Search results for: module based teaching and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33491

Search results for: module based teaching and learning

28511 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 104
28510 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 154
28509 A Game-Based Product Modelling Environment for Non-Engineer

Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige

Abstract:

In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.

Keywords: game-based learning, knowledge based engineering, product modelling, design automation

Procedia PDF Downloads 158
28508 Improvement of an Arm and Shoulder Exoskeleton Using Gyro Sensor

Authors: D. Maneetham

Abstract:

The developed exoskeleton device has to control joints between shoulder and arm. Exoskeleton device can help patients with hemiplegia upper so that the patient can help themselves in their daily life. Exoskeleton device includes a robot arm wear that looks like the movement is similar to the normal arm. Exoskeleton arm is powered by the motor through the cable with a control system that developed to control the movement of the joint of a robot arm. The arm will include the shoulder, the elbow, and the wrist. The control system is used Arduino Mega 2560 controller and the operation of the DC motor through the relay module. The control system can be divided into two modes such as the manual control with the joystick mode and automatically control with the movement of the head by Gyro sensor. The controller is also designed to move between the shoulder and the arm movement from their original location. Results have shown that the controller gave the best performance and all movements can be controlled.

Keywords: exoskeleton arm, hemiplegia upper, shoulder and arm, stroke

Procedia PDF Downloads 356
28507 Evaluating and Improving the Management of Tonsilitis in an a+E Department

Authors: Nicolas Koslover, Tamara Levene

Abstract:

Aims: Tonsilitis is one of the most common presentations to the A+E department. We aimed to assess whether patients presenting with tonsilitis are being managed in-line with current guidance. We then set out to educate A+E staff about tonsilitis management and then assessed for improvement in management. Methods: All patients presenting to A+E in one fortnight with a documented diagnosis of tonsilitis were included. We reviewed the notes to assess the choice of treatment in each case and whether a clinical score (CENTOR or FEVERPain score) was used to guide choice of treatment (in accordance with NICE guideline [NG84]). We designed and delivered an educational intervention for A+E staff covering tonsilitis guidelines. The audit was repeated two weeks later. Results: Over the study period, 49 patients were included; only 35% (n=17) had either a clinical score documented or had all components of a score recorded. In total, 39% (n=19) were treated with antibiotics. Of these, 63% (n=12) should not have been prescribed an antibiotic and 37% (n=7) were prescribed an inappropriate antibiotic. At re-audit, (n=50 cases), 58% (n=29) had a clinical score documented and 28% (n=14) were treated with antibiotics. Of these, 29% (n=4) should not have been prescribed antibiotics and 21% (n=3) were prescribed an inappropriate antibiotic. Thus, after this teaching session, there was a significant improvement in antibiotic prescribing practices (63% vs. 29%, p=0.026). Conclusions: A+E assessment and management of tonsilitis frequently deviated from guidelines, but a single teaching session vastly improved clinical scoring and antibiotic prescribing practices.

Keywords: tonsilitis, education, emergency medicine, ENT

Procedia PDF Downloads 171
28506 Improving Fine Motor Skills in the Hands of Children with ASD with Applying the Fine Motor Activities in Montessori Method of Education

Authors: Yeganeh Faraji, Ned Faraji

Abstract:

The aim of the present study is to search for the effects of training on improving fine hand skills in children with autistic spectrum disorder through the case study statistic method. The sample group was selected by the available sampling method and included four participants. The methodology of this research was a single-subject semi-experimental of AB design. The data were gathered by natural observation. In the next stage, the data were recorded on data record sheets and then presented on diagrams. The sample group was evaluated by an assessment which the researcher created based on Lincoln-Oseretsky’ motor development scale in two pre-test and post-test phases. In order to promote fingers’ fine movement, the Montessori method was applied. Collecting and analyzing data which were shown by the data presentation method and diagrams, proved that it had no significant effect on improving fingers’ fine movement. Therefore, based on the current research findings, it is suggested that future researchers can apply various teaching methods and different tests for improving fine hand skills or increasing the period of training.

Keywords: autism spectrum disorder, Montessori method, fine motor skills, Lincoln-Oseretsky assessment

Procedia PDF Downloads 98
28505 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 92
28504 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 112
28503 Early Prediction of Disposable Addresses in Ethereum Blockchain

Authors: Ahmad Saleem

Abstract:

Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.

Keywords: blockchain, Ethereum, cryptocurrency, prediction

Procedia PDF Downloads 101
28502 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U Networks

Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard Jorswieck

Abstract:

The capacity of fifth-generation (5G) vehicle-to-everything (V2X) networks poses significant challenges. To ad- dress this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a heterogeneous vehicular network (HetNet). We propose a new framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles while guaranteeing the WiFi users' throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.

Keywords: vehicle-to-everything (V2X), resource allocation, BS assignment, new radio (NR), new radio unlicensed (NR-U), coexistence NR-U and WiFi, deep deterministic policy gradient (DDPG), deep Q-network (DQN), joint BS assignment and resource allocation (JBSRA), duty cycle mechanism

Procedia PDF Downloads 108
28501 A Forearm-Wrist Rehabilitation Module for Stroke and Spinal Cord Injuries

Authors: Vahid Mehrabi, Iman Sharifi, H. A. Talebi

Abstract:

The automation of rehabilitation procedure by the implementation of robotic devices can overcome the limitation in conventional physiotherapy methods by increasing training sessions and duration of process. In this paper, the design of a simple rehabilitation robot for forearm-wrist therapy in stroke and spinal cord injuries is presented. Wrist’s biological joint motion is modeled by a gimbal-like mechanism which resembles the human arm anatomy. Presented device is an exoskeleton robot with rotation axes corresponding to human skeleton anatomy. The mechanical structure, actuator and sensor selection, system kinematics and comparison between our device range of motion and required active daily life values is illustrated.

Keywords: rehabilitation, robotic devices, physiotherapy, forearm-wrist

Procedia PDF Downloads 288
28500 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi

Authors: P. Phenpun, S. Wareewan

Abstract:

This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.

Keywords: humanized care service, volunteer activity, nursing student, learning log

Procedia PDF Downloads 309
28499 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 125
28498 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning

Authors: Eiman Kattan

Abstract:

This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.

Keywords: conventional neural network, remote sensing, land cover, land use

Procedia PDF Downloads 375
28497 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 229
28496 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance

Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty

Abstract:

One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.

Keywords: fouling, monitoring, QCM, water quality

Procedia PDF Downloads 214
28495 Internet of Things for Smart Dedicated Outdoor Air System in Buildings

Authors: Dararat Tongdee, Surapong Chirarattananon, Somchai Maneewan, Chantana Punlek

Abstract:

Recently, the Internet of Things (IoT) is the important technology that connects devices to the network and people can access real-time communication. This technology is used to report, collect, and analyze the big data for achieving a purpose. For a smart building, there are many IoT technologies that enable management and building operators to improve occupant thermal comfort, indoor air quality, and building energy efficiency. In this research, we propose monitoring and controlling performance of a smart dedicated outdoor air system (SDOAS) based on IoT platform. The SDOAS was specifically designed with the desiccant unit and thermoelectric module. The designed system was intended to monitor, notify, and control indoor environmental factors such as temperature, humidity, and carbon dioxide (CO₂) level. The SDOAS was tested under the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 62.2) and indoor air quality standard. The system will notify the user by Blynk notification when the status of the building is uncomfortable or tolerable limits are reached according to the conditions that were set. The user can then control the system via a Blynk application on a smartphone. The experimental result indicates that the temperature and humidity of indoor fresh air in the comfort zone are approximately 26 degree Celsius and 58% respectively. Furthermore, the CO₂ level was controlled lower than 1000 ppm by indoor air quality standard condition. Therefore, the proposed system can efficiently work and be easy to use for buildings.

Keywords: internet of things, indoor air quality, smart dedicated outdoor air system, thermal comfort

Procedia PDF Downloads 202
28494 Information Seeking and Evaluation Tasks to Enhance Multiliteracies in Health Education

Authors: Tuula Nygard

Abstract:

This study contributes to the pedagogical discussion on how to promote adolescents’ multiliteracies with the emphasis on information seeking and evaluation skills in contemporary media environments. The study is conducted in the school environment utilizing perspectives of educational sciences and information studies to health communication and teaching. The research focus is on the teacher role as a trusted person, who guides students to choose and use credible information sources. Evaluating the credibility of information may often be challenging. Specifically, children and adolescents may find it difficult to know what to believe and who to trust, for instance, in health and well-being communication. Thus, advanced multiliteracy skills are needed. In the school environment, trust is based on the teacher’s subject content knowledge, but also the teacher’s character and caring. Teacher’s benevolence and approachability generate trustworthiness, which lays the foundation for good interaction with students and further, for the teacher’s pedagogical authority. The study explores teachers’ perceptions of their pedagogical authority and the role of a trustee. In addition, the study examines what kind of multiliteracy practices teachers utilize in their teaching. The data will be collected by interviewing secondary school health education teachers during Spring 2019. The analysis method is a nexus analysis, which is an ethnographic research orientation. Classroom interaction as the interviewed teachers see it is scrutinized through a nexus analysis lens in order to expound a social action, where people, places, discourses, and objects are intertwined. The crucial social actions in this study are information seeking and evaluation situations, where the teacher and the students together assess the credibility of the information sources. The study is based on the hypothesis that a trustee’s opinions of credible sources and guidance in information seeking and evaluation affect students’, that is, trustors’ choices. In the school context, the teacher’s own experiences and perceptions of health-related issues cannot be brushed aside. Furthermore, adolescents are used to utilize digital technology for day-to-day information seeking, but the chosen information sources are often not very high quality. In the school, teachers are inclined to recommend familiar sources, such as health education textbook and web pages of well-known health authorities. Students, in turn, rely on the teacher’s guidance of credible information sources without using their own judgment. In terms of students’ multiliteracy competences, information seeking and evaluation tasks in health education are excellent opportunities to practice and enhance these skills. To distinguish the right information from a wrong one is particularly important in health communication because experts by experience are easy to find and their opinions are convincing. This can be addressed by employing the ideas of multiliteracy in the school subject health education and in teacher education and training.

Keywords: multiliteracies, nexus analysis, pedagogical authority, trust

Procedia PDF Downloads 112
28493 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 352
28492 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 58
28491 Evaluation of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking

Authors: Mehdi Ameur, Ahmed Essadki, Tamou Nasser

Abstract:

The purpose of this paper is the evaluation of photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturbing and observing (P&O), incremental conductance (INC) and fuzzy logic controller (FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.

Keywords: fuzzy logic controller, FLC, hill climbing, HC, incremental conductance (INC), perturb and observe (P&O), maximum power point, MPP, maximum power point tracking, MPPT

Procedia PDF Downloads 514
28490 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 135
28489 The Diversity of Contexts within Which Adolescents Engage with Digital Media: Contributing to More Challenging Tasks for Parents and a Need for Third Party Mediation

Authors: Ifeanyi Adigwe, Thomas Van der Walt

Abstract:

Digital media has been integrated into the social and entertainment life of young children, and as such, the impact of digital media appears to affect young people of all ages and it is believed that this will continue to shape the world of young children. Since, technological advancement of digital media presents adolescents with diverse contexts, platforms and avenues to engage with digital media outside the home environment and from parents' supervision, a wide range of new challenges has further complicated the already difficult tasks for parents and altered the landscape of parenting. Despite the fact that adolescents now have access to a wide range of digital media technologies both at home and in the learning environment, parenting practices such as active, restrictive, co-use, participatory and technical mediations are important in mitigating of online risks adolescents may encounter as a result of digital media use. However, these mediation practices only focus on the home environment including digital media present in the home and may not necessarily transcend outside the home and other learning environments where adolescents use digital media for school work and other activities. This poses the question of who mediates adolescent's digital media use outside the home environment. The learning environment could be a ''loose platform'' where an adolescent can maximise digital media use considering the fact that there is no restriction in terms of content and time allotted to using digital media during school hours. That is to say that an adolescent can play the ''bad boy'' online in school because there is little or no restriction of digital media use and be exposed to online risks and play the ''good boy'' at home because of ''heavy'' parental mediation. This is the reason why parent mediation practices have been ineffective because a parent may not be able to track adolescents digital media use considering the diversity of contexts, platforms and avenues adolescents use digital media. This study argues that due to the diverse nature of digital media technology, parents may not be able to monitor the 'whereabouts' of their children in the digital space. This is because adolescent digital media usage may not only be confined to the home environment but other learning environments like schools. This calls for urgent attention on the part of teachers to understand the intricacies of how digital media continue to shape the world in which young children are developing and learning. It is, therefore, imperative for parents to liaise with the schools of their children to mediate digital media use during school hours. The implication of parents- teachers mediation practices are discussed. The article concludes by suggesting that third party mediation by teachers in schools and other learning environments should be encouraged and future research needs to consider the emergent strategy of teacher-children mediation approach and the implication for policy for both the home and learning environments.

Keywords: digital media, digital age, parent mediation, third party mediation

Procedia PDF Downloads 162
28488 Tobephobia: Fear of Failure in Education Caused by School Violence and Drug Abuse

Authors: Prakash Singh

Abstract:

Schools throughout the world are facing increasing challenges in dealing with school violence and drug abuse by pupils. Therefore, the question of the fear of failure to meet the aims and objectives of education inevitably surfaces as it places increasing and challenging demands on educators and all other stakeholders to address this malaise. Multiple studies on the construct tobephobia (TBP) simply define TBP as the fear of failure in education. This study is a continuation of the exploratory studies on the manifestation of fear in education. The primary purpose of this study was to establish how TBP, caused by school violence and drug abuse affects teaching and learning in our schools. The qualitative research method was used for this study. Teachers admitted that they fear for their safety at school. Working in a fearful situation places a high rate of stress and anxiety on them. Tobephobic educators spend most of their time worrying about their fear of violence and drug abuse by pupils and are too frightened to carry out their normal duties. They prefer to stay in familiar surroundings for fear of being attacked by inebriated learners. This study, therefore, contributes to our understanding of the effects of TBP in our schools caused by school violence and drug abuse. Also, this study supplements the evidence accumulated over the past fifteen years that TBP is not a figment of someone’s imagination; it is a gruesome reality affecting the very foundation of our educational system globally to provide quality and equal education to all our learners in a harmonious, collegial school environment.

Keywords: tobephobia, tobephobic educators, fear of failure in education, school violence, drug abuse

Procedia PDF Downloads 494
28487 Empowering Middle School Math Coordinators as Agents of Transformation: The Impact of the Mitar Program on Mathematical Literacy and Social-Emotional Learning Integration

Authors: Saleit Ron

Abstract:

The Mitar program was established to drive a shift in middle school mathematics education, emphasizing the connection of math to real-life situations, exploring mathematical modeling and literacy, and integrating social and emotional learning (SEL) components for enhanced excellence. The program envisions math coordinators as catalysts for change, equipping them to create educational materials, strengthen leadership skills, and develop SEL competencies within coordinator communities. These skills are then employed to lead transformative efforts within their respective schools. The program engaged 90 participants across six math coordinator communities during 2022-2023, involving 30-60 hours of annual learning. The process includes formative and summative evaluations through questionnaires and interviews, revealing participants' high contentment and successful integration of acquired skills into their schools. Reflections from participants highlighted the need for enhanced change leadership processes, often seeking more personalized mentoring to navigate challenges effectively.

Keywords: math coordinators, mathematical literacy, mathematical modeling, SEL competencies

Procedia PDF Downloads 56
28486 Internationalization Strategies and Firm Productivity: Manufacturing Firm-Level Evidence from Ethiopia

Authors: Soressa Tolcha Jarra

Abstract:

Looking into firm-level internationalization strategies and their effects on firms' productivity is needed in order to understand the role of firms’ participation in trading activities on the one hand and the effects of firms’ internalization strategies on firm-level productivity on the other. Thus, this study aims to investigate firms' imports of intermediates and export strategies and their impact on firm productivity using an establishment-level panel dataset from Ethiopian manufacturing firms over the period 2011–2020. Methodologically, the joint firm’s decision to import intermediates and estimate exports is undertaken by system GMM using Wooldridge's approach. The translog-production function is used to estimate firm-level productivity by considering a general Markov process. The size of the firm is used in a mediating role. The result indicates evidence of the self-selection of more productive firms into exporting and importing intermediates, which is indicative of sizable export and import market entry costs. Furthermore, there is evidence in favor of learning by exporting (LBE) and learning by importing (LBI) hypotheses for smaller and medium Ethiopian manufacturing firms. However, for large firms, there is only evidence in support of the learning by exporting (LBE) hypothesis.

Keywords: Ethiopia, export, firm productivity, intermediate imports

Procedia PDF Downloads 43
28485 Different Approaches to Teaching a Database Course to Undergraduate and Graduate Students

Authors: Samah Senbel

Abstract:

Database Design is a fundamental part of the Computer Science and Information technology curricula in any school, as well as in the study of management, business administration, and data analytics. In this study, we compare the performance of two groups of students studying the same database design and implementation course at Sacred Heart University in the fall of 2018. Both courses used the same textbook and were taught by the same professor, one for seven graduate students and one for 26 undergraduate students (juniors). The undergraduate students were aged around 20 years old with little work experience, while the graduate students averaged 35 years old and all were employed in computer-related or management-related jobs. The textbook used was 'Database Systems, Design, Implementation, and Management' by Coronel and Morris, and the course was designed to follow the textbook roughly a chapter per week. The first 6 weeks covered the design aspect of a database, followed by a paper exam. The next 6 weeks covered the implementation aspect of the database using SQL followed by a lab exam. Since the undergraduate students are on a 16 week semester, we spend the last three weeks of the course covering NoSQL. This part of the course was not included in this study. After the course was over, we analyze the results of the two groups of students. An interesting discrepancy was observed: In the database design part of the course, the average grade of the graduate students was 92%, while that of the undergraduate students was 77% for the same exam. In the implementation part of the course, we observe the opposite: the average grade of the graduate students was 65% while that of the undergraduate students was 73%. The overall grades were quite similar: the graduate average was 78% and that of the undergraduates was 75%. Based on these results, we concluded that having both classes follow the same time schedule was not beneficial, and an adjustment is needed. The graduates could spend less time on design and the undergraduates would benefit from more design time. In the fall of 2019, 30 students registered for the undergraduate course and 15 students registered for the graduate course. To test our conclusion, the undergraduates spend about 67% of time (eight classes) on the design part of the course and 33% (four classes) on the implementation part, using the exact exams as the previous year. This resulted in an improvement in their average grades on the design part from 77% to 83% and also their implementation average grade from 73% to 79%. In conclusion, we recommend using two separate schedules for teaching the database design course. For undergraduate students, it is important to spend more time on the design part rather than the implementation part of the course. While for the older graduate students, we recommend spending more time on the implementation part, as it seems that is the part they struggle with, even though they have a higher understanding of the design component of databases.

Keywords: computer science education, database design, graduate and undergraduate students, pedagogy

Procedia PDF Downloads 125
28484 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 144
28483 Conspicuous and Significant Learner Errors in Algebra

Authors: Michael Lousis

Abstract:

The kind of the most important and conspicuous errors the students made during the three-years of testing of their progress in Algebra are presented in this article. The way these students’ errors changed over three-years of school Algebra learning also is shown. The sample is comprised of two hundred (200) English students and one hundred and fifty (150) Greek students, who were purposefully culled according to their participation in each occasion of testing in the development of the three-year Kassel Project in England and Greece, in both domains at once of Arithmetic and Algebra. Hence, for each of these English and Greek students, six test-scripts were available and corresponded to the three occasions of testing in both Arithmetic and Algebra respectively.

Keywords: algebra, errors, Kassel Project, progress of learning

Procedia PDF Downloads 303
28482 Perception Towards Using E-learning with Stem Students Whose Programs Require Them to Attend Practical Sections in Laboratories during Covid-19

Authors: Youssef A. Yakoub, Ramy M. Shaaban

Abstract:

Covid-19 has changed and affected the whole world dramatically in a new way that the entire world, even scientists, have not imagined before. The educational institutions around the world have been fighting since Covid-19 hit the world last December to keep the educational process unchanged for all students. E-learning was a must for almost all US universities during the pandemic. It was specifically more challenging to use eLearning instead of regular classes among students who take practical education. The aim of this study is to examine the perception of STEM students towards using eLearning instead of traditional methods during their practical study. Focus groups of STEM students studying at a western Pennsylavian, mid-size university were interviewed. Semi-structured interviews were designed to get an insight on students’ perception towards the alternative educational methods they used in the past seven months. Using convenient sampling, four students were chosen from different STEM fields: science of physics, technology, electrical engineering, and mathematics. The interview was primarily about the extent to which these students were satisfied, and their educational needs were met through distance education during the pandemic. The interviewed students were generally able to do a satisfactory performance during their virtual classes, but they were not satisfied enough with the learning methods. The main challenges they faced included the inability to have real practical experience, insufficient materials posted by the faculty, and some technical problems associated with their study. However, they reported they were satisfied with the simulation programs they had. They reported these simulations provided them with a good alternative to their traditional practical education. In conclusion, this study highlighted the challenges students face during the pandemic. It also highlighted the various learning tools students see as good alternatives to their traditional education.

Keywords: eLearning, STEM education, COVID-19 crisis, online practical training

Procedia PDF Downloads 140