies will help to identify best-suited technology as per the customer requirements. It also provides development in this different field as per their extensive capability where these technologies can be successfully adopted. Conclusion: FDM and binding jet technology play an active role in industrial development. These help to assist the customisation and production of personalised parts cost-effectively. So, there is a need to understand how these technologies can provide these developments rapidly. These technologies help in easy changes or in making revised versions of the product, which is not easily possible in the conventional manufacturing system. High machine cost, the requirement of skilled human resources, low surface finish, and mechanical strength of product and material changing option is the main limitation of this technology. However, these limitations vary from technology to technology. In the future, these technologies are to be commercially viable for efficient usage in direct manufacturing of varied parts.Keywords: 3D printing, comparison, fused deposition modeling, FDM, binding jet technology
Procedia PDF Downloads 105541 Synthesis and Prediction of Activity Spectra of Substances-Assisted Evaluation of Heterocyclic Compounds Containing Hydroquinoline Scaffolds
Authors: Gizachew Mulugeta Manahelohe, Khidmet Safarovich Shikhaliev
Abstract:
There has been a significant surge in interest in the synthesis of heterocyclic compounds that contain hydroquinoline fragments. This surge can be attributed to the broad range of pharmaceutical and industrial applications that these compounds possess. The present study provides a comprehensive account of the synthesis of both linear and fused heterocyclic systems that incorporate hydroquinoline fragments. Furthermore, the pharmacological activity spectra of the synthesized compounds were assessed using the in silico method, employing the prediction of activity spectra of substances (PASS) program. Hydroquinoline nitriles 7 and 8 were prepared through the reaction of the corresponding hydroquinolinecarbaldehyde using a hydroxylammonium chloride/pyridine/toluene system and iodine in aqueous ammonia under ambient conditions, respectively. 2-Phenyl-1,3-oxazol-5(4H)-ones 9a,b and 10a,b were synthesized via the condensation of compounds 5a,b and 6a,b with hippuric acid in acetic acid in 30–60% yield. When activated, 7-methylazolopyrimidines 11a and b were reacted with N-alkyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline-6-carbaldehydes 6a and b, and triazolo/pyrazolo[1,5-a]pyrimidin-6-yl carboxylic acids 12a and b were obtained in 60–70% yield. The condensation of 7-hydroxy-1,2,3,4-tetramethyl-1,2-dihydroquinoline 3 h with dimethylacetylenedicarboxylate (DMAD) and ethyl acetoacetate afforded cyclic products 16 and 17, respectively. The condensation reaction of 6-formyl-7-hydroxy-1,2,2,4-tetramethyl-1,2-dihydroquinoline 5e with methylene-active compounds such as ethyl cyanoacetate/dimethyl-3-oxopentanedioate/ethyl acetoacetate/diethylmalonate/Meldrum’s acid afforded 3-substituted coumarins containing dihydroquinolines 19 and 21. Pentacyclic coumarin 22 was obtained via the random condensation of malononitrile with 5e in the presence of a catalytic amount of piperidine in ethanol. The biological activities of the synthesized compounds were assessed using the PASS program. Based on the prognosis, compounds 13a, b, and 14 exhibited a high likelihood of being active as inhibitors of gluconate 2-dehydrogenase, as well as possessing antiallergic, antiasthmatic, and antiarthritic properties, with a probability value (Pa) ranging from 0.849 to 0.870. Furthermore, it was discovered that hydroquinoline carbonitriles 7 and 8 tended to act as effective progesterone antagonists and displayed antiallergic, antiasthmatic, and antiarthritic effects (Pa = 0.276–0.827). Among the hydroquinolines containing coumarin moieties, compounds 17, 19a, and 19c were predicted to be potent progesterone antagonists, with Pa values of 0.710, 0.630, and 0.615, respectively.Keywords: heterocyclic compound, hydroquinoline, Vilsmeier–Haack formulation, quinolone
Procedia PDF Downloads 42540 Flow Sheet Development and Simulation of a Bio-refinery Annexed to Typical South African Sugar Mill
Authors: M. Ali Mandegari, S. Farzad, J. F. Görgens
Abstract:
Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation bio-refinery is defined as a process to use waste fibrous for the production of bio-fuel, chemicals animal food, and electricity. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide and many challenges in front of bio-ethanol production were solved. Bio-refinery annexed to the existing sugar mill for production of bio-ethanol and electricity is proposed to sugar industry and is addressed in this study. Since flow-sheet development is the key element of the bio-ethanol process, in this work, a bio-refinery (bio-ethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behavior of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bio-ethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive bio-refinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bio-ethanol purification was simulated by two distillation columns with side stream and fuel grade bio-ethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates 256.6 kg bio ethanol per ton of feedstock and 31 MW surplus power were attained from bio-refinery while the process consumes 3.5, 3.38, and 0.164 (GJ/ton per ton of feedstock) hot utility, cold utility and electricity respectively. Developed simulation is a threshold of variety analyses and developments for further studies.Keywords: bio-refinery, bagasse, tops, trash, bio-ethanol, electricity
Procedia PDF Downloads 532539 Study on Runoff Allocation Responsibilities of Different Land Uses in a Single Catchment Area
Authors: Chuan-Ming Tung, Jin-Cheng Fu, Chia-En Feng
Abstract:
In recent years, the rapid development of urban land in Taiwan has led to the constant increase of the areas of impervious surface, which has increased the risk of waterlogging during heavy rainfall. Therefore, in recent years, promoting runoff allocation responsibilities has often been used as a means of reducing regional flooding. In this study, the single catchment area covering both urban and rural land as the study area is discussed. Based on Storm Water Management Model, urban and rural land in a single catchment area was explored to develop the runoff allocation responsibilities according to their respective control regulation on land use. The impacts of runoff increment and reduction in sub-catchment area were studied to understand the impact of highly developed urban land on the reduction of flood risk of rural land at the back end. The results showed that the rainfall with 1 hour short delay of 2 years, 5 years, 10 years, and 25 years return period. If the study area was fully developed, the peak discharge at the outlet would increase by 24.46% -22.97% without runoff allocation responsibilities. The front-end urban land would increase runoff from back-end of rural land by 76.19% -46.51%. However, if runoff allocation responsibilities were carried out in the study area, the peak discharge could be reduced by 58.38-63.08%, which could make the front-end to reduce 54.05% -23.81% of the peak flow to the back-end. In addition, the researchers found that if it was seen from the perspective of runoff allocation responsibilities of per unit area, the residential area of urban land would benefit from the relevant laws and regulations of the urban system, which would have a better effect of reducing flood than the residential land in rural land. For rural land, the development scale of residential land was generally small, which made the effect of flood reduction better than that of industrial land. Agricultural land requires a large area of land, resulting in the lowest share of the flow per unit area. From the point of the planners, this study suggests that for the rural land around the city, its responsibility should be assigned to share the runoff. And setting up rain water storage facilities in the same way as urban land, can also take stock of agricultural land resources to increase the ridge of field for flood storage, in order to improve regional disaster reduction capacity and resilience.Keywords: runoff allocation responsibilities, land use, flood mitigation, SWMM
Procedia PDF Downloads 104538 Development of a Rice Fortification Technique Using Vacuum Assisted Rapid Diffusion for Low Cost Encapsulation of Fe and Zn
Authors: R. A. C. H. Seneviratne, M. Gunawardana, R. P. N. P. Rajapakse
Abstract:
To address the micronutrient deficiencies in the Asian region, the World Food Program in its current mandate highlights the requirement of employing efficient fortification of micronutrients in rice, under the program 'Scaling-up Rice Fortification in Asia'. The current industrial methods of rice fortification with micronutrients are not promising due to poor permeation or retention of fortificants. This study was carried out to develop a method to improve fortification of micronutrients in rice by removing the air barriers for diffusing micronutrients through the husk. For the purpose, soaking stage of paddy was coupled with vacuum (- 0.6 bar) for different time periods. Both long and short grain varieties of paddy (BG 352 and BG 358, respectively) initially tested for water uptake during hot soaking (70 °C) under vacuum (28.5 and 26.15%, respectively) were significantly (P < 0.05) higher than that of non-vacuum conditions (25.24 and 25.45% respectively), exhibiting the effectiveness of water diffusion into the rice grains through the cleared pores under negative pressure. To fortify the selected micronutrients (iron and zinc), paddy was vacuum-soaked in Fe2+ or Zn2+ solutions (500 ppm) separately for one hour, and continued soaking for another 3.5 h without vacuum. Significantly (P<0.05) higher amounts of Fe2+ and Zn2+ were observed throughout the soaking period, in both short and long grain varieties of rice compared to rice treated without vacuum. To achieve the recommended limits of World Food Program standards for fortified iron (40-48 mg/kg) and zinc (60-72 mg/kg) in rice, soaking was done with different concentrations of Fe2+ or Zn2+ for varying time periods. For both iron and zinc fortifications, hot soaking (70 °C) in 400 ppm solutions under vacuum (- 0.6 bar) during the first hour followed by 2.5 h under atmospheric pressure exhibited the optimum fortification (Fe2+: 46.59±0.37 ppm and Zn2+: 67.24±1.36 ppm) with a greater significance (P < 0.05) compared to the controls (Fe2+: 38.84±0.62 ppm and Zn2+: 52.55±0.55 ppm). This finding was further confirmed by the XRF images, clearly showing a greater fixation of Fe2+ and Zn2+ in the rice grains under vacuum treatment. Moreover, there were no significant (P>0.05) differences among both Fe2+ and Zn2+ contents in fortified rice even after polishing and washing, confirming their greater retention. A seven point hedonic scale showed that the overall acceptability for both iron and zinc fortified rice were significantly (P < 0.05) higher than the parboiled rice without fortificants. With all the drawbacks eliminated, per kilogram cost will be less than US$ 1 for both iron and zinc fortified rice. The new method of rice fortification studied and developed in this research, can be claimed as the best method in comparison to other rice fortification methods currently deployed.Keywords: fortification, vacuum assisted diffusion, micronutrients, parboiling
Procedia PDF Downloads 252537 Departing beyond the Orthodoxy: An Integrative Review and Future Research Avenues of Human Capital Resources Theory
Authors: Long Zhang, Ian Hampson, Loretta O' Donnell
Abstract:
Practitioners in various industries, especially in the finance industry that conventionally benefit from financial capital and resources, appear to be increasingly aware of the importance of human capital resources (HCR) after the 2008 Global Financial Crisis. Scholars from diverse fields have conducted extensive and fruitful research on HCR within their own disciplines. This review suggests that the mainstream of pure quantitative research alone is insufficient to provide precise or comprehensive understanding of HCR. The complex relationships and interactions in HCR call for more integrative and cross-disciplinary research to more holistically understand complex and intricate HCRs. The complex nature of HCR requires deep qualitative exploration based on in-depth data to capture the everydayness of organizational activities and to register its individuality and variety. Despite previous efforts, a systematic and holistic integration of HCR research among multiple disciplines is lacking. Using a retrospective analysis of articles published in the field of economics, finance and management, including psychology, human resources management (HRM), organizational behaviour (OB), industrial and organizational psychology (I-O psychology), organizational theory, and strategy literatures, this study summaries and compares the major perspectives, theories, and findings on HCR research. A careful examination of the progress of the debates of HCR definitions and measurements in distinct disciplines enables an identification of the limitations and gaps in existing research. It enables an analysis of the interplay of these concepts, as well as that of the related concepts of intellectual capital, social capital, and Chinese guanxi, and how they provide a broader perspective on the HCR-related influences on firms’ competitive advantage. The study also introduces the themes of Environmental, Social and Governance, or ESG based investing, as the burgeoning body of ESG studies illustrates the rising importance of human and non-financial capital in investment process. The ESG literature locates HCR into a broader research context of the value of non-financial capital in explaining firm performance. The study concludes with a discussion of new directions for future research that may help advance our knowledge of HCR.Keywords: human capital resources, social capital, Chinese guanxi, human resources management
Procedia PDF Downloads 359536 Development of Alternative Fuels Technologies: Compressed Natural Gas Home Refueling Station
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
Compressed natural gas (CNG) represents an excellent compromise between the availability of a technology that is proven and relatively easy to use in many areas of the automotive industry and incurred costs. This fuel causes a lower corrosion effect due to the lower content of products causing the potential difference on the walls of the engine system. Natural gas powered vehicles (NGVs) do not emit any substances that can contaminate water or land. The absence of carcinogenic substances in gaseous fuel extends the life of the engine. In the longer term, it contributes positively to waste management as well as waste disposal. Popularization of propulsion systems powered by natural gas CNG positively affects the reduction of heavy duty transport. For these reasons, CNG as a fuel stimulates considerable interest around the world. Over the last few years, technologies related to use of natural gas as an engine fuel have been developed and improved. These solutions have evolved from the prototype phase to the industrial scale implementation. The widespread availability of gaseous fuels has led to the development of a technology that allows the CNG fuel to be refueled directly from the urban gas network to the vehicle tank (ie. HYGEN - CNGHRS). Home refueling installations, although they have been known for many years, are becoming increasingly important in the present day. The major obstacle in the sale of this technology was, until recently, quite high capital expenditure compared to the later benefits. Home refueling systems allow refueling vehicle tank, with full control of fuel costs and refueling time. CNG Home Refueling Stations (such as HYGEN) allow gas value chain to overcome the dogma that there is a lack of refueling infrastructure allowing companies in gas value chain to participate in transportation market. Technology is based on one stage hydraulic compressor (instead of multistage mechanical compressor technology) which provides the possibility to compress low pressure gas from distribution gas network to 200 bar for its further usage as a fuel for NGVs. This boosts revenues and profits of gas companies by expanding its presence in higher margin of energy sector.Keywords: alternative fuels, CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), gas value chain
Procedia PDF Downloads 200535 Antifungal Potential of Higher Basidiomycetes Mushrooms
Authors: Tamar Khardziani, Violeta Berikashvili, Mariam Rusitashvili, Eva Kachlishvili, Vladimir Elisashvili, Mikheil Asatiani
Abstract:
Last years, the search for natural sources of novel and effective antifungal substances became a scientific and technological challenge. In the present research, thirty basidiomycetes isolated from various ecological niches of Georgia and belonging to different taxonomic groups were screened for their antifungal activities against pathogenic fungi such as Aspergillus, Fusarium, and Guignardia bidwellii. Among mushroom tested, several potential producers of antifungal substances have been revealed, such as Schizophyllum commune, Lentinula edodes, Ganoderma abietinum, Fomes fomentarius, Hericium erinaceus, and Trametes versicolor. For mushroom cultivation and expression of antifungal potential, submerged and solid-state fermentations of different plant raw materials were performed and various approaches and strategies have been exploited. Sch. commune appeared as a most promising producer of antifungal compounds. It was established that among different agro-industrial wastes, the presence of mandarin juice production waste in a nutrient medium, causing the significant increase of antifungal activity Sch. commune (growth inhibition: Aspergillus – 59 %, Fusarium – 55 %, G. bidwellii – 78 %, after 3, 2 and 4 days of cultivation, respectively). Besides this, Sch. commune demonstrate similar antifungal activities in the presence of glucose, glycerol, maltose, mannitol, and xylose, and growth inhibition of Fusarium ranged in 41 % - 49 % during 6 days of cultivation. Inhibition of Aspergillus growth inhibition varied in 27 % - 36 %, and inhibition of G. bidwellii was in the range 49 % - 61 %, respectively. Sch. commune under solid-state fermentation of mandarin peels at 13 days of cultivation demonstrates powerful growth inhibition of pathogenic fungi (growth inhibition: Aspergillus – 50 %, Fusarium – 61 %, G. bidwellii – 68 %, after 3, 4, and 4 days of cultivation, respectively) as well as at 20 days old mushroom (growth inhibition: Aspergillus – 41 %, Fusarium – 54 %, G. bidwellii – 66 %, after 3 days of cultivation). It was established that Sch. commune was effective as a producer of antifungal compounds in submerged as well as in solid-state fermentation. Finally, performed study confirms that the higher basidiomycetes possess antifungal potential, which strongly depends on the physiological factors of growth. Acknowledgments: The work was implemented with the financial support of fundamental science project FR-19-3719 by the Shota Rustaveli National Science Foundation of Georgia.Keywords: antifungal potential, higher basidiomycetes, pathogenic fungi, submerged and solid-state fermentation
Procedia PDF Downloads 143534 Influence of Smoking on Fine And Ultrafine Air Pollution Pm in Their Pulmonary Genetic and Epigenetic Toxicity
Authors: Y. Landkocz, C. Lepers, P.J. Martin, B. Fougère, F. Roy Saint-Georges. A. Verdin, F. Cazier, F. Ledoux, D. Courcot, F. Sichel, P. Gosset, P. Shirali, S. Billet
Abstract:
In 2013, the International Agency for Research on Cancer (IARC) classified air pollution and fine particles as carcinogenic to humans. Causal relationships exist between elevated ambient levels of airborne particles and increase of mortality and morbidity including pulmonary diseases, like lung cancer. However, due to a double complexity of both physicochemical Particulate Matter (PM) properties and tumor mechanistic processes, mechanisms of action remain not fully elucidated. Furthermore, because of several common properties between air pollution PM and tobacco smoke, like the same route of exposure and chemical composition, potential mechanisms of synergy could exist. Therefore, smoking could be an aggravating factor of the particles toxicity. In order to identify some mechanisms of action of particles according to their size, two samples of PM were collected: PM0.03 2.5 and PM0.33 2.5 in the urban-industrial area of Dunkerque. The overall cytotoxicity of the fine particles was determined on human bronchial cells (BEAS-2B). Toxicological study focused then on the metabolic activation of the organic compounds coated onto PM and some genetic and epigenetic changes induced on a co-culture model of BEAS-2B and alveolar macrophages isolated from bronchoalveolar lavages performed in smokers and non-smokers. The results showed (i) the contribution of the ultrafine fraction of atmospheric particles to genotoxic (eg. DNA double-strand breaks) and epigenetic mechanisms (eg. promoter methylation) involved in tumor processes, and (ii) the influence of smoking on the cellular response. Three main conclusions can be discussed. First, our results showed the ability of the particles to induce deleterious effects potentially involved in the stages of initiation and promotion of carcinogenesis. The second conclusion is that smoking affects the nature of the induced genotoxic effects. Finally, the in vitro developed cell model, using bronchial epithelial cells and alveolar macrophages can take into account quite realistically, some of the existing cell interactions existing in the lung.Keywords: air pollution, fine and ultrafine particles, genotoxic and epigenetic alterations, smoking
Procedia PDF Downloads 347533 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler
Authors: Ruth Diego, Luis M. Romeo, Antonio Morán
Abstract:
In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas
Procedia PDF Downloads 107532 The Routes of Human Suffering: How Point-Source and Destination-Source Mapping Can Help Victim Services Providers and Law Enforcement Agencies Effectively Combat Human Trafficking
Authors: Benjamin Thomas Greer, Grace Cotulla, Mandy Johnson
Abstract:
Human trafficking is one of the fastest growing international crimes and human rights violations in the world. The United States Department of State (State Department) approximates some 800,000 to 900,000 people are annually trafficked across sovereign borders, with approximately 14,000 to 17,500 of these people coming into the United States. Today’s slavery is conducted by unscrupulous individuals who are often connected to organized criminal enterprises and transnational gangs, extracting huge monetary sums. According to the International Labour Organization (ILO), human traffickers collect approximately $32 billion worldwide annually. Surpassed only by narcotics dealing, trafficking of humans is tied with illegal arms sales as the second largest criminal industry in the world and is the fastest growing field in the 21st century. Perpetrators of this heinous crime abound. They are not limited to single or “sole practitioners” of human trafficking, but rather, often include Transnational Criminal Organizations (TCO), domestic street gangs, labor contractors, and otherwise seemingly ordinary citizens. Monetary gain is being elevated over territorial disputes and street gangs are increasingly operating in a collaborative effort with TCOs to further disguise their criminal activity; to utilizing their vast networks, in an attempt to avoid detection. Traffickers rely on a network of clandestine routes to sell their commodities with impunity. As law enforcement agencies seek to retard the expansion of transnational criminal organization’s entry into human trafficking, it is imperative that they develop reliable trafficking mapping of known exploitative routes. In a recent report given to the Mexican Congress, The Procuraduría General de la República (PGR) disclosed, from 2008 to 2010 they had identified at least 47 unique criminal networking routes used to traffic victims and that Mexico’s estimated domestic victims number between 800,000 adults and 20,000 children annually. Designing a reliable mapping system is a crucial step to effective law enforcement response and deploying a successful victim support system. Creating this mapping analytic is exceedingly difficult. Traffickers are constantly changing the way they traffic and exploit their victims. They swiftly adapt to local environmental factors and react remarkably well to market demands, exploiting limitations in the prevailing laws. This article will highlight how human trafficking has become one of the fastest growing and most high profile human rights violations in the world today; compile current efforts to map and illustrate trafficking routes; and will demonstrate how the proprietary analytical mapping analysis of point-source and destination-source mapping can help local law enforcement, governmental agencies and victim services providers effectively respond to the type and nature of trafficking to their specific geographical locale. Trafficking transcends state and international borders. It demands an effective and consistent cooperation between local, state, and federal authorities. Each region of the world has different impact factors which create distinct challenges for law enforcement and victim services. Our mapping system lays the groundwork for a targeted anti-trafficking response.Keywords: human trafficking, mapping, routes, law enforcement intelligence
Procedia PDF Downloads 381531 Earth Flat Roofs
Authors: Raúl García de la Cruz
Abstract:
In the state of Hidalgo and to the vicinity to the state of Mexico, there is a network of people who also share a valley bordered by hills with agave landscape of cacti and shared a bond of building traditions inherited from pre-Hispanic times and according to their material resources, habits and needs have been adapted in time. Weather has played an important role in the way buildings and roofs are constructed. Throughout the centuries, the population has developed very sophisticated building techniques like the flat roof, made out of a layer of earth; that is usually identified as belonging to architecture of the desert, but it can also be found in other climates, such as semi-arid and even template climates. It is an example of a constructive logic applied efficiently to various cultures proving its thermal isolation. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture , finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment. The objective of the research is the documentation of existing earth flat roofs in the state of Hidalgo and Mexico, as evidence of the importance of constructive system and its historical value in the area, considering its environmental, social aspects, also understanding the process of transformation of public housing at the time replaced the traditional techniques for industrial materials on a path towards urbanization. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture, finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment.Keywords: earth roof, low impact building system, sustainable architecture, vernacular architecture
Procedia PDF Downloads 456530 Understanding the Impact of Resilience Training on Cognitive Performance in Military Personnel
Authors: Haji Mohammad Zulfan Farhi Bin Haji Sulaini, Mohammad Azeezudde’en Bin Mohd Ismaon
Abstract:
The demands placed on military athletes extend beyond physical prowess to encompass cognitive resilience in high-stress environments. This study investigates the effects of resilience training on the cognitive performance of military athletes, shedding light on the potential benefits and implications for optimizing their overall readiness. In a rapidly evolving global landscape, armed forces worldwide are recognizing the importance of cognitive resilience alongside physical fitness. The study employs a mixed-methods approach, incorporating quantitative cognitive assessments and qualitative data from military athletes undergoing resilience training programs. Cognitive performance is evaluated through a battery of tests, including measures of memory, attention, decision-making, and reaction time. The participants, drawn from various branches of the military, are divided into experimental and control groups. The experimental group undergoes a comprehensive resilience training program, while the control group receives traditional physical training without a specific focus on resilience. The initial findings indicate a substantial improvement in cognitive performance among military athletes who have undergone resilience training. These improvements are particularly evident in domains such as attention and decision-making. The experimental group demonstrated enhanced situational awareness, quicker problem-solving abilities, and increased adaptability in high-stress scenarios. These results suggest that resilience training not only bolsters mental toughness but also positively impacts cognitive skills critical to military operations. In addition to quantitative assessments, qualitative data is collected through interviews and surveys to gain insights into the subjective experiences of military athletes. Preliminary analysis of these narratives reveals that participants in the resilience training program report higher levels of self-confidence, emotional regulation, and an improved ability to manage stress. These psychological attributes contribute to their enhanced cognitive performance and overall readiness. Moreover, this study explores the potential long-term benefits of resilience training. By tracking participants over an extended period, we aim to assess the durability of cognitive improvements and their effects on overall mission success. Early results suggest that resilience training may serve as a protective factor against the detrimental effects of prolonged exposure to stressors, potentially reducing the risk of burnout and psychological trauma among military athletes. This research has significant implications for military organizations seeking to optimize the performance and well-being of their personnel. The findings suggest that integrating resilience training into the training regimen of military athletes can lead to a more resilient and cognitively capable force. This, in turn, may enhance mission success, reduce the risk of injuries, and improve the overall effectiveness of military operations. In conclusion, this study provides compelling evidence that resilience training positively impacts the cognitive performance of military athletes. The preliminary results indicate improvements in attention, decision-making, and adaptability, as well as increased psychological resilience. As the study progresses and incorporates long-term follow-ups, it is expected to provide valuable insights into the enduring effects of resilience training on the cognitive readiness of military athletes, contributing to the ongoing efforts to optimize military personnel's physical and mental capabilities in the face of ever-evolving challenges.Keywords: military athletes, cognitive performance, resilience training, cognitive enhancement program
Procedia PDF Downloads 80529 Biochar from Empty Fruit Bunches Generated in the Palm Oil Extraction and Its Nutrients Contribution in Cultivated Soils with Elaeis guineensis in Casanare, Colombia
Authors: Alvarado M. Lady G., Ortiz V. Yaylenne, Quintero B. Quelbis R.
Abstract:
The oil palm sector has seen significant growth in Colombia after the insertion of policies to stimulate the use of biofuels, which eventually contributes to the reduction of greenhouse gases (GHG) that deteriorate not only the environment but the health of people. However, the policy of using biofuels has been strongly questioned by the impacts that can generate; an example is the increase of other more harmful GHGs like the CH₄ that underlies the amount of solid waste generated. Casanare's department is estimated be one of the major producers of palm oil of the country given that has recently expanded its sowed area, which implies an increase in waste generated primarily in the industrial stage. For this reason, the following study evaluated the agronomic potential of the biochar obtained from empty fruit bunches and its nutritional contribution in cultivated soils with Elaeis guineensis in Casanare, Colombia. The biochar was obtained by slow pyrolysis of the clusters in a retort oven at an average temperature of 190 °C and a residence time of 8 hours. The final product was taken to the laboratory for its physical and chemical analysis as well as a soil sample from a cultivation of Elaeis guineensis located in Tauramena-Casanare. With the results obtained plus the bibliographical reports of the nutrient demand in this cultivation, the possible nutritional contribution of the biochar was determined. It is estimated that the cultivation requirements of nitrogen is 12.1 kg.ha⁻¹, potassium is 59.3 kg.ha⁻¹, magnesium is -31.5 kg.ha⁻¹ and phosphorus is 5.6 kg.ha⁻¹ obtaining a biochar contribution of 143.1 kg.ha⁻¹, 1204.5 kg.ha⁻¹, 39.2 kg.ha⁻¹ and 71.6 kg.ha⁻¹ respectively. The incorporation of biochar into the soil would significantly improve the concentrations of N, P, K and Mg, nutrients considered important in the yield of palm oil, coupled with the importance of nutrient recycling in agricultural production systems sustainable. The biochar application improves the physical properties of soils, mainly in the humidity retention. On the other hand, it regulates the availability of nutrients for plants absorption, with economic savings in the application of synthetic fertilizers and water by irrigation. It also becomes an alternative to manage agricultural waste, reducing the involuntary emissions of greenhouse gases to the environment by decomposition in the field, reducing the CO₂ content in the atmosphere.Keywords: biochar, nutrient recycling, oil palm, pyrolysis
Procedia PDF Downloads 157528 Proposing Smart Clothing for Addressing Criminal Acts Against Women in South Africa
Authors: Anne Mastamet-Mason
Abstract:
Crimes against women is a global concern, and South Africa, in particular, is in a dilemma of dealing with constant criminal acts that face the country. Debates on violence against women in South Africa cannot be overemphasised any longer as crimes continue to rise year by year. The recent death of a university student at the University of Cape Town, as well as many other cases, continues to strengthen the need to find solutions from all the spheres of South African society. The advanced textiles market contains a high number and variety of technologies, many of which have protected status and constitute a relatively small portion of the textiles used for the consumer market. Examples of advanced textiles include nanomaterials, such as silver, titanium dioxide and zinc oxide, designed to create an anti-microbial and self-cleaning layer on top of the fibers, thereby reducing body smell and soiling. Smart textiles propose materials and fabrics versatile and adaptive to different situations and functions. Integrating textiles and computing technologies offer an opportunity to come up with differentiated characteristics and functionality. This paper presents a proposal to design a smart camisole/Yoga sports brazier and a smart Yoga sports pant garment to be worn by women while alone and while in purported danger zones. The smart garments are to be worn under normal clothing and cannot be detected or seen, or suspected by perpetrators. The garments are imbued with devices to sense any physical aggression and any abnormal or accelerated heartbeat that may be exhibited by the victim of violence. The signals created during the attack can be transmitted to the police and family members who own a mobile application system that accepts signals emitted. The signals direct the receiver to the exact location of the offence, and the victim can be rescued before major violations are committed. The design of the Yoga sports garments will be done by Professor Mason, who is a fashion designer by profession, while the mobile phone application system will be developed by Mr. Amos Yegon, who is an independent software developer.Keywords: smart clothing, wearable technology, south africa, 4th industrial revolution
Procedia PDF Downloads 207