Search results for: Ground water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10156

Search results for: Ground water

5176 Optimization of Energy Harvesting Systems for RFID Applications

Authors: P. Chambe, B. Canova, A. Balabanian, M. Pele, N. Coeur

Abstract:

To avoid battery assisted tags with limited lifetime batteries, it is proposed here to replace them by energy harvesting systems, able to feed from local environment. This would allow total independence to RFID systems, very interesting for applications where tag removal from its location is not possible. Example is here described for luggage safety in airports, and is easily extendable to similar situation in terms of operation constraints. The idea is to fix RFID tag with energy harvesting system not only to identify luggage but also to supply an embedded microcontroller with a sensor delivering luggage weight making it impossible to add or to remove anything from the luggage during transit phases. The aim is to optimize the harvested energy for such RFID applications, and to study in which limits these applications are theoretically possible. Proposed energy harvester is based on two energy sources: piezoelectricity and electromagnetic waves, so that when the luggage is moving on ground transportation to airline counters, the piezo module supplies the tag and its microcontroller, while the RF module operates during luggage transit thanks to readers located along the way. Tag location on the luggage is analyzed to get best vibrations, as well as harvester better choice for optimizing the energy supply depending on applications and the amount of energy harvested during a period of time. Effects of system parameters (RFID UHF frequencies, limit distance between the tag and the antenna necessary to harvest energy, produced voltage and voltage threshold) are discussed and working conditions for such system are delimited.

Keywords: RFID tag, energy harvesting, piezoelectric, EM waves

Procedia PDF Downloads 449
5175 Development of Temple Architecture during the Reign of Kalachuri’s of Tripuri

Authors: Shivam Dubey, Shivakant Bajpai

Abstract:

The Kalachuri dynasty of Tripuri was a significant ruling dynasty in central India that held power over a vast region for a longer period compared to renowned dynasties like the Chandellas. Their capital, Tripuri (modern-day Tewar, a small village near Jabalpur), and its surrounding area witnessed significant developments that were later disrupted by the Royal Indian Railways' construction of railway lines. However, remnants of their achievements can still be found scattered in and around Tewar. The Kalachuris made remarkable contributions in the fields of art, architecture, and iconography. The evolution of temple architecture, particularly in Baghelkhand and the Mahakoshal range after the decline of the Gupta Empire, can be attributed to the Kalachuris. There is a notable progression from early temple styles to mature architecture, with numerous examples displaying continuity between the two. One particularly unique temple style features a ground plan resembling a complete Chaitya Hall, while the elevation showcases a circular Grabhagriha with a Mandapa and a conical Shikhara adorned with a series of Gavakshas. This distinctive temple style is among the most exceptional in central India. While several studies have been conducted on the Kalachuris' architecture, there is still a need for further research, as recent discoveries have provided valuable insights into understanding their architectural achievements. This paper aims to explore the development of architecture in this region, incorporating these recent findings.

Keywords: architecture, Kalachuri, art, iconography

Procedia PDF Downloads 71
5174 Theoretical Study of Structural and Electronic Properties of Matlockite CaFX (X = I and Br) Compounds

Authors: Meriem Harmel, Houari Khachai

Abstract:

The full potential linearized augmented plane wave (FP-LAPW)method within density functional theory is applied to study, for the first time, the structural and electronic properties of CaFI and to compare them with CaFCl and CaFBr, all compounds belonging to the tetragonal PbFCl structure group with space group P4/nmm. We used the generalized gradient approximation (GGA) based on exchange–correlation energy optimization to calculate the total energy and also the Engel– Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Ground state properties such as the lattice parameters, c/a ratio, bulk modulus, pressure derivative of the bulk modulus and cohesive energy are calculated, as well as the optimized internal parameters, by relaxing the atomic position in the force directions. The variations of the calculated interatomic distances and angles between different atomic bonds are discussed. CaFCl was found to have a direct band gap at whereas CaFBr and BaFI have indirect band gaps. From these computed bands, all three materials are found to be insulators having band gaps of 6.28, 5.46, and 4.50 eV, respectively. We also calculated the valence charge density and the total density of states at equilibrium volume for each compound. The results are in reasonable agreement with the available experimental data.

Keywords: DFT, matlockite, structural properties, electronic structure

Procedia PDF Downloads 320
5173 Sorghum Polyphenols Encapsulated by Spray Drying, Using Modified Starches as Wall Materials

Authors: Adriana Garcia G., Alberto A. Escobar P., Amira D. Calvo L., Gabriel Lizama U., Alejandro Zepeda P., Fernando Martínez B., Susana Rincón A.

Abstract:

Different studies have recently been focused on the use of antioxidants such as polyphenols because of to its anticarcinogenic capacity. However, these compounds are highly sensible to environmental factors such as light and heat, so lose its long-term stability, besides possess an astringent and bitter taste. Nevertheless, the polyphenols can be protected by microcapsule formulation. In this sense, a rich source of polyphenols is sorghum, besides presenting a high starch content. Due to the above, the aim of this work was to obtain modified starches from sorghum by extrusion to encapsulate polyphenols the sorghum by spray drying. Polyphenols were extracted by ethanol solution from sorghum (Pajarero/red) and determined by the method of Folin-Ciocalteu, obtaining GAE at 30 mg/g. Moreover, was extracted starch of sorghum (Sinaloense/white) through wet milling (yield 32 %). The hydrolyzed starch was modified with three treatments: acetic anhydride (2.5g/100g), sodium tripolyphosphate (4g/100g), and sodium tripolyphosphate/ acetic anhydride (2g/1.25g by each 100 g) by extrusion. Processing conditions of extrusion were as follows: barrel temperatures were of 60, 130 and 170 °C at the feeding, transition, and high-pressure extrusion zones, respectively. Analysis of Fourier Transform Infrared spectroscopy (FTIR), showed bands exhibited of acetyl groups (1735 cm-1) and phosphates (1170 cm-1, 910 cm-1 and 525 cm-1), indicating the respective modification of starch. Besides, all modified starches not developed viscosity, which is a characteristic required for use in the encapsulation of polyphenols using the spray drying technique. As result of the modification starch, was obtained a water solubility index (WSI) from 33.8 to 44.8 %, and crystallinity from 8 to 11 %, indicating the destruction of the starch granule. Afterwards, microencapsulation of polyphenols was developed by spray drying, with a blend of 10 g of modified starch, 60 ml polyphenol extract and 30 ml of distilled water. Drying conditions were as follows: inlet air temperature 150 °C ± 1, outlet air temperature 80°C ± 5. As result of the microencapsulation: were obtained yields of 56.8 to 77.4 % and an efficiency of encapsulation from 84.6 to 91.4 %. The FTIR analysis showed evidence of microcapsules loaded with polyphenols in bands 1042 cm-1, 1038 cm-1 and 1148 cm-1. Analysis Differential scanning calorimetry (DSC) showed transition temperatures from 144.1 to 173.9 °C. For the order hand, analysis of Scanning Electron Microscopy (SEM), were observed rounded surfaces with concavities, typical feature of microcapsules produced by spray drying, how result of rapid evaporation of water. Finally, the modified starches were obtained by extrusion with good characteristics for use as cover materials by spray drying, where the phosphorylated starch was the best treatment in this work, according to the encapsulation yield, efficiency, and transition temperature.

Keywords: encapsulation, extrusion, modified starch, polyphenols, spray drying

Procedia PDF Downloads 303
5172 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 37
5171 Quantitative Evaluation on Community Perceptions of Sanitation and Hygiene in Rural Guatemala

Authors: Akudo Ejelonu, Sarah Willig, J. Anthony Sauder, Heather Murphy, Frances Shofer

Abstract:

Background: The high prevalence of diarrheal diseases in the village of Tzununá, Guatemala is linked to lack of sanitation facilities and handwashing practices. Diarrheal diseases are preventable and improved access to latrines, hygiene education and clean water may improve sanitation by reducing the spread of disease. Objective: Between May 2015-January 2017, the University of Pennsylvania Chapter of Engineers Without Border (PennEWB) and local partners designed an intervention to reduce diarrheal disease by building pour flush latrines in 50 individual households and providing education on the importance of handwashing practice. Design/Methods: Through convenient sampling, we surveyed 45 households to evaluate the community’s knowledge of diarrheal disease, handwashing practices, and maintenance of the latrines. Results: 92% of the study participants experienced decrease of new cases of diarrheal disease after receiving a latrine. Only 11% washed their hands after defecating in the latrine. There was gap in understanding the health outcome of latrine sanitation and handwashing education. The respondents did not connect the reduction of diarrheal disease with latrine use and maintenance. Instead, they associated their motivation for latrine use with aesthetics, proximity to their home, ease and comfort, and reduction of shame. We recommend that PennEWB adopt UNICEF or WHO education on hand washing practice. Conclusion: Social interaction and social pressure drove the household use of latrines. The latrines are being valued and cleaned. The education that the residents received did not target norms and behaviors. Latrines could be used to create a new social norm that supports behavioral change.

Keywords: diarrheal disease, latrine, open defecation, water, sanitation and hygiene

Procedia PDF Downloads 154
5170 Investigation of the Litho-Structure of Ilesa Using High Resolution Aeromagnetic Data

Authors: Oladejo Olagoke Peter, Adagunodo T. A., Ogunkoya C. O.

Abstract:

The research investigated the arrangement of some geological features under Ilesa employing aeromagnetic data. The obtained data was subjected to various data filtering and processing techniques, which are Total Horizontal Derivative (THD), Depth Continuation and Analytical Signal Amplitude using Geosoft Oasis Montaj 6.4.2 software. The Reduced to the Equator –Total Magnetic Intensity (TRE-TMI) outcomes reveal significant magnetic anomalies, with high magnitude (55.1 to 155 nT) predominantly at the Northwest half of the area. Intermediate magnetic susceptibility, ranging between 6.0 to 55.1 nT, dominates the eastern part, separated by depressions and uplifts. The southern part of the area exhibits a magnetic field of low intensity, ranging from -76.6 to 6.0 nT. The lineaments exhibit varying lengths ranging from 2.5 and 16.0 km. Analyzing the Rose Diagram and the analytical signal amplitude indicates structural styles mainly of E-W and NE-SW orientations, particularly evident in the western, SW and NE regions with an amplitude of 0.0318nT/m. The identified faults in the area demonstrate orientations of NNW-SSE, NNE-SSW and WNW-ESE, situated at depths ranging from 500 to 750 m. Considering the divergence magnetic susceptibility, structural style or orientation of the lineaments, identified fault and their depth, these lithological features could serve as a valuable foundation for assessing ground motion, particularly in the presence of sufficient seismic energy.

Keywords: lineament, aeromagnetic, anomaly, fault, magnetic

Procedia PDF Downloads 70
5169 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 314
5168 Dynamic Analysis and Design of Lower Extremity Power-Assisted Exoskeleton

Authors: Song Shengli, Tan Zhitao, Li Qing, Fang Husheng, Ye Qing, Zhang Xinglong

Abstract:

Lower extremity power-assisted exoskeleton (LEPEX) is a kind of wearable electromechanical integration intelligent system, walking in synchronization with the wearer, which can assist the wearer walk by means of the driver mounted in the exoskeleton on each joint. In this paper, dynamic analysis and design of the LEPEX are performed. First of all, human walking process is divided into single leg support phase, double legs support phase and ground collision model. The three kinds of dynamics modeling is established using the Lagrange method. Then, the flat walking and climbing stairs dynamic information such as torque and power of lower extremity joints is derived for loading 75kg according to scholar Stansfield measured data of flat walking and scholars R. Riener measured data of climbing stair respectively. On this basis, the joint drive way in the sagittal plane is determined, and the structure of LEPEX is designed. Finally, the designed LEPEX is simulated under ADAMS by using a person’s joint sports information acquired under flat walking and climbing stairs. The simulation result effectively verified the correctness of the structure.

Keywords: kinematics, lower extremity exoskeleton, simulation, structure

Procedia PDF Downloads 423
5167 Numerical Investigation on Transient Heat Conduction through Brine-Spongy Ice

Authors: S. R. Dehghani, Y. S. Muzychka, G. F. Naterer

Abstract:

The ice accretion of salt water on cold substrates creates brine-spongy ice. This type of ice is a mixture of pure ice and liquid brine. A real case of creation of this type of ice is superstructure icing which occurs on marine vessels and offshore structures in cold and harsh conditions. Transient heat transfer through this medium causes phase changes between brine pockets and pure ice. Salt rejection during the process of transient heat conduction increases the salinity of brine pockets to reach a local equilibrium state. In this process the only effect of passing heat through the medium is not changing the sensible heat of the ice and brine pockets; latent heat plays an important role and affects the mechanism of heat transfer. In this study, a new analytical model for evaluating heat transfer through brine-spongy ice is suggested. This model considers heat transfer and partial solidification and melting together. Properties of brine-spongy ice are obtained using properties of liquid brine and pure ice. A numerical solution using Method of Lines discretizes the medium to reach a set of ordinary differential equations. Boundary conditions are chosen using one of the applicable cases of this type of ice; one side is considered as a thermally isolated surface, and the other side is assumed to be suddenly affected by a constant temperature boundary. All cases are evaluated in temperatures between -20 C and the freezing point of brine-spongy ice. Solutions are conducted using different salinities from 5 to 60 ppt. Time steps and space intervals are chosen properly to maintain the most stable and fast solution. Variation of temperature, volume fraction of brine and brine salinity versus time are the most important outputs of this study. Results show that transient heat conduction through brine-spongy ice can create a various range of salinity of brine pockets from the initial salinity to that of 180 ppt. The rate of variation of temperature is found to be slower for high salinity cases. The maximum rate of heat transfer occurs at the start of the simulation. This rate decreases as time passes. Brine pockets are smaller at portions closer to the colder side than that of the warmer side. A the start of the solution, the numerical solution tends to increase instabilities. This is because of sharp variation of temperature at the start of the process. Changing the intervals improves the unstable situation. The analytical model using a numerical scheme is capable of predicting thermal behavior of brine spongy ice. This model and numerical solutions are important for modeling the process of freezing of salt water and ice accretion on cold structures.

Keywords: method of lines, brine-spongy ice, heat conduction, salt water

Procedia PDF Downloads 213
5166 Application of Response Surface Methodology to Assess the Impact of Aqueous and Particulate Phosphorous on Diazotrophic and Non-Diazotrophic Cyanobacteria Associated with Harmful Algal Blooms

Authors: Elizabeth Crafton, Donald Ott, Teresa Cutright

Abstract:

Harmful algal blooms (HABs), more notably cyanobacteria-dominated HABs, compromise water quality, jeopardize access to drinking water and are a risk to public health and safety. HABs are representative of ecosystem imbalance largely caused by environmental changes, such as eutrophication, that are associated with the globally expanding human population. Cyanobacteria-dominated HABs are anticipated to increase in frequency, magnitude, and are predicted to plague a larger geographical area as a result of climate change. The weather pattern is important as storm-driven, pulse-input of nutrients have been correlated to cyanobacteria-dominated HABs. The mobilization of aqueous and particulate nutrients and the response of the phytoplankton community is an important relationship in this complex phenomenon. This relationship is most apparent in high-impact areas of adequate sunlight, > 20ᵒC, excessive nutrients and quiescent water that corresponds to ideal growth of HABs. Typically the impact of particulate phosphorus is dismissed as an insignificant contribution; which is true for areas that are not considered high-impact. The objective of this study was to assess the impact of a simulated storm-driven, pulse-input of reactive phosphorus and the response of three different cyanobacteria assemblages (~5,000 cells/mL). The aqueous and particulate sources of phosphorus and changes in HAB were tracked weekly for 4 weeks. The first cyanobacteria composition consisted of Planktothrix sp., Microcystis sp., Aphanizomenon sp., and Anabaena sp., with 70% of the total population being non-diazotrophic and 30% being diazotrophic. The second was comprised of Anabaena sp., Planktothrix sp., and Microcystis sp., with 87% diazotrophic and 13% non-diazotrophic. The third composition has yet to be determined as these experiments are ongoing. Preliminary results suggest that both aqueous and particulate sources are contributors of total reactive phosphorus in high-impact areas. The results further highlight shifts in the cyanobacteria assemblage after the simulated pulse-input. In the controls, the reactors dosed with aqueous reactive phosphorus maintained a constant concentration for the duration of the experiment; whereas, the reactors that were dosed with aqueous reactive phosphorus and contained soil decreased from 1.73 mg/L to 0.25 mg/L of reactive phosphorus from time zero to 7 days; this was higher than the blank (0.11 mg/L). Suggesting a binding of aqueous reactive phosphorus to sediment, which is further supported by the positive correlation observed between total reactive phosphorus concentration and turbidity. The experiments are nearly completed and a full statistical analysis will be completed of the results prior to the conference.

Keywords: Anabaena, cyanobacteria, harmful algal blooms, Microcystis, phosphorous, response surface methodology

Procedia PDF Downloads 161
5165 Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Capacity of in vitro Propagated Hyssop, Hyssopus officinalis L.

Authors: Maria P. Geneva, Ira V. Stancheva, Marieta G. Hristozkova, Roumiana D. Vasilevska-Ivanova, Mariana T. Sichanova, Janet R. Mincheva

Abstract:

Hyssopus officinalis L., Lamiaceae, commonly called hyssop, is an aromatic, semi-evergreen, woody-based, shrubby perennial plant. Hyssop is a good expectorant and antiviral herb commonly used to treat respiratory conditions such as influenza, sinus infections, colds, and bronchitis. Most of its medicinal properties are attributed to the essential oil of hyssop. The study was conducted to evaluate the influence of inoculation with arbuscular mycorrhizal fungi of in vitro propagated hyssop plants on the: activities of antioxidant enzymes superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase; accumulation of non-enzymatic antioxidants total phenols and flavonoid, water-soluble soluble antioxidant metabolites expressed as ascorbic acid; the antioxidant potential of hyssop methanol extracts assessed by two common methods: free radical scavenging activity using free stable radical (2,2-diphenyl-1-picrylhydrazyl, DPPH• and ferric reducing antioxidant power FRAP in flowers and leaves. The successfully adapted to field conditions in vitro plants (survival rate 95%) were inoculated with arbuscular mycorrhizal fungi (Claroideoglomus claroideum, ref. EEZ 54). It was established that the activities of enzymes with antioxidant capacity (superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase) were significantly higher in leaves than in flowers in both control and mycorrhized plants. In flowers and leaves of inoculated plants, the antioxidant enzymes activity were lower than in non-inoculated plants, only in SOD activity, there was no difference. The content of low molecular metabolites with antioxidant capacity as total phenols, total flavonoids, and water soluble antioxidants was higher in inoculated plants. There were no significant differences between control and inoculated plants both for FRAP and DPPH antioxidant activity. According to plant essential oil content, there was no difference between non-inoculated and inoculated plants. Based on our results we could suggest that antioxidant capacity of in vitro propagated hyssop plant under conditions of cultivation is determined by the phenolic compounds-total phenols and flavonoids as well as by the levels of water-soluble metabolites with antioxidant potential. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16.

Keywords: antioxidant enzymes, antioxidant metabolites, arbuscular mycorrhizal fungi, Hyssopus officinalis L.

Procedia PDF Downloads 319
5164 Investigation of Single Particle Breakage inside an Impact Mill

Authors: E. Ghasemi Ardi, K. J. Dong, A. B. Yu, R. Y. Yang

Abstract:

In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability.

Keywords: single particle breakage, particle dynamic, population balance model, particle size distribution, discrete element method

Procedia PDF Downloads 286
5163 Synthesis and Characterization of CNPs Coated Carbon Nanorods for Cd2+ Ion Adsorption from Industrial Waste Water and Reusable for Latent Fingerprint Detection

Authors: Bienvenu Gael Fouda Mbanga

Abstract:

This study reports a new approach of preparation of carbon nanoparticles coated cerium oxide nanorods (CNPs/CeONRs) nanocomposite and reusing the spent adsorbent of Cd2+- CNPs/CeONRs nanocomposite for latent fingerprint detection (LFP) after removing Cd2+ ions from aqueous solution. CNPs/CeONRs nanocomposite was prepared by using CNPs and CeONRs with adsorption processes. The prepared nanocomposite was then characterized by using UV-visible spectroscopy (UV-visible), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CNPs was 7.84nm. The synthesized CNPs/CeONRs nanocomposite has proven to be a good adsorbent for Cd2+ removal from water with optimum pH 8, dosage 0. 5 g / L. The results were best described by the Langmuir model, which indicated a linear fit (R2 = 0.8539-0.9969). The adsorption capacity of CNPs/CeONRs nanocomposite showed the best removal of Cd2+ ions with qm = (32.28-59.92 mg/g), when compared to previous reports. This adsorption followed pseudo-second order kinetics and intra particle diffusion processes. ∆G and ∆H values indicated spontaneity at high temperature (40oC) and the endothermic nature of the adsorption process. CNPs/CeONRs nanocomposite therefore showed potential as an effective adsorbent. Furthermore, the metal loaded on the adsorbent Cd2+- CNPs/CeONRs has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Cd2+-CNPs/CeONRs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent.

Keywords: Cd2+-CNPs/CeONRs nanocomposite, cadmium adsorption, isotherm, kinetics, thermodynamics, reusable for latent fingerprint detection

Procedia PDF Downloads 116
5162 The Effect of Corruption and Taxes on Entrepreneurship Activity: Across Country Study

Authors: F. Ahmed, Y. Dawood

Abstract:

One of the vehement debates nowadays is about the effect of taxation and economic growth. From one side, taxes are an essential factor to absorb the unemployment, improve the stander of living and achieve a high level of economic growth. On the other hand, they consider it as the main reason to lose the growth ground. The primary goal of the present study is to provide a cross-country evidence of the relationship between taxes and entrepreneurship. There are several important areas where this study makes an original contribution to Entrepreneurship literature. Our paper will use a combination of macro and micro data to present more accurate evidence of the relation. Our study considers large cross sections of countries for the period from 2008 to 2014 for 59 countries. In addition to that and most importantly, our study examines the effect of corruption on the relation between taxes and Entrepreneurship as the corruption is a very important dimension that can explain international entrepreneurship. The importance of this study can be seen from several perspectives: By investigating the taxes effect on entrepreneurship motivation, it is important for the policy makers as well as scholars. Governments and regulators who consider changing in the entrepreneurship sector as an important determinant of economic growth can benefit also from this research. Also, countries who are considering improving their growth level. Scholars also can get insights from this research to gain insights regarding the validity of the Environmental Determinism the institutional theory in the entrepreneurship contest. In addition, it also highlights the obstacles of corruption in developing countries.

Keywords: taxes, corruption, entrepreneurship, across countries

Procedia PDF Downloads 287
5161 Extraction and Antibacterial Studies of Oil from Three Mango Kernel Obtained from Makurdi, Nigeria

Authors: K. Asemave, D. O. Abakpa, T. T. Ligom

Abstract:

The ability of bacteria to develop resistance to many antibiotics cannot be undermined, given the multifaceted health challenges in the present times. For this reason, a lot of attention is on botanicals and their products in search of new antibacterial agents. On the other hand, mango kernel oils (MKO) can be heavily valorized by taking advantage of the myriads bioactive phytochemicals it contains. Herein, we validated the use of MKO as bioactive agent against bacteria. The MKOs for the study were extracted by soxhlet means with ethanol and hexane for 4 h from 3 different mango kernels, namely; 'local' (sample A), 'julie' (sample B), and 'john' (sample C). Prior to the extraction, ground fine particles of the kernels were obtained from the seed kernels dried in oven at 100 °C for 8 h. Hexane gave higher yield of the oils than ethanol. It was also qualitatively confirmed that the mango kernel oils contain some phytochemicals such as phenol, quinone, saponin, and terpenoid. The results of the antibacterial activities of the MKO against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa) at different concentrations showed that the oils extracted with ethanol gave better antibacterial properties than those of the hexane. More so, the bioactivities were best with the local mango kernel oil. Indeed this work has completely validated the previous claim that MKOs are effective antibacterial agents. Thus, these oils (especially the ethanol-derived ones) can be used as bacteriostatic and antibacterial agents in say food, cosmetics, and allied industries.

Keywords: bacteria, mango, kernel, oil, phytochemicals

Procedia PDF Downloads 148
5160 Comparison of Seismic Response for Two RC Curved Bridges with Different Column Shapes

Authors: Nina N. Serdar, Jelena R. Pejović

Abstract:

This paper presents seismic risk assessment of two bridge structure, based on the probabilistic performance-based seismic assessment methodology. Both investigated bridges are tree span continuous RC curved bridges with the difference in column shapes. First bridge (type A) has a wall-type pier and second (type B) has a two-column bent with circular columns. Bridges are designed according to European standards: EN 1991-2, EN1992-1-1 and EN 1998-2. Aim of the performed analysis is to compare seismic behavior of these two structures and to detect the influence of column shapes on the seismic response. Seismic risk assessment is carried out by obtaining demand fragility curves. Non-linear model was constructed and time-history analysis was performed using thirty five pairs of horizontal ground motions selected to match site specific hazard. In performance based analysis, peak column drift ratio (CDR) was selected as engineering demand parameter (EDP). For seismic intensity measure (IM) spectral displacement was selected. Demand fragility curves that give probability of exceedance of certain value for chosen EDP were constructed and based on them conclusions were made.

Keywords: RC curved bridge, demand fragility curve, wall type column, nonlinear time-history analysis, circular column

Procedia PDF Downloads 334
5159 Quantifying Wave Attenuation over an Eroding Marsh through Numerical Modeling

Authors: Donald G. Danmeier, Gian Marco Pizzo, Matthew Brennan

Abstract:

Although wetlands have been proposed as a green alternative to manage coastal flood hazards because of their capacity to adapt to sea level rise and provision of multiple ecological and social co-benefits, they are often overlooked due to challenges in quantifying the uncertainty and naturally, variability of these systems. This objective of this study was to quantify wave attenuation provided by a natural marsh surrounding a large oil refinery along the US Gulf Coast that has experienced steady erosion along the shoreward edge. The vegetation module of the SWAN was activated and coupled with a hydrodynamic model (DELFT3D) to capture two-way interactions between the changing water level and wavefield over the course of a storm event. Since the marsh response to relative sea level rise is difficult to predict, a range of future marsh morphologies is explored. Numerical results were examined to determine the amount of wave attenuation as a function of marsh extent and the relative contributions from white-capping, depth-limited wave breaking, bottom friction, and flexing of vegetation. In addition to the coupled DELFT3D-SWAN modeling of a storm event, an uncoupled SWAN-VEG model was applied to a simplified bathymetry to explore a larger experimental design space. The wave modeling revealed that the rate of wave attenuation reduces for higher surge but was still significant over a wide range of water levels and outboard wave heights. The results also provide insights to the minimum marsh extent required to fully realize the potential wave attenuation so the changing coastal hazards can be managed.

Keywords: green infrastructure, wave attenuation, wave modeling, wetland

Procedia PDF Downloads 130
5158 History of Radical Politics in Sabon Birni District of Sokoto, 1950-1983

Authors: Jamilu Adamu

Abstract:

Radical political activities among the people of Northern Nigeria and Sabon Birni, in particular from the formation of the Northern Element Progressive Union (NEPU) and Northern People Congress (NPC) in the last decade of colonial rule, led to the dramatic spread of radical ideas that were expressed through party politics. The above two parties were said to be more prominent in each of the movements throughout the period covered by this study. The NEPU and NPC were said to have opposed one another in an attempt to establish their political control in the area. What is apparent about the nature of the opposition is that the earlier NEPU and People Redemption Party (PRP) emerged from the idea of liberating the common man (Talakawa) against all forms of oppression, thereby rejecting a contrary idea of supporting the native elites and their colonial collaborators as envisaged in the ideology of the later NPC and National Party of Nigeria (NPN). This laid the ground for ideological confrontation between the supporters of the two opposing wings all over the northern emirates and the Sabon Birni district in particular. The study used a qualitative method of data collection. This study examines the historical developments of radical party politics among the Gobirawa people of the Sabon Birni District of Sokoto. It also investigates the factors that inspired opposition politics among the Gobirawa people of Sabon Birni. These were analyses side-by-side with the role of the traditional leaders in the area in suppressing the activities of the opposition party.

Keywords: NEPU, NPC, radical politics, Sabon-Birni District

Procedia PDF Downloads 99
5157 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fin height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fin height has greater impact on performance factor than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer and pressure drop up to 21% and 56% compared to a 2D one, respectfully.

Keywords: three-dimensional micro-finned tube, heat transfer, friction factor, heat exchanger

Procedia PDF Downloads 113
5156 Variation of Phytoplankton Biomass in the East China Sea Based on MODIS Data

Authors: Yumei Wu, Xiaoyan Dang, Shenglong Yang, Shengmao Zhang

Abstract:

The East China Sea is one of four main seas in China, where there are many fishery resources. Some important fishing grounds, such as Zhousan fishing ground important to society. But the eco-environment is destroyed seriously due to the rapid developing of industry and economy these years. In this paper, about twenty-year satellite data from MODIS and the statistical information of marine environment from the China marine environmental quality bulletin were applied to do the research. The chlorophyll-a concentration data from MODIS were dealt with in the East China Sea and then used to analyze the features and variations of plankton biomass in recent years. The statistics method was used to obtain their spatial and temporal features. The plankton biomass in the Yangtze River estuary and the Taizhou region were highest. The high phytoplankton biomass usually appeared between the 88th day to the 240th day (end-March - August). In the peak time of phytoplankton blooms, the Taizhou islands was the earliest, and the South China Sea was the latest. The intensity and period of phytoplankton blooms were connected with the global climate change. This work give us confidence to use satellite data to do more researches about the China Sea, and it also provides some help for us to know about the eco-environmental variation of the East China Sea and regional effect from global climate change.

Keywords: the East China Sea, phytoplankton biomass, temporal and spatial variation, phytoplankton bloom

Procedia PDF Downloads 325
5155 Geotechnical and Mineralogical Properties of Clay Soils in the Second Organized Industrial Region, Konya, Turkey

Authors: Mustafa Yıldız, Ali Ulvi Uzer, Murat Olgun

Abstract:

In this study, geotechnical and mineralogical properties of gypsum containing clay basis which form the ground of Second Organized Industrial Zone in Konya province have been researched through comprehensive field and laboratory experiments. Although sufficient geotechnical research has not been performed yet, an intensive structuring in the region continues at present. The study area consists of mid-lake sediments formed by gypsum containing soft silt-clay basis which evolves to a large area. To determine the soil profile and geotechnical specifications; 18 drilling holes were opened and disturbed / undisturbed soil samples have been taken through shelby tubes within 1.5m intervals. Tests have been performed on these samples to designate the index and strength properties of soil. Besides, at all drilling holes Standart Penetration Tests have been done within 1.5m intervals. For the purpose of determining the mineralogical characteristics of the soil; all rock and X-RD analysis have been carried out on 6 samples which were taken from various depths through the soil profile. Strength and compressibility characteristics of the soil were defined with correlations using laboratory and field test results. Unconfined compressive strength, undrained cohesion, compression index varies between 16 kN/m2 and 405.4 kN/m2, 6.5 kN/m2 and 72 kN/m2, 0.066 and 0.864, respectively.

Keywords: Konya second organized industrial region, strength, compressibility, soft clay

Procedia PDF Downloads 306
5154 The Sub-Optimality of the Electricity Subsidy on Tube Wells in Balochistan (Pakistan): An Analysis Based on Socio-Cultural and Policy Distortions

Authors: Rameesha Javaid

Abstract:

Agriculture is the backbone of the economy of the province of Balochistan which is known as the ‘fruit basket’ of Pakistan. Its climate zones comprising highlands and plateaus, dependent on rain water, are more suited for the production of deciduous fruit. The vagaries of weather and more so the persistent droughts prompted the government to announce flat rates of electricity bills per month irrespective of the size of the farm, quantum or water used and the category of crop group. That has, no doubt, resulted in increased cropping intensity, more production and employment but has enormously burdened the official exchequer which picks up the residual bills in certain percentages amongst the federal and provincial governments and the local electricity company. This study tests the desirability of continuing the subsidy in the present mode. Optimization of social welfare of farmers has been the focus of the study with emphasis on the contribution of positive externalities and distortions caused in terms of negative externalities. By using the optimization technique with due allowance for distortions, it has been established that the subsidy calls for limiting policy distortions as they cause sub-optimal utilization of the tube well subsidy and improved policy programming. The sensitivity analysis with changed rankings of contributing variables towards social welfare does not significantly change the result. Therefore it leads to the net findings and policy recommendations of significantly reducing the subsidy size, correcting and curtailing policy distortions and targeting the subsidy grant more towards small farmers to generate more welfare by saving a sizeable amount from the subsidy for investment in the wellbeing of the farmers in rural Balochistan.

Keywords: distortion, policy distortion, socio-cultural distortion, social welfare, subsidy

Procedia PDF Downloads 286
5153 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages

Authors: Ya-Li Tsai

Abstract:

Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.

Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization

Procedia PDF Downloads 69
5152 Linkages of Environment with the Health Condition of Poor Women and Children in the Urban Areas of India

Authors: Barsharani Maharana

Abstract:

India is the country that shelters the largest number of poor. One of the major areas of concern in India is the unsatisfactory situation of the poor in social developmental and health parameters, not only in rural areas which are partly devoid of the facilities but also in the urban areas where the facilities are insufficient to provide services of a satisfactory quality. Objectives: 1) to examine the association between the environmental condition and health condition among poor women in urban areas. 2) to find out the significance of the effect of environment on the child health among the poor children. 3) to present the scenario of poor among highly urbanized and less urbanized states with respect to the health and environment. Data: data from National Family Health survey-3 and census are used to fulfill the objectives. Methodology: In this study, the standard of living condition of people living in urban areas is computed by taking some household characteristics and assets. People possessing low standard of living are considered as poor. Bivariate and multivariate analysis are employed to examine the effect of environment on poor women and children. A geographical information system is used to present the health and environmental condition of poor in highly and less urbanized states. Results: The findings reveal that the poor women who are not accessed to improved source of water, and sanitation facility are facing more health problems. Children who are living in a dirty environment and are not accessed to improved source of drinking water, among them prevalence of diarrhea and fever is found to be high. As well, the health condition of poor in highly urbanized states is dreadful. Policy implications: Government should emphasize on the implementation of programs regarding the improvement in the infrastructural facilities and health care treatment of urban poor.

Keywords: environment, urban poor, health, sanitation

Procedia PDF Downloads 278
5151 Trend Analysis of Annual Total Precipitation Data in Konya

Authors: Naci Büyükkaracığan

Abstract:

Hydroclimatic observation values ​​are used in the planning of the project of water resources. Climate variables are the first of the values ​​used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.

Keywords: trend analysis, precipitation, hydroclimatology, Konya

Procedia PDF Downloads 212
5150 Synthesis of Electrospun Polydimethylsiloxane (PDMS)/Polyvinylidene Fluoriure (PVDF) Nanofibrous Membranes for CO₂ Capture

Authors: Wen-Wen Wang, Qian Ye, Yi-Feng Lin

Abstract:

Carbon dioxide emissions are expected to increase continuously, resulting in climate change and global warming. As a result, CO₂ capture has attracted a large amount of research attention. Among the various CO₂ capture methods, membrane technology has proven to be highly efficient in capturing CO₂, because it can be scaled up, low energy consumptions and small area requirements for use by the gas separation. Various nanofibrous membranes were successfully prepared by a simple electrospinning process. The membrane contactor combined with chemical absorption and membrane process in the post-combustion CO₂ capture is used in this study. In a membrane contactor system, the highly porous and water-repellent nanofibrous membranes were used as a gas-liquid interface in a membrane contactor system for CO₂ absorption. In this work, we successfully prepared the polyvinylidene fluoride (PVDF) porous membranes with an electrospinning process. Afterwards, the as-prepared water-repellent PVDF porous membranes were used for the CO₂ capture application. However, the pristine PVDF nanofibrous membranes were wetted by the amine absorbents, resulting in the decrease in the CO₂ absorption flux, the hydrophobic polydimethylsiloxane (PDMS) materials were added into the PVDF nanofibrous membranes to improve the solvent resistance of the membranes. To increase the hydrophobic properties and CO₂ absorption flux, more hydrophobic surfaces of the PDMS/PVDF nanofibrous membranes are obtained by the grafting of fluoroalkylsilane (FAS) on the membranes surface. Furthermore, the highest CO₂ absorption flux of the PDMS/PVDF nanofibrous membranes is reached after the FAS modification with four times. The PDMS/PVDF nanofibrous membranes with 60 wt% PDMS addition can be a long and continuous operation of the CO₂ absorption and regeneration experiments. It demonstrates the as-prepared PDMS/PVDF nanofibrous membranes could potentially be used for large-scale CO₂ absorption during the post-combustion process in power plants.

Keywords: CO₂ capture, electrospinning process, membrane contactor, nanofibrous membranes, PDMS/PVDF

Procedia PDF Downloads 270
5149 Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity

Authors: Muhammad Tariq A. Chaudhary

Abstract:

Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study.

Keywords: bridge, FEM model, reinforced concrete pier, pile foundation, seismic loading, soil-structure interaction

Procedia PDF Downloads 230
5148 Effect of Aging Time and Mass Concentration on the Rheological Behavior of Vase of Dam

Authors: Hammadi Larbi

Abstract:

Water erosion, the main cause of the siltation of a dam, is a natural phenomenon governed by natural physical factors such as aggressiveness, climate change, topography, lithology, and vegetation cover. Currently, a vase from certain dams is released downstream of the dikes during devastation by hydraulic means. The vases are characterized by complex rheological behaviors: rheofluidification, yield stress, plasticity, and thixotropy. In this work, we studied the effect of the aging time of the vase in the dam and the mass concentration of the vase on the flow behavior of a vase from the Fergoug dam located in the Mascara region. In order to test the reproducibility of results, two replicates were performed for most of the experiments. The flow behavior of the vase studied as a function of storage time and mass concentration is analyzed by the Herschel Bulkey model. The increase in the aging time of the vase in the dam causes an increase in the yield stress and the consistency index of the vase. This phenomenon can be explained by the adsorption of the water by the vase and the increase in volume by swelling, which modifies the rheological parameters of the vase. The increase in the mass concentration in the vase leads to an increase in the yield stress and the consistency index as a function of the concentration. This behavior could be explained by interactions between the granules of the vase suspension. On the other hand, the increase in the aging time and the mass concentration of the vase in the dam causes a reduction in the flow index of the vase. The study also showed an exponential decrease in apparent viscosity with the increase in the aging time of the vase in the dam. If a vase is allowed to age long enough for the yield stress to be close to infinity, its apparent viscosity is also close to infinity; then the apparent viscosity also tends towards infinity; this can, for example, subsequently pose problems when dredging dams. For good dam management, it could be then deduced to reduce the dredging time of the dams as much as possible.

Keywords: vase of dam, aging time, rheological behavior, yield stress, apparent viscosity, thixotropy

Procedia PDF Downloads 18
5147 Desalination Performance of a Passive Solar-Driven Membrane Distiller: Effect of Middle Layer Material and Thickness

Authors: Glebert C. Dadol, Pamela Mae L. Ucab, Camila Flor Y. Lobarbio, Noel Peter B. Tan

Abstract:

Water scarcity is a global problem and membrane-based desalination technologies are one of the promising solutions to this problem. In this study, a passive solar-driven membrane distiller was fabricated and tested for its desalination performance. The distiller was composed of a TiNOX plate solar absorber, cellulose-based upper and lower hydrophilic layers, a hydrophobic middle layer, and aluminum heatsinks. The effect of the middle layer material and thickness on the desalination performance was investigated in terms of distillate productivity and salinity. The materials used for the middle layer were a screen mesh (2 mm, 4 mm, 6 mm thickness) to generate an air gap, a PTFE membrane (0.3 mm thickness)), and a combination of the screen mesh and the PTFE membrane (2.3 mm total thickness). Salt water (35 g/L NaCl) was desalinated using the distiller at a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate productivity of 1.08 L/m2-h was achieved using a 2-mm screen mesh (air gap) but it also resulted in a high distillate salinity of 25.20 g/L. Increasing the thickness of the air gap lowered the distillate salinity but also decreased the distillate productivity. The lowest salinity of 1.07 g/L was achieved using a 6-mm air gap but the productivity was reduced to 0.08 L/m2-h. The use of the hydrophobic PTFE membrane increased the productivity (0.44 L/m2-h) compared to a 6-mm air gap but produced a distillate with high salinity (16.68 g/L). When using a combination of the screen mesh and the PTFE membrane, the productivity was 0.13 L/m2-h and a distillate salinity of 1.61 g/L. The distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. The use of a combination of the air gap and PTFE membrane slightly increased the productivity with comparable distillate salinity. Modifications and optimizations to the distiller can be done to improve further its performance.

Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation

Procedia PDF Downloads 114