Search results for: cruise speed optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5827

Search results for: cruise speed optimization

877 Probabilistic Building Life-Cycle Planning as a Strategy for Sustainability

Authors: Rui Calejo Rodrigues

Abstract:

Building Refurbishing and Maintenance is a major area of knowledge ultimately dispensed to user/occupant criteria. The optimization of the service life of a building needs a special background to be assessed as it is one of those concepts that needs proficiency to be implemented. ISO 15686-2 Buildings and constructed assets - Service life planning: Part 2, Service life prediction procedures, states a factorial method based on deterministic data for building components life span. Major consequences result on a deterministic approach because users/occupants are not sensible to understand the end of components life span and so simply act on deterministic periods and so costly and resources consuming solutions do not meet global targets of planet sustainability. The estimation of 2 thousand million conventional buildings in the world, if submitted to a probabilistic method for service life planning rather than a deterministic one provide an immense amount of resources savings. Since 1989 the research team nowadays stating for CEES–Center for Building in Service Studies developed a methodology based on Montecarlo method for probabilistic approach regarding life span of building components, cost and service life care time spans. The research question of this deals with the importance of probabilistic approach of buildings life planning compared with deterministic methods. It is presented the mathematic model developed for buildings probabilistic lifespan approach and experimental data is obtained to be compared with deterministic data. Assuming that buildings lifecycle depends a lot on component replacement this methodology allows to conclude on the global impact of fixed replacements methodologies such as those on result of deterministic models usage. Major conclusions based on conventional buildings estimate are presented and evaluated under a sustainable perspective.

Keywords: building components life cycle, building maintenance, building sustainability, Montecarlo Simulation

Procedia PDF Downloads 201
876 Validation Study of Radial Aircraft Engine Model

Authors: Lukasz Grabowski, Tytus Tulwin, Michal Geca, P. Karpinski

Abstract:

This paper presents the radial aircraft engine model which has been created in AVL Boost software. This model is a one-dimensional physical model of the engine, which enables us to investigate the impact of an ignition system design on engine performance (power, torque, fuel consumption). In addition, this model allows research under variable environmental conditions to reflect varied flight conditions (altitude, humidity, cruising speed). Before the simulation research the identifying parameters and validating of model were studied. In order to verify the feasibility to take off power of gasoline radial aircraft engine model, some validation study was carried out. The first stage of the identification was completed with reference to the technical documentation provided by manufacturer of engine and the experiments on the test stand of the real engine. The second stage involved a comparison of simulation results with the results of the engine stand tests performed on a WSK ’PZL-Kalisz’. The engine was loaded by a propeller in a special test bench. Identifying the model parameters referred to a comparison of the test results to the simulation in terms of: pressure behind the throttles, pressure in the inlet pipe, and time course for pressure in the first inlet pipe, power, and specific fuel consumption. Accordingly, the required coefficients and error of simulation calculation relative to the real-object experiments were determined. Obtained the time course for pressure and its value is compatible with the experimental results. Additionally the engine power and specific fuel consumption tends to be significantly compatible with the bench tests. The mapping error does not exceed 1.5%, which verifies positively the model of combustion and allows us to predict engine performance if the process of combustion will be modified. The next conducted tests verified completely model. The maximum mapping error for the pressure behind the throttles and the inlet pipe pressure is 4 %, which proves the model of the inlet duct in the engine with the charging compressor to be correct.

Keywords: 1D-model, aircraft engine, performance, validation

Procedia PDF Downloads 330
875 Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry

Authors: Qianhui Li, Christoph H. Bruecker

Abstract:

Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss.

Keywords: flow separation, helical aortic flow, mechanical heart valve, particle image velocimetry

Procedia PDF Downloads 169
874 Design and Analysis of Hybrid Morphing Smart Wing for Unmanned Aerial Vehicles

Authors: Chetan Gupta, Ramesh Gupta

Abstract:

Unmanned aerial vehicles, of all sizes, are prime targets of the wing morphing concept as their lightweight structures demand high aerodynamic stability while traversing unsteady atmospheric conditions. In this research study, a hybrid morphing technology is developed to aid the trailing edge of the aircraft wing to alter its camber as a monolithic element rather than functioning as conventional appendages like flaps. Kinematic tailoring, actuation techniques involving shape memory alloys (SMA), piezoelectrics – individually fall short of providing a simplistic solution to the conundrum of morphing aircraft wings. On the other hand, the feature of negligible hysteresis while actuating using compliant mechanisms has shown higher levels of applicability and deliverability in morphing wings of even large aircrafts. This research paper delves into designing a wing section model with a periodic, multi-stable compliant structure requiring lower orders of topological optimization. The design is sub-divided into three smaller domains with external hyperelastic connections to achieve deflections ranging from -15° to +15° at the trailing edge of the wing. To facilitate this functioning, a hybrid actuation system by combining the larger bandwidth feature of piezoelectric macro-fibre composites and relatively higher work densities of shape memory alloy wires are used. Finite element analysis is applied to optimize piezoelectric actuation of the internal compliant structure. A coupled fluid-surface interaction analysis is conducted on the wing section during morphing to study the development of the velocity boundary layer at low Reynold’s numbers of airflow.

Keywords: compliant mechanism, hybrid morphing, piezoelectrics, shape memory alloys

Procedia PDF Downloads 302
873 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

Authors: David B. Tsuanyo, Didier Aussel, Yao Azoumah, Pierre Neveu

Abstract:

An innovative concept called “Flexy-Energy”is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energies sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel gensets and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel gensets. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand. This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Keywords: investments criteria, optimization, PV hybrid, sizing, rural electrification

Procedia PDF Downloads 433
872 Kinetics of Sugar Losses in Hot Water Blanching of Water Yam (Dioscorea alata)

Authors: Ayobami Solomon Popoola

Abstract:

Yam is majorly a carbohydrate food grown in most parts of the world. It could be boiled, fried or roasted for consumption in a variety of ways. Blanching is an established heat pre-treatment given to fruits and vegetables prior to further processing such as dehydration, canning, freezing etc. Losses of soluble solids during blanching has been a great problem because a reasonable quantity of the water-soluble nutrients are inevitably leached into the blanching water. Without blanching, the high residual levels of reducing sugars after extended storage produce a dark, bitter-tasting product because of the Maillard reactions of reducing sugars at frying temperature. Measurement and prediction of such losses are necessary for economic efficiency in production and to establish the level of effluent treatment of the blanching water. This paper aims at resolving this problem by investigating the effects of cube size and temperature on the rate of diffusional losses of reducing sugars and total sugars during hot water blanching of water-yam. The study was carried out using four temperature levels (65, 70, 80 and 90 °C) and two cubes sizes (0.02 m³ and 0.03 m³) at 4 times intervals (5, 10, 15 and 20 mins) respectively. Obtained data were fitted into Fick’s non-steady equation from which diffusion coefficients (Da) were obtained. The Da values were subsequently fitted into Arrhenius plot to obtain activation energies (Ea-values) for diffusional losses. The diffusion co-efficient were independent of cube size and time but highly temperature dependent. The diffusion coefficients were ≥ 1.0 ×10⁻⁹ m²s⁻¹ for reducing sugars and ≥ 5.0 × 10⁻⁹ m²s⁻¹ for total sugars. The Ea values ranged between 68.2 to 73.9 KJmol⁻¹ and 7.2 to 14.30 KJmol⁻¹ for reducing sugars and total sugars losses respectively. Predictive equations for estimating amount of reducing sugars and total sugars with blanching time of water-yam at various temperatures were also presented. The equation could be valuable in process design and optimization. However, amount of other soluble solids that might have leached into the water along with reducing and total sugars during blanching was not investigated in the study.

Keywords: blanching, kinetics, sugar losses, water yam

Procedia PDF Downloads 162
871 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic

Authors: Farahnaz Karami

Abstract:

Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.

Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic

Procedia PDF Downloads 54
870 Early Hypothyroidism after Radiotherapy for Nasopharyngeal Carcinoma

Authors: Nejla Fourati, Zied Fessi, Fatma Dhouib, Wicem Siala, Leila Farhat, Afef Khanfir, Wafa Mnejja, Jamel Daoud

Abstract:

Purpose: Radiation induced hypothyroidism in nasopharyngeal cancer (NPC) ranged from 15% to 55%. In reported data, it is considered as a common late complication of definitive radiation and is mainly observed 2 years after the end of treatment. The aim of this study was to evaluate the incidence of early hypothyroidism within 6 months after radiotherapy. Patients and methods: From June 2017 to February 2020, 35 patients treated with concurrent chemo-radiotherapy (CCR) for NPC were included in this prospective study. Median age was 49 years [23-68] with a sex ratio of 2.88. All patients received intensity modulated radiotherapy (IMRT) at a dose of 69.96 Gy in 33 daily fractions with weekly cisplatin (40mg/m²) chemotherapy. Thyroid stimulating hormone (TSH) and Free Thyroxine 4 (FT4) dosage was performed before the start of radiotherapy and 6 months after. Different dosimetric parameters for the thyroid gland were reported: the volume (cc); the mean dose (Dmean) and the %age of volume receiving more than 45 Gy (V45Gy). Wilcoxon Test was used to compare these different parameters between patients with or without hypothyroidism. Results: At baseline, 5 patients (14.3%) had hypothyroidism and were excluded from the analysis. For the remaining 30 patients, 9 patients (30%) developed a hypothyroidism 6 months after the end of radiotherapy. The median thyroid volume was 10.3 cc [4.6-23]. The median Dmean and V45Gy were 48.3 Gy [43.15-55.4] and 74.8 [38.2-97.9] respectively. No significant difference was noted for all studied parameters. Conclusion: Early hypothyroidism occurring within 6 months after CCR for NPC seems to be a common complication (30%) that should be screened. Good patient monitoring with regular dosage of TSH and FT4 makes it possible to treat hypothyroidism in asymptomatic phase. This would be correlated with an improvement in the quality of life of these patients. The results of our study do not show a correlation between the thyroid doses and the occurrence of hypothyroidism. This is probably related to the high doses received by the thyroid in our series. These findings encourage more optimization to limit thyroid doses and then the risk of radiation-induced hypothyroidism

Keywords: nasopharyngeal carcinoma, hypothyroidism, early complication, thyroid dose

Procedia PDF Downloads 125
869 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 93
868 Analysis of the Evolution of Landscape Spatial Patterns in Banan District, Chongqing, China

Authors: Wenyang Wan

Abstract:

The study of urban land use and landscape pattern is the current hotspot in the fields of planning and design, ecology, etc., which is of great significance for the construction of the overall humanistic ecosystem of the city and optimization of the urban spatial structure. Banan District, as the main part of the eastern eco-city planning of Chongqing Municipality, is a high ground for highlighting the ecological characteristics of Chongqing, realizing effective transformation of ecological value, and promoting the integrated development of urban and rural areas. The analytical methods of land use transfer matrix (GIS) and landscape pattern index (Fragstats) were used to study the characteristics and laws of the evolution of land use landscape pattern in Banan District from 2000 to 2020, which provide some reference value for Banan District to alleviate the ecological contradiction of landscape. The results of the study show that ① Banan District is rich in land use types, of which the area of cultivated land will still account for 57.15% of the total area of the landscape until 2020, accounting for an absolute advantage in land use structure of Banan District; ② From 2000 to 2020, land use conversion in Banan District is characterized as Cropland > woodland > grassland > shrubland > built-up land > water bodies > wetlands, with cropland converted to built-up land being the largest; ③ From 2000 to 2020, the landscape elements of Banan District were distributed in a balanced way, and the landscape types were rich and diversified, but due to the influence of human interference, it also presented the characteristics that the shape of the landscape elements tended to be irregular, and the dominant patches were distributed in a scattered manner, and the patches had poor connectivity. It is recommended that in future regional ecological construction, the layout should be rationally optimized, the relationship between landscape components should be coordinated, the connectivity between landscape patches should be strengthened, and the degree of landscape fragmentation should be reduced.

Keywords: land use transfer, landscape pattern evolution, GIS and Fragstats, Banan district

Procedia PDF Downloads 64
867 Clinicians’ Experiences with IT Systems in a UK District General Hospital: A Qualitative Analysis

Authors: Sunny Deo, Eve Barnes, Peter Arnold-Smith

Abstract:

Introduction: Healthcare technology is a rapidly expanding field in healthcare, with enthusiasts suggesting a revolution in the quality and efficiency of healthcare delivery based on the utilisation of better e-healthcare, including the move to paperless healthcare. The role and use of computers and programmes for healthcare have been increasing over the past 50 years. Despite this, there is no standardised method of assessing the quality of hardware and software utilised by frontline healthcare workers. Methods and subjects: Based on standard Patient Related Outcome Measures, a questionnaire was devised with the aim of providing quantitative and qualitative data on clinicians’ perspectives of their hospital’s Information Technology (IT). The survey was distributed via the Institution’s Intranet to all contracted doctors, and the survey's qualitative results were analysed. Qualitative opinions were grouped as positive, neutral, or negative and further sub-grouped into speed/usability, software/hardware, integration, IT staffing, clinical risk, and wellbeing. Analysis was undertaken on the basis of doctor seniority and by specialty. Results: There were 196 responses, with 51% from senior doctors (consultant grades) and the rest from junior grades, with the largest group of respondents 52% coming from medicine specialties. Differences in the proportion of principle and sub-groups were noted by seniority and specialty. Negative themes were by far the commonest stated opinion type, occurring in almost 2/3’s of responses (63%), while positive comments occurred less than 1 in 10 (8%). Conclusions: This survey confirms strongly negative attitudes to the current state of electronic documentation and IT in a large single-centre cohort of hospital-based frontline physicians after two decades of so-called progress to a paperless healthcare system. Greater use would provide further insights and potentially optimise the focus of development and delivery to improve the quality and effectiveness of IT for clinicians and their patients.

Keywords: information technology, electronic patient records, digitisation, paperless healthcare

Procedia PDF Downloads 81
866 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs

Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao

Abstract:

In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.

Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs

Procedia PDF Downloads 231
865 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves

Authors: Dmytro Zubov, Francesco Volponi

Abstract:

In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.

Keywords: heat wave, D-wave, forecast, Ising model, quantum computing

Procedia PDF Downloads 492
864 Enhancing Sewage Sludge Management through Integrated Hydrothermal Liquefaction and Anaerobic Digestion: A Comparative Study

Authors: Harveen Kaur Tatla, Parisa Niknejad, Rajender Gupta, Bipro Ranjan Dhar, Mohd. Adana Khan

Abstract:

Sewage sludge management presents a pressing challenge in the realm of wastewater treatment, calling for sustainable and efficient solutions. This study explores the integration of Hydrothermal Liquefaction (HTL) and Anaerobic Digestion (AD) as a promising approach to address the complexities associated with sewage sludge treatment. The integration of these two processes offers a complementary and synergistic framework, allowing for the mitigation of inherent limitations, thereby enhancing overall efficiency, product quality, and the comprehensive utilization of sewage sludge. In this research, we investigate the optimal sequencing of HTL and AD within the treatment framework, aiming to discern which sequence, whether HTL followed by AD or AD followed by HTL, yields superior results. We explore a range of HTL working temperatures, including 250°C, 300°C, and 350°C, coupled with residence times of 30 and 60 minutes. To evaluate the effectiveness of each sequence, a battery of tests is conducted on the resultant products, encompassing Total Ammonia Nitrogen (TAN), Chemical Oxygen Demand (COD), and Volatile Fatty Acids (VFA). Additionally, elemental analysis is employed to determine which sequence maximizes energy recovery. Our findings illuminate the intricate dynamics of HTL and AD integration for sewage sludge management, shedding light on the temperature-residence time interplay and its impact on treatment efficiency. This study not only contributes to the optimization of sewage sludge treatment but also underscores the potential of integrated processes in sustainable waste management strategies. The insights gleaned from this research hold promise for advancing the field of wastewater treatment and resource recovery, addressing critical environmental and energy challenges.

Keywords: Anaerobic Digestion (AD), aqueous phase, energy recovery, Hydrothermal Liquefaction (HTL), sewage sludge management, sustainability.

Procedia PDF Downloads 68
863 Identification of Ideal Plain Sufu (Fermented Soybean Curds) Based on Ideal Profile Method and Assessment of the Consistency of Ideal Profiles Obtained from Consumers

Authors: Yan Ping Chen, Hau Yin Chung

Abstract:

The Ideal Profile Method (IPM) is a newly developed descriptive sensory analysis conducted by consumers without previous training. To perform this test, both the perceived and the ideal intensities from the judgements of consumers on products’ attributes, as well as their hedonic ratings were collected for formulating an ideal product (the most liked one). In addition, Ideal Profile Analysis (IPA) was conducted to check the consistency of the ideal data at both the panel and consumer levels. In this test, 12 commercial plain sufus bought from Hong Kong local market were tested by 113 consumers according to the IPM, and rated on 22 attributes. Principal component analysis was used to profile the perceived and the ideal spaces of tested products. The consistency of ideal data was then checked by IPA. The result showed that most consumers shared a common ideal. It was observed that the sensory product space and the ideal product space were structurally similar. Their first dimensions all opposed products with intense fermented related aroma to products with less fermented related aroma. And the predicted ideal profile (the estimated liking score around 7.0 in a 9.0-point scale) got higher hedonic score than the tested products (the average liking score around 6.0 in a 9.0-point scale). For the majority of consumers (95.2%), the stated ideal product considered as a potential ideal through checking the R2 coefficient value. Among all the tested products, sample-6 was the most popular one with consumer liking percentage around 30%. This product with less fermented and moldy flavour but easier to melt in mouth texture possessed close sensory profile according to the ideal product. This experiment validated that data from untrained consumers could be guided as useful information. Appreciated sensory characteristics could be served as reference in the optimization of the commercial plain sufu.

Keywords: ideal profile method, product development, sensory evaluation, sufu (fermented soybean curd)

Procedia PDF Downloads 184
862 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 214
861 Improvement of the Geometric of Dental Bridge Framework through Automatic Program

Authors: Rong-Yang Lai, Jia-Yu Wu, Chih-Han Chang, Yung-Chung Chen

Abstract:

The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure.

Keywords: dental bridge, finite element analysis, framework, automatic program

Procedia PDF Downloads 276
860 Big Data Analytics and Public Policy: A Study in Rural India

Authors: Vasantha Gouri Prathapagiri

Abstract:

Innovations in ICT sector facilitate qualitative life style for citizens across the globe. Countries that facilitate usage of new techniques in ICT, i.e., big data analytics find it easier to fulfil the needs of their citizens. Big data is characterised by its volume, variety, and speed. Analytics involves its processing in a cost effective way in order to draw conclusion for their useful application. Big data also involves into the field of machine learning, artificial intelligence all leading to accuracy in data presentation useful for public policy making. Hence using data analytics in public policy making is a proper way to march towards all round development of any country. The data driven insights can help the government to take important strategic decisions with regard to socio-economic development of her country. Developed nations like UK and USA are already far ahead on the path of digitization with the support of Big Data analytics. India is a huge country and is currently on the path of massive digitization being realised through Digital India Mission. Internet connection per household is on the rise every year. This transforms into a massive data set that has the potential to improvise the public services delivery system into an effective service mechanism for Indian citizens. In fact, when compared to developed nations, this capacity is being underutilized in India. This is particularly true for administrative system in rural areas. The present paper focuses on the need for big data analytics adaptation in Indian rural administration and its contribution towards development of the country on a faster pace. Results of the research focussed on the need for increasing awareness and serious capacity building of the government personnel working for rural development with regard to big data analytics and its utility for development of the country. Multiple public policies are framed and implemented for rural development yet the results are not as effective as they should be. Big data has a major role to play in this context as can assist in improving both policy making and implementation aiming at all round development of the country.

Keywords: Digital India Mission, public service delivery system, public policy, Indian administration

Procedia PDF Downloads 154
859 Semi-pilot Biooxidation of Refractory Sulfide-Gold Ore Using Ferroplasma Acidophilum: D-(+)-Sucsore as a Booster and Columns Tests

Authors: Mohammad Hossein Karimi Darvanjooghi, Sara Magdouli, Satinder Kaur Brar

Abstract:

It has been reported that the microorganism’s attachment to the surfaces of ore samples is a key factor that influences the biooxidation in pretreatment for recovery of gold in sulfide-bearing ores. In this research, the implementation of D-(+)-Sucrose on the biooxidation of ore samples were studied in a semi-pilot experiment. The experiments were carried out in five separate jacketed columns (1 m height and 6 cm diameter) at a constant temperature of 37.5 ̊C and saturated humidity. The airflow rate and recycling solution flow rate were studied in the research and the optimum operating condition were reported. The ore sample (0.49 ppm gold grade) was obtained from the Hammond Reef mine site containing 15 wt.% of pyrite which included 98% of gold according to the results of micrograph images. The experiments were continued up to 100 days while air flow rates were chosen to be 0.5, 1, 1.5, 2, and 3 lit/min and the recycling solution (Containing 9K media and 0.4 wt.% D-(+)-Sucrose) flow rates were kept 5, 8, 15 ml/hr. The results indicated that the addition of D-(+)-Sucrose increased the bacterial activity due to the overproduction of extracellular polymeric substance (EPS) up to 95% and for the condition that the recycling solution and air flow rate were chosen to be 8 ml/hr and 2 lit/min, respectively, the maximum pyrite dissolution of 76% was obtained after 60 days. The results indicated that for the air flow rates of 0.5, 1, 1.5, 2, and 3 lit/min the ratio of daily pyrite dissolution per daily solution lost were found to be 0.025, 0.033, 0.031, 0.043, and 0.009 %-pyrite dissolution/ml-lost. The implementation of this microorganisms and the addition of D-(+)-Sucrose will enhance the efficiency of gold recovery through faster biooxidation process and leads to decrease in the time and energy of operation toward desired target; however, still other parameters including particle size distribution, agglomeration, aeration design, chemistry of recycling solution need to be controlled and monitored for reaching the optimum condition.

Keywords: column tests, biooxidation, gold recovery, Ferroplasma acidophilum, optimization

Procedia PDF Downloads 68
858 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization

Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey

Abstract:

Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).

Keywords: drying time, pretreatment, response surface methodlogy, total phenolic

Procedia PDF Downloads 127
857 The Impact of Intelligent Control Systems on Biomedical Engineering and Research

Authors: Melkamu Tadesse Getachew

Abstract:

Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.

Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling

Procedia PDF Downloads 34
856 Development of Transmission and Packaging for Parallel Hybrid Light Commercial Vehicle

Authors: Vivek Thorat, Suhasini Desai

Abstract:

The hybrid electric vehicle is widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and low emissions at competitive costs. Retro fitment of hybrid components into a conventional vehicle for achieving better performance is the best solution so far. But retro fitment includes major modifications into a conventional vehicle with a high cost. This paper focuses on the development of a P3x hybrid prototype with rear wheel drive parallel hybrid electric Light Commercial Vehicle (LCV) with minimum and low-cost modifications. This diesel Hybrid LCV is different from another hybrid with regard to the powertrain. The additional powertrain consists of continuous contact helical gear pair followed by chain and sprocket as a coupler for traction motor. Vehicle powertrain which is designed for the intended high-speed application. This work focuses on targeting of design, development, and packaging of this unique parallel diesel-electric vehicle which is based on multimode hybrid advantages. To demonstrate the practical applicability of this transmission with P3x hybrid configuration, one concept prototype vehicle has been build integrating the transmission. The hybrid system makes it easy to retrofit existing vehicle because the changes required into the vehicle chassis are a minimum. The additional system is designed for mainly five modes of operations which are engine only mode, electric-only mode, hybrid power mode, engine charging battery mode and regenerative braking mode. Its driving performance, fuel economy and emissions are measured and results are analyzed over a given drive cycle. Finally, the output results which are achieved by the first vehicle prototype during experimental testing is carried out on a chassis dynamometer using MIDC driving cycle. The results showed that the prototype hybrid vehicle is about 27% faster than the equivalent conventional vehicle. The fuel economy is increased by 20-25% approximately compared to the conventional powertrain.

Keywords: P3x configuration, LCV, hybrid electric vehicle, ROMAX, transmission

Procedia PDF Downloads 248
855 Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application

Authors: A. Nour Eddine, D. Chalet, L. Aixala, P. Chessé, X. Faure, N. Hatat

Abstract:

Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.

Keywords: internal combustion engine application, Seebeck, thermo-electricity, waste heat recovery

Procedia PDF Downloads 240
854 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: diversion, reservoir, zonal coverage, carbonate, sandstone

Procedia PDF Downloads 421
853 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis

Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens

Abstract:

The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.

Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol

Procedia PDF Downloads 468
852 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux

Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour

Abstract:

Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.

Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity

Procedia PDF Downloads 78
851 Load Comparison between Different Positions during Elite Male Basketball Games: A Sport Metabolomics Approach

Authors: Kayvan Khoramipour, Abbas Ali Gaeini, Elham Shirzad, Øyvind Sandbakk

Abstract:

Basketball has different positions with individual movement profiles, which may influence metabolic demands. Accordingly, the present study aimed to compare the movement and metabolic load between different positions during elite male basketball games. Five main players of 14 teams (n = 70), who participated in the 2017-18 Iranian national basketball leagues, were selected as participants. The players were defined as backcourt (Posts 1-3) and frontcourt (Posts 4-5). Video based time motion analysis (VBTMA) was performed based on players’ individual running and shuffling speed using Dartfish software. Movements were classified into high and low intensity running with and without having the ball, as well as high and low-intensity shuffling and static movements. Mean frequency, duration, and distance were calculated for each class, except for static movements where only frequency was calculated. Saliva samples were collected from each player before and after 40-minute basketball games and analyzed using metabolomics. Principal component analysis (PCA) and Partial least square discriminant analysis (PLSDA) (for metabolomics data) and independent T-tests (for VBTMA) were used as statistical tests. Movement frequency, duration, and distance were higher in backcourt players (all p ≤ 0.05), while static movement frequency did not differ. Saliva samples showed that the levels of Taurine, Succinic acid, Citric acid, Pyruvate, Glycerol, Acetoacetic acid, Acetone, and Hypoxanthine were all higher in backcourt players, whereas Lactate, Alanine, 3-Metyl Histidine, and Methionine were higher in frontcourt players Based on metabolomics, we demonstrate that backcourt and frontcourt players have different metabolic profiles during games, where backcourt players move clearly more during games and therefore rely more on aerobic energy, whereas frontcourt players rely more on anaerobic energy systems in line with less dynamic but more static movement patterns.

Keywords: basketball, metabolomics, saliva, sport loadomics

Procedia PDF Downloads 108
850 Extraction, Recovery and Bioactivities of Chlorogenic Acid from Unripe Green Coffee Cherry Waste of Coffee Processing Industry

Authors: Akkasit Jongjareonrak, Supansa Namchaiya

Abstract:

Unripe green coffee cherry (UGCC) accounting about 5 % of total raw material weight receiving to the coffee bean production process and is, in general, sorting out and dump as waste. The UGCC is known to rich in phenolic compounds such as caffeoylquinic acids, feruloylquinic acids, chlorogenic acid (CGA), etc. CGA is one of the potent bioactive compounds using in the nutraceutical and functional food industry. Therefore, this study aimed at optimization the extraction condition of CGA from UGCC using Accelerated Solvent Extractor (ASE). The ethanol/water mixture at various ethanol concentrations (50, 60 and 70 % (v/v)) was used as an extraction solvent at elevated pressure (10.34 MPa) and temperatures (90, 120 and 150 °C). The recovery yield of UGCC crude extract, total phenolic content, CGA content and some bioactivities of UGCC extract were investigated. Using of ASE at lower temperature with higher ethanol concentration provided higher CGA content in the UGCC crude extract. The maximum CGA content was observed at the ethanol concentration of 70% ethanol and 90 °C. The further purification of UGCC crude extract gave a higher purity of CGA with a purified CGA yield of 4.28 % (w/w, of dried UGCC sample) containing 72.52 % CGA equivalent. The antioxidant activity and antimicrobial activity of purified CGA extract were determined. The purified CGA exhibited the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity at 0.88 mg Trolox equivalent/mg purified CGA sample. The antibacterial activity against Escherichia coli was observed with the minimum inhibitory concentration (MIC) at 3.12 mg/ml and minimum bactericidal concentration (MBC) at 12.5 mg/ml. These results suggested that using of high concentration of ethanol and low temperature under elevated pressure of ASE condition could accelerate the extraction of CGA from UGCC. The purified CGA extract could be a promising alternative source of bioactive compound using for nutraceutical and functional food industry.

Keywords: bioactive, chlorogenic acid, coffee, extraction

Procedia PDF Downloads 254
849 Aerodynamic Design and Optimization of Vertical Take-Off and Landing Type Unmanned Aerial Vehicles

Authors: Enes Gunaltili, Burak Dam

Abstract:

The airplane history started with the Wright brothers' aircraft and improved day by day. With the help of this advancements, big aircrafts replace with small and unmanned air vehicles, so in this study we design this type of air vehicles. First of all, aircrafts mainly divided into two main parts in our day as a rotary and fixed wing aircrafts. The fixed wing aircraft generally use for transport, cargo, military and etc. The rotary wing aircrafts use for same area but there are some superiorities from each other. The rotary wing aircraft can take off vertically from the ground, and it can use restricted area. On the other hand, rotary wing aircrafts generally can fly lower range than fixed wing aircraft. There are one kind of aircraft consist of this two types specifications. It is named as VTOL (vertical take-off and landing) type aircraft. VTOLs are able to takeoff and land vertically and fly horizontally. The VTOL aircrafts generally can fly higher range from the rotary wings but can fly lower range from the fixed wing aircraft but it gives beneficial range between them. There are many other advantages of VTOL aircraft from the rotary and fixed wing aircraft. Because of that, VTOLs began to use for generally military, cargo, search, rescue and mapping areas. Within this framework, this study answers the question that how can we design VTOL as a small unmanned aircraft systems for search and rescue application for benefiting the advantages of fixed wing and rotary wing aircrafts by eliminating the disadvantages of them. To answer that question and design VTOL aircraft, multidisciplinary design optimizations (MDO), some theoretical terminologies, formulations, simulations and modelling systems based on CFD (Computational Fluid Dynamics) is used in same time as design methodology to determine design parameters and steps. As a conclusion, based on tests and simulations depend on design steps, suggestions on how the VTOL aircraft designed and advantages, disadvantages, and observations for design parameters are listed, then VTOL is designed and presented with the design parameters, advantages, and usage areas.

Keywords: airplane, rotary, fixed, VTOL, CFD

Procedia PDF Downloads 277
848 Serosurveillance of Measles Virus amongst Vaccinated Children of a Rural Population of Sindh

Authors: Zeb Hussain, Muhammad Asif Qureshi, Shaheen Sharafat

Abstract:

Background: Measles is a contagious viral infection common in childhood. Vaccination against measles is included in the expanded program of immunization (EPI). However, and alarmingly, a high mortality rate is observed due to measles infection in Pakistan. Moreover a recent outbreak of measles in various areas of Pakistan further highlights the problem. It is therefore important to investigate measles specific IgG (antibody) levels in our population. Objective: To quantify measles specific IgG antibodies amongst vaccinated children in district Qamber Shahdadkot, Sindh. Methodology: This cross-sectional study was conducted at the Microbiology section of the Dow-Diagnostic-Research-and-Reference-Laboratory (DDRRL), DUHS after Institutional Review Board approval (IRB-516/DUHS/-14) during August-December-2014. A total of 173 participants (residents of district Qamber Shahdadkot, Sindh) aged between 1-5 years were recruited in the study. Blood samples were collected as per standard phlebotomy guidelines. Blood was stored at 4 °C overnight. Samples were subsequently spun at a speed of 10000rpm to separate sera, which were divided into small aliquots to be frozen at -20 °C. Frozen sera were transported to the DDRRL on dry ice. Measles specific IgG (antibody) titers were quantified using enzyme linked immunosorbant assay (ELISA). Results: Blood was collected from a total of 173 individuals ranging between 1-5 years of age. Of these, a total of 88 participants were males and 85 were females. Of the 173 investigated samples, only 53 (30.6%) showed protective IgG titers against measles while 120 (69%) were sero-negative. Measles specific IgG antibodies titers were higher in female participants compared to the males. Conclusion: Our data demonstrate that a substantial percentage of vaccinated children in district Qamber-Shahdadkot did not have protective antibody titres against measles. It is therefore extremely important to investigate measles specific IgG levels in various parts of Pakistan in order to implement appropriate protective measures.

Keywords: sero-surveillance, measles, vaccinated children, Pakistan

Procedia PDF Downloads 325