Search results for: maximum quantum yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6730

Search results for: maximum quantum yield

1810 A Comparison of Generation Dependent Brain Targeting Potential of(Poly Propylene Mine) Dendrimers

Authors: Nitin Dwivedi, Jigna Shah

Abstract:

Aim and objective of study: This article indicates a comparison among various generations of dendrimers, a dendrimer is a bioactive material has repetitively branched molecule and used for delivery of various therapeutic active agents. This debut report compares the effect various generations of PPI dendrimers for brain targeting and management of neurodegenerative disorders potential on single platform. This report involves the study of the various mechanism of synthesis ligand anchored various generations PPI dendrimers deliver the drug directly to the CNS, prove their effectiveness in the management of the various neurodegenerative disease. Material and Methods: The Memantine an anti-Alzheimer drug loaded in different generations (3.0G, 4.0G, and 5.0G) of PPI dendrimers which were synthesized were synthesized. The various studies investigate the effect of PPI dendrimers generation on different characteristic parameters i.e. synthesis procedure, drug loading, release behavior, hemolysis profile at different concentration, MRI study for determine the route drug from olfactory transfer, animal model study in vitro, as well as in vivo performance. The outcomes of the investigation indicate drug delivery benefit as well as superior biocompatibility of 4.0G PPI dendrimer over 3.0G and 5.0G dendrimer, respectively. Results and Conclusion: The above study indicate the superiority of in drug delivery system with maximum drug utilization and minimize the drug dose for neurodegenerative disorder over 5.0G PPI dendrimers. So, 4.0G PPI dendrimers are the safe formulations for the symptomatic treatment of the neurodegenerative disorder. The fifth-generation poly(propyleneimine) (PPI) dendrimers, inherent toxicity due to the presence of many peripheral cationic groups is the major issue that limits their applicability.

Keywords: Alzheimer disease, generation, memantine, PPI

Procedia PDF Downloads 667
1809 Hydrogel Hybridizing Temperature-Cured Dissolvable Gelatin Microspheres as Non-Anchorage Dependent Cell Carriers for Tissue Engineering Applications

Authors: Dong-An Wang

Abstract:

All kinds of microspheres have been extensively employed as carriers for drug, gene and therapeutic cell delivery. Most therapeutic cell delivery microspheres rely on a two-step methodology: fabrication of microspheres and subsequent seeding of cells onto them. In this study, we have developed a novel one-step cell encapsulation technique using a convenient and instant water-in-oil single emulsion approach to form cell-encapsulated gelatin microspheres. This technology is adopted for hyaline cartilage tissue engineering, in which autologous chondrocytes are used as therapeutic cells. Cell viability was maintained throughout and after the microsphere formation (75-100 µm diameters) process that avoids involvement of any covalent bonding reactions or exposure to any further chemicals. Further encapsulation of cell-laden microspheres in alginate gels were performed under 4°C via a prompt process. Upon the formation of alginate constructs, they were immediately relocated into CO2 incubator where the temperature was maintained at 37°C; under this temperature, the cell-laden gelatin microspheres dissolved within hours to yield similarly sized cavities and the chondrocytes were therefore suspended within the cavities inside the alginate gel bulk. Hence, the gelatin cell-laden microspheres served two roles: as cell delivery vehicles which can be removable through temperature curing, and as porogens within an alginate hydrogel construct to provide living space for cell growth and tissue development as well as better permeability for mutual diffusions. These cell-laden microspheres, namely “temperature-cured dissolvable gelatin microsphere based cell carriers” (tDGMCs), were further encapsulated in a chondrocyte-laden alginate scaffold system and analyzed by WST-1, gene expression analyses, biochemical assays, histology and immunochemistry stains. The positive results consistently demonstrated the promise of tDGMC technology in delivering these non-anchorage dependent cells (chondrocytes). It can be further conveniently translated into delivery of other non-anchorage dependent cell species, including stem cells, progenitors or iPS cells, for regeneration of tissues in internal organs, such as engineered hepatogenesis or pancreatic regeneration.

Keywords: biomaterials, tissue engineering, microsphere, hydrogel, porogen, anchorage dependence

Procedia PDF Downloads 396
1808 Seismic Performance of Concrete Moment Resisting Frames in Western Canada

Authors: Ali Naghshineh, Ashutosh Bagchi

Abstract:

Performance-based seismic design concepts are increasingly being adopted in various jurisdictions. While the National Building Code of Canada (NBCC) is not fully performance-based, it provides some features of a performance-based code, such as displacement control and objective-based solutions. Performance evaluation is an important part of a performance-based design. In this paper, the seismic performance of a set of code-designed 4, 8 and 12 story moment resisting concrete frames located in Victoria, BC, in the western part of Canada at different hazard levels namely, SLE (Service Level Event), DLE (Design Level Event) and MCE (Maximum Considered Event) has been studied. The seismic performance of these buildings has been evaluated based on FEMA 356 and ATC 72 procedures, and the nonlinear time history analysis. Pushover analysis has been used to investigate the different performance levels of these buildings and adjust their design based on the corresponding target displacements. Since pushover analysis ignores the higher mode effects, nonlinear dynamic time history using a set of ground motion records has been performed. Different types of ground motion records, such as crustal and subduction earthquake records have been used for the dynamic analysis to determine their effects. Results obtained from push over analysis on inter-story drift, displacement, shear and overturning moment are compared to those from the dynamic analysis.

Keywords: seismic performance., performance-based design, concrete moment resisting frame, crustal earthquakes, subduction earthquakes

Procedia PDF Downloads 264
1807 Population Dynamics and Land Use/Land Cover Change on the Chilalo-Galama Mountain Range, Ethiopia

Authors: Yusuf Jundi Sado

Abstract:

Changes in land use are mostly credited to human actions that result in negative impacts on biodiversity and ecosystem functions. This study aims to analyze the dynamics of land use and land cover changes for sustainable natural resources planning and management. Chilalo-Galama Mountain Range, Ethiopia. This study used Thematic Mapper 05 (TM) for 1986, 2001 and Landsat 8 (OLI) data 2017. Additionally, data from the Central Statistics Agency on human population growth were analyzed. Semi-Automatic classification plugin (SCP) in QGIS 3.2.3 software was used for image classification. Global positioning system, field observations and focus group discussions were used for ground verification. Land Use Land Cover (LU/LC) change analysis was using maximum likelihood supervised classification and changes were calculated for the 1986–2001 and the 2001–2017 and 1986-2017 periods. The results show that agricultural land increased from 27.85% (1986) to 44.43% and 51.32% in 2001 and 2017, respectively with the overall accuracies of 92% (1986), 90.36% (2001), and 88% (2017). On the other hand, forests decreased from 8.51% (1986) to 7.64 (2001) and 4.46% (2017), and grassland decreased from 37.47% (1986) to 15.22%, and 15.01% in 2001 and 2017, respectively. It indicates for the years 1986–2017 the largest area cover gain of agricultural land was obtained from grassland. The matrix also shows that shrubland gained land from agricultural land, afro-alpine, and forest land. Population dynamics is found to be one of the major driving forces for the LU/LU changes in the study area.

Keywords: Landsat, LU/LC change, Semi-Automatic classification plugin, population dynamics, Ethiopia

Procedia PDF Downloads 86
1806 Development and Characterization of a Film Based on Hydroxypropyl Methyl Cellulose Incorporated by a Phenolic Extract of Fennel and Reinforced by Magnesium Oxide: In Vivo - in Vitro

Authors: Mazouzi Nourdjihane, K. Boutemak, A. Haddad, Y. Chegreouche

Abstract:

In the last decades, biodegradable polymers have been considered as one of the most popular options for the delivery of drugs and various conventional doses. The film forming system (FFS) can be used in topical, transdermal, ophthalmic, oral and gastric applications. Recently this system has focused on improving drug delivery, which can promote drug release. In this context, the aim of this study is to create polymeric film-forming systems for the stomach and to evaluate and test their gastroprotective effects, comparing the effects of changes in composition on film characteristics. It uses a plant-derived polyphenol extract extracted from fennel to demonstrate anti-inflammatory activity in the film. The films are made from hydroxypropyl methylcellulose polymer and different types of plastic, glycerol and polyethylene glycol. The ffs properties show that MgO-glycerol-reinforced hydroxypropylmethylcellulose (HPMC-MgO-Gly) is better than that based on MgO-PEG-reinforced hydroxypropylmethylcellulose (HPMC-MgO-PEG). It is durable, has a faster drying time and allows for maximum recovery. Water vapor strength and blowing speed and other additions show another advantage of HPMC-MgO-Gly compared to HPMC-MgO-PEG, indicating good adhesion between the support (top) and film production. In this study, the gastroprotective effect of fennel phenol extract was found, showing that this plant material has a gastroprotective effect on ulcers and that the film can absorb the active substance.

Keywords: film formin system, hydroxypropyl methylcellulose, magnesium oxide, in vivo

Procedia PDF Downloads 66
1805 Bioefficacy of Catharanthus roseus on Reproductive Performance of Red Cotton Bug, Dysdercus koenigii (Heteroptera: Pyrrhocoriedae)

Authors: Sunil Kayesth, Kamal Kumar Gupta

Abstract:

Influence of hexane extract of Catharanthus roseus leaves on reproductive fitness of Dysdercus koenigii was investigated by evaluating mating behaviour, oviposition behaviour and fertility of the treated insects. The volatiles of the plants were extracted in hexane by ‘cold extraction method’. The insects were treated with the extracts by ‘dry film residual method’. Our studies indicated that the treated male showed altered courtship behaviour, less number of mounting attempts, took more time to mate, less percent successful mating, and more disrupted mating. Similarly, the treated female exhibited either mating refusal or neutral behaviour towards courting males. The maximum disruption in the mating was observed in a cross T♂ X T♀, where males and females were treated with Catharanthus extract. The Dysdercus treated with Catharanthus extracts also showed marked reduction in their reproductive success. The treated females laid lesser number of egg batches and eggs in their life span. Catharanthus extract was effective in alteration of the oviposition behaviour. The eggs laid by the mated females were fertile indicating insemination of the mated females. However, the percent hatchability of the eggs laid by the treated females was less than control. The GC-MS analysis of the extract revealed the presence of juvenile hormone mimics, and the intermediates of juvenile hormone biosynthesis. Therefore, some of these compounds individually or synergistically alter reproductive behaviour of Dysdercus.

Keywords: Catharanthus roseus, Dysdercus koenigii, GC-MS analysis, reproductive performance

Procedia PDF Downloads 261
1804 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations

Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu

Abstract:

This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.

Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform

Procedia PDF Downloads 338
1803 Seismic Considerations in Case Study of Kindergartens Building Design: Ensuring Safety and Structural Integrity

Authors: Al-Naqdi Ibtehal Abdulmonem

Abstract:

Kindergarten buildings are essential for early childhood education, providing a secure environment for children's development. However, they are susceptible to seismic forces, which can endanger occupants during earthquakes. This article emphasizes the importance of conducting thorough seismic analysis and implementing proper structural design to protect the well-being of children, staff, and visitors. By prioritizing structural integrity and considering functional requirements, engineers can mitigate risks associated with seismic events. The use of specialized software like ETABS is crucial for designing earthquake-resistant kindergartens. An analysis using ETABS software compared the structural performance of two single-story kindergartens in Iraq's Ministry of Education, designed with and without seismic considerations. The analysis aimed to assess the impact of seismic design on structural integrity and safety. The kindergarten was designed with seismic considerations, including moment frames. In contrast, the same kindergarten was analyzed without seismic effects, revealing a lack of structural elements to resist lateral forces, rendering it vulnerable to structural failure during an earthquake. Maximum major shear increased over 4 times and over 5 times for bending moment in both kindergartens designed with seismic considerations induced by lateral loads and seismic forces. This component of shear force is vital for designing elements to resist lateral loads and ensure structural stability.

Keywords: seismic analysis, structural design, lateral loads, earthquake resistance, major shear, ETABS

Procedia PDF Downloads 70
1802 Study of Bagmati River Pollution Level and Remediation of Heavy Metal using Microbial Fuel Cell

Authors: Jarina Joshi, Sujeeta Maharjan

Abstract:

This study was used to assess the potential of MFCs in removing heavy metals from the urban Bagmati River while (2) simultaneously producing electricity. Upon physicochemical and biological analysis of the collected water samples from three different locations during summer and winter, it was found that the Chemical Oxygen Demand (COD) and Total Suspended Solid (TSS) values exceeded the Ministry of Environment’s (MOE 2010) guidelines, and the river was contaminated with lead (Pb). The meta-genomic analysis, revealed the presence of four electrogenic bacterial genera: Pseudomonas, Rhodobacter, Rhodoferax, and Shewanella. Upon attainment of optimal configuration - COD 3500mg/L, a Graphite rod anode (TSA-13.31cm2), Platinum cathode (10×10×0.5mm) as electrodes, and a 1% bacterial consortium- MFCs with inoculum enriched Bagmati water, showed a maximum voltage of 0.08 ± 0.001 V, a current density of 0.8 ± 0.01 A/m2, and a power density of 0.070 ± 0.002 W/m2. Comparatively higher metal removal was also achieved in this operation, with approximately 100% As (III), 99% Pb (II), 98% Hg (II), and at least 25% Cr (VI) removal. Our results highlight MFC to be able to remediate heavy metals and also generating electricity. The research showed that though the pollution in Bagmati River had decreased in terms of parametric concentrations as researched in Baniya et al, 2019, it is still polluted exceeding guideline values, possibly indicating distortion of natural restoration capacity of river. Additionally, it also showed that with downstream flow of river, it indeed becomes less polluted but human activities isn’t letting this natural process to revive.

Keywords: bagmati, heavy metal contamination, heavy metal remediation, bio-electricity

Procedia PDF Downloads 5
1801 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model

Authors: Tanu Khanuja, Harikrishnan N. Unni

Abstract:

Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.

Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress

Procedia PDF Downloads 163
1800 Fungicidal Action of the Mycogenic Silver Nanoparticles Against Aspergillus niger Inciting Collar Rot Disease in Groundnut (Arachis hypogaea L.)

Authors: R. Sarada Jayalakshmi Devi B. Bhaskar, S. Khayum Ahammed, T. N. V. K. V. Prasad

Abstract:

Use of bioagents and biofungicides is safe to manage the plant diseases and to avoid human health hazards which improves food security. Myconanotechnology is the study of nanoparticles synthesis using fungi and their applications. The present work reports on preparation, characterization and antifungal activity of biogenic silver nanoparticles produced by the fungus Trichoderma sp. which was collected from groundnut rhizosphere. The culture filtrate of Trichoderma sp. was used for the reduction of silver ions (Ag+) in AgNO3 solution to the silver (Ag0) nanoparticles. The different ages (4 days, 6 days, 8 days, 12 days, and 15 days) of culture filtrates were screened for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Vis spectrophotometer, particle size and zeta potential analyzer, Fourier Transform Infrared Spectrophotometer (FTIR) and Transmission Electron Microscopy. Among all the treatments the silver nitrate solution treated with six days aged culture filtrate of Trichoderma sp. showed the UV absorption peak at 440 nm with maximum intensity (0.59) after 24 hrs incubation. The TEM micrographs showed the spherical shaped silver nanoparticles with an average size of 30 nm. The antifungal activity of silver nanoparticles against Aspergillus niger causing collar rot disease in groundnut and aspergillosis in humans showed the highest per cent inhibition at 100 ppm concentration (74.8%). The results points to the usage of these mycogenic AgNPs in agriculture to control plant diseases.

Keywords: groundnut rhizosphere, Trichoderma sp., silver nanoparticles synthesis, antifungal activity

Procedia PDF Downloads 499
1799 Transformation of ectA Gene From Halomonas elongata in Tomato Plant

Authors: Narayan Moger, Divya B., Preethi Jambagi, Krishnaveni C. K., Apsana M. R., B. R. Patil, Basvaraj Bagewadi

Abstract:

Salinity is one of the major threats to world food security. Considering the requirement for salt tolerant crop plants in the present study was undertaken to clone and transferred the salt tolerant ectA gene from marine ecosystem into agriculture crop system to impart salinity tolerance. Ectoine is the compatible solute which accumulates in the cell membrane, is known to be involved in salt tolerance activity in most of the Halophiles. The present situation is insisting to development of salt tolerant transgenic lines to combat abiotic stress. In this background, the investigation was conducted to develop transgenic tomato lines by cloning and transferring of ectA gene is an ectoine derivative capable of enzymatic action for the production of acetyl-diaminobutyric acid. The gene ectA is involved in maintaining the osmotic balance of plants. The PCR amplified ectA gene (579bp) was cloned into T/A cloning vector (pTZ57R/T). The construct pDBJ26 containing ectA gene was sequenced by using gene specific forward and reverse primers. Sequence was analyzed using BLAST algorithm to check similarity of ectA gene with other isolates. Highest homology of 99.66 per cent was found with ectA gene sequences of isolates Halomonas elongata with the available sequence information in NCBI database. The ectA gene was further sub cloned into pRI101-AN plant expression vector and transferred into E. coli DH5α for its maintenance. Further pDNM27 was mobilized into A. tumefaciens LBA4404 through tri-parental mating system. The recombinant Agrobacterium containing pDNM27 was transferred into tomato plants through In planta plant transformation method. Out of 300 seedlings, co-cultivated only twenty-seven plants were able to well establish under the greenhouse condition. Among twenty-seven transformants only twelve plants showed amplification with gene specific primers. Further work must be extended to evaluate the transformants at T1 and T2 generations for ectoine accumulation, salinity tolerance, plant growth and development and yield.

Keywords: salinity, computable solutes, ectA, transgenic, in planta transformation

Procedia PDF Downloads 81
1798 An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds

Authors: Karol Rodriguez-Peña, Martha L. Macias-Rubalcava, Leticia Rocha-Zavaleta, Sergio Sanchez

Abstract:

A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization.

Keywords: amphipterygium adstringens, cytotoxicity, streptomyces scabrisporus, steffimycin

Procedia PDF Downloads 365
1797 Production Increase of C-Central Wells Baher Essalm-Libya

Authors: Walid Ben Husein, Emad Krekshi, Malek Essnni

Abstract:

The Bahr Essalam gas-condensate field is located off the Libyan coast and is currently being produced by Mellitah Oil and Gas (MOG). Gas and condensate are produced from the Bahr Essalam reservoir through a mixture of platform and subsea wells, with the subsea wells being gathered at the western manifolds and delivered to the Sabratha platform via a 22-inch pipeline. Gas is gathered and dehydrated on the Sabratha platform and then delivered to the Mellitah gas plant via an existing 36-inch gas export pipeline. The condensate separated on the Sabratha platform will be delivered to the Mellitah gas plant via an existing 10-inch export pipeline. The Bahr Essalam Phase II project includes 2 production wells (CC16 & CC17) at C-Central A connected to the Sabratha platform via a new 10.9 km long 10”/14” production pipeline. Production rates from CC16 and CC17 have exceeded the maximum planned rate of 40 MMSCFD per well. A hydrothermal analysis was conducted to review and Verify input data, focusing on the variation of flowing well head as a function of flowrate as well as Review available input data against the previous design input data to determine the extent of change. The steady-state and transient simulations performed with Olga yielded coherent results and confirmed the possibility of achieving flow rates of up to 60MMSCFD per well without exceeding the design temperatures, pressures, and velocities.

Keywords: Bahr Essalam, Mellitah Oil and Gas, production flow rates, steady state, transient, OLGA.

Procedia PDF Downloads 10
1796 Biodegrading Potentials of Plant Growth - Promoting Bacteria on Insecticides Used in Agricultural Soil

Authors: Chioma Nwakanma, Onyeka Okoh Irene, Emmanuel Eze

Abstract:

Pesticide residues left in agricultural soils after cropping are always accumulative, difficult to degrade and harmful to animals, plants, soil and human health in general. The biodegrading potential of pesticides- resistant PGPB on soil pollution was investigated using in situ remediation technique following recommended standards. In addition, screening for insecticide utilization, maximum insecticide concentration tolerance, insecticide biodegradation and insecticide residues analyses via gas chromatographic/electron column detector were determined. The location of bacterial degradation genes was also determined. Three plant growth-promoting rhizophere (PGPR) were isolated and identified according to 16S rRNA as Paraburkholderia tropica, Burkolderia glumae and Achromobacter insolitus. From the results, all the three isolates showed phosphate solubilizing traits and were able to grow on nitrogen free medium. The isolates were able to utilize the insecticide as sole carbon source and increase in biomass. They were statistically significantly tolerant to all the insecticide concentrations screened. The gas chromatographic profiles of the insecticide residues showed a reduction in the peak areas of the insecticides, indicating degradation. The bacterial consortium had the lowest peak areas, showing the highest degradation efficiency. The genes responsible for degradation were found to be in the plasmids of the isolates. Therefore, the use of PGPR is recommended for bioremediation of agricultural soil insecticide polluted areas and can also enhance soil fertility.

Keywords: biodegradation, rhizosphere, insecticides utilization, agricultural soil

Procedia PDF Downloads 114
1795 Investigations of Metals and Metal-Antibrowning Agent Effects on Polyphenol Oxidase Activity from Red Poppy Leaf

Authors: Gulnur Arabaci

Abstract:

Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaver rhoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.

Keywords: inhibition, metal, red poppy, poly phenol oxidase (PPO)

Procedia PDF Downloads 328
1794 The Relationship between Life Event Stress, Depressive Thoughts, and Working Memory Capacity

Authors: Eid Abo Hamza, Ahmed Helal

Abstract:

Purpose: The objective is to measure the capacity of the working memory, ie. the maximum number of elements that can be retrieved and processed, by measuring the basic functions of working memory (inhibition/transfer/update), and also to investigate its relationship to life stress and depressive thoughts. Methods: The study sample consisted of 50 students from Egypt. A cognitive task was designed to measure the working memory capacity based on the determinants found in previous research, which showed that cognitive tasks are the best measurements of the functions and capacity of working memory. Results: The results indicated that there were statistically significant differences in the level of life stress events (high/low) on the task of measuring the working memory capacity. The results also showed that there were no statistically significant differences between males and females or between academic major on the task of measuring the working memory capacity. Furthermore, the results reported that there was no statistically significant effect of the interaction of the level of life stress (high/low) and gender (male/female) on the task of measuring working memory capacity. Finally, the results showed that there were significant differences in the level of depressive thoughts (high/low) on the task of measuring working memory. Conclusions: The current research concludes that neither the interaction of stressful life events, gender, and academic major, nor the interaction of depressive thoughts, gender, and academic major, influence on working memory capacity.

Keywords: working memory, depression, stress, life event

Procedia PDF Downloads 161
1793 A Study of Flooding Detention Space Efficiency in Different Lands Uses : The Case in Zhoushui River Downstream Catchment in Taiwan

Authors: Jie-Ying Wu, Kuo-Hao Weng, Jin-Cheng Fu

Abstract:

This study proposes changes to land use for the purposes of water retention and runoff reduction, with the aim of reducing the frequency of flooding. This study uses the Zhuoshui River in Taiwan as a case study, designing different land use planning strategies, and setting up various detention spaces. The HEC-HMS model developed by the Hydrology Research Center of the U.S. Army Corps of Engineers is used to calculate the decrease in runoff using various planning strategies, during five precipitation events of increasing return periods. This study finds that a maximum decrease in runoff of 14 million square meters can result by changing the form of land cover and storm detention in non-urban agricultural and river zones. This is due to the fact that non-urban land accounts for 96% of the area under study. Greatest efficacy was demonstrated in a two-year return period, with results ranging from 16% to 52%. The efficacy of a 100-year return period rated from 3% to 8%. Urban area detentions consist of agricultural paddy fields, storm water ponds and rainwater retention systems in building basements. Although urban areas can provide one million cubic meters of runoff storage, this result is insignificant due to the fact that urban area constitutes only 4% of the study area. By changing land cover, a 2-year return period has a 9% efficacy, and a 100-year return period has a 2% efficacy.

Keywords: flood detention space, land-use, spatial planning, Zhuoshuei River, Taiwan

Procedia PDF Downloads 379
1792 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 96
1791 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization

Authors: Shahrukh Ahmad, Purnendu Bose

Abstract:

Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.

Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs

Procedia PDF Downloads 79
1790 A Novel Machining Method and Tool-Path Generation for Bent Mandrel

Authors: Hong Lu, Yongquan Zhang, Wei Fan, Xiangang Su

Abstract:

Bent mandrel has been widely used as precise mould in automobile industry, shipping industry and aviation industry. To improve the versatility and efficiency of turning method of bent mandrel with fixed rotational center, an instantaneous machining model based on cutting parameters and machine dimension is prospered in this paper. The spiral-like tool path generation approach in non-axisymmetric turning process of bent mandrel is developed as well to deal with the error of part-to-part repeatability in existed turning model. The actual cutter-location points are calculated by cutter-contact points, which are obtained from the approach of spiral sweep process using equal-arc-length segment principle in polar coordinate system. The tool offset is set to avoid the interference between tool and work piece is also considered in the machining model. Depend on the spindle rotational angle, synchronization control of X-axis, Z-axis and C-axis is adopted to generate the tool-path of the turning process. The simulation method is developed to generate NC program according to the presented model, which includes calculation of cutter-location points and generation of tool-path of cutting process. With the approach of a bent mandrel taken as an example, the maximum offset of center axis is 4mm in the 3D space. Experiment results verify that the machining model and turning method are appropriate for the characteristics of bent mandrel.

Keywords: bent mandrel, instantaneous machining model, simulation method, tool-path generation

Procedia PDF Downloads 336
1789 Effect of Acid-Basic Treatments of Lingocellulosic Material Forest Wastes Wild Carob on Ethyl Violet Dye Adsorption

Authors: Abdallah Bouguettoucha, Derradji Chebli, Tariq Yahyaoui, Hichem Attout

Abstract:

The effect of acid -basic treatment of lingocellulosic material (forest wastes wild carob) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorption efficiency was higher for treated of lingocellulosic material with HCl than for treated with KOH. Maximum biosorption capacity was 170 and 130 mg/g, for treated of lingocellulosic material with HCl than for treated with KOH at pH 6 respectively. It was also found that the time to reach equilibrium takes less than 25 min for both treated materials. The adsorption of basic dye (i.e., ethyl violet or basic violet 4) was carried out by varying some process parameters, such as initial concentration, pH and temperature. The adsorption process can be well described by means of a pseudo-second-order reaction model showing that boundary layer resistance was not the rate-limiting step, as confirmed by intraparticle diffusion since the linear plot of Qt versus t^0.5 did not pass through the origin. In addition, experimental data were accurately expressed by the Sips equation if compared with the Langmuir and Freundlich isotherms. The values of ΔG° and ΔH° confirmed that the adsorption of EV on acid-basic treated forest wast wild carob was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase of the randomness at the treated lingocellulosic material -solution interface during the adsorption process.

Keywords: adsorption, isotherm models, thermodynamic parameters, wild carob

Procedia PDF Downloads 277
1788 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 65
1787 Surface Defect-engineered Ceo₂−x by Ultrasound Treatment for Superior Photocatalytic H₂ Production and Water Treatment

Authors: Nabil Al-Zaqri

Abstract:

Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth, and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2₋ₓ nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsiccrystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO₂₋ₓ revealed higher crystallinity, as well as morphological optimization, and the presence of oxygen vacancies is verified through Raman, X-rayphotoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spinresonance analyses. Oxygen vacancies accelerate the redox cycle between Ce₄+ and Ce₃+ by prolongingphotogenerated charge recombination. The ultrasound-treated pristine CeO₂ sample achieved excellenthydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Ourpromising findings demonstrated that ultrasonic treatment causes the formation of surface oxygenvacancies and improves photocatalytic hydrogen evolution and pollution degradation. Conclusion: Defect engineering of the ceria nanoparticles with oxygen vacancies was achieved for the first time using low-frequency ultrasound treatment. The U-CeO₂₋ₓsample showed high crystallinity, and morphological changes were observed. Due to the acoustic cavitation effect, a larger surface area and small particle size were observed. The ultrasound treatment causes particle aggregation and surface defects leading to oxygen vacancy formation. The XPS, Raman spectroscopy, PL spectroscopy, and ESR results confirm the presence of oxygen vacancies. The ultrasound-treated sample was also examined for pollutant degradation, where 1O₂was found to be the major active species. Hence, the ultrasound treatment influences efficient photocatalysts for superior hydrogen evolution and an excellent photocatalytic degradation of contaminants. The prepared nanostructure showed excellent stability and recyclability. This work could pave the way for a unique post-synthesis strategy intended for efficient photocatalytic nanostructures.

Keywords: surface defect, CeO₂₋ₓ, photocatalytic, water treatment, H₂ production

Procedia PDF Downloads 141
1786 The Effect of a Saturated Kink on the Dynamics of Tungsten Impurities in the Plasma Core

Authors: H. E. Ferrari, R. Farengo, C. F. Clauser

Abstract:

Tungsten (W) will be used in ITER as one of the plasma facing components (PFCs). The W could migrate to the plasma center. This could have a potentially deleterious effect on plasma confinement. Electron cyclotron resonance heating (ECRH) can be used to prevent W accumulation. We simulated a series of H mode discharges in ASDEX U with PFC containing W, where central ECRH was used to prevent W accumulation in the plasma center. The experiments showed that the W density profiles were flat after a sawtooth crash, and become hollow in between sawtooth crashes when ECRH has been applied. It was also observed that a saturated kink mode was active in these conditions. We studied the effect of saturated kink like instabilities on the redistribution of W impurities. The kink was modeled as the sum of a simple analytical equilibrium (large aspect ratio, circular cross section) plus the perturbation produced by the kink. A numerical code that follows the exact trajectories of the impurity ions in the total fields and includes collisions was employed. The code is written in Cuda C and runs in Graphical Processing Units (GPUs), allowing simulations with a large number of particles with modest resources. Our simulations show that when the W ions have a thermal velocity distribution, the kink has no effect on the W density. When we consider the plasma rotation, the kink can affect the W density. When the average passing frequency of the W particles is similar to the frequency of the kink mode, the expulsion of W ions from the plasma core is maximum, and the W density shows a hollow structure. This could have implications for the mitigation of W accumulation.

Keywords: impurity transport, kink instability, tungsten accumulation, tungsten dynamics

Procedia PDF Downloads 171
1785 The Effects of Three Months of HIIT on Plasma Adiponectin on Overweight College Men

Authors: M. J. Pourvaghar, M. E. Bahram, M. Sayyah, Sh. Khoshemehry

Abstract:

Adiponectin is a cytokine secreted by the adipose tissue that functions as an anti-inflammatory, antiathrogenic and anti-diabetic substance. Its density is inversely correlated with body mass index. The purpose of this research was to examine the effect of 12 weeks of high intensity interval training (HIIT) with the level of serum adiponectin and some selected adiposity markers in overweight and fat college students. This was a clinical research in which 24 students with BMI between 25 kg/m2 to 30 kg/m2. The sample was purposefully selected and then randomly assigned into two groups of experimental (age =22.7±1.5 yr.; weight = 85.8±3.18 kg and height =178.7±3.29 cm) and control (age =23.1±1.1 yr.; weight = 79.1±2.4 kg and height =181.3±4.6 cm), respectively. The experimental group participated in an aerobic exercise program for 12 weeks, three sessions per weeks at a high intensity between 85% to 95% of maximum heart rate (considering the over load principle). Prior and after the termination of exercise protocol, the level of serum adiponectin, BMI, waist to hip ratio, and body fat percentages were calculated. The data were analyzed by using SPSS: PC 16.0 and statistical procedure such as ANCOVA, was used. The results indicated that 12 weeks of intensive interval training led to the increase of serum adiponectin level and decrease of body weight, body fat percent, body mass index and waist to hip ratio (P < 0.05). Based on the results of this research, it may be concluded that participation in intensive interval training for 12 weeks is a non-invasive treatment to increase the adiponectin level while decreasing some of the anthropometric indices associated with obesity or being overweight.

Keywords: adiponectin, cardiovascular, interval, overweight, training

Procedia PDF Downloads 317
1784 Optical Emission Studies of Laser Produced Lead Plasma: Measurements of Transition Probabilities of the 6P7S → 6P2 Transitions Array

Authors: Javed Iqbal, R. Ahmed, M. A. Baig

Abstract:

We present new data on the optical emission spectra of the laser produced lead plasma using a pulsed Nd:YAG laser at 1064 nm (pulse energy 400 mJ, pulse width 5 ns, 10 Hz repetition rate) in conjunction with a set of miniature spectrometers covering the spectral range from 200 nm to 720 nm. Well resolved structure due to the 6p7s → 6p2 transition array of neutral lead and a few multiplets of singly ionized lead have been observed. The electron temperatures have been calculated in the range (9000 - 10800) ± 500 K using four methods; two line ratio, Boltzmann plot, Saha-Boltzmann plot and Morrata method whereas, the electron number densities have been determined in the range (2.0 – 8.0) ± 0.6 ×1016 cm-3 using the Stark broadened line profiles of neutral lead lines, singly ionized lead lines and hydrogen Hα-line. Full width at half maximum (FWHM) of a number of neutral and singly ionized lead lines have been extracted by the Lorentzian fit to the experimentally observed line profiles. Furthermore, branching fractions have been deduced for eleven lines of the 6p7s → 6p2 transition array in lead whereas the absolute values of the transition probabilities have been calculated by combining the experimental branching fractions with the life times of the excited levels The new results are compared with the existing data showing a good agreement.

Keywords: LIBS, plasma parameters, transition probabilities, branching fractions, stark width

Procedia PDF Downloads 283
1783 The Effects of Time and Cyclic Loading to the Axial Capacity for Offshore Pile in Shallow Gas

Authors: Christian H. Girsang, M. Razi B. Mansoor, Noorizal N. Huang

Abstract:

An offshore platform was installed in 1977 at about 260km offshore West Malaysia at the water depth of 73.6m. Twelve (12) piles were installed with four (4) are skirt piles. The piles have 1.219m outside diameter and wall thickness of 31mm and were driven to 109m below seabed. Deterministic analyses of the pile capacity under axial loading were conducted using the current API (American Petroleum Institute) method and the four (4) CPT-based methods: the ICP (Imperial College Pile)-method, the NGI (Norwegian Geotechnical Institute)-Method, the UWA (University of Western Australia)-method and the Fugro-method. A statistical analysis of the model uncertainty associated with each pile capacity method was performed. There were two (2) piles analysed: Pile 1 and piles other than Pile 1, where Pile 1 is the pile that was most affected by shallow gas problems. Using the mean estimate of soil properties, the five (5) methods used for deterministic estimation of axial pile capacity in compression predict an axial capacity from 28 to 42MN for Pile 1 and 32 to 49MN for piles other than Pile 1. These values refer to the static capacity shortly after pile installation. They do not include the effects of cyclic loading during the design storm or time after installation on the axial pile capacity. On average, the axial pile capacity is expected to have increased by about 40% because of ageing since the installation of the platform in 1977. On the other hand, the cyclic loading effects during the design storm may reduce the axial capacity of the piles by around 25%. The study concluded that all piles have sufficient safety factor when the pile aging and cyclic loading effect are considered, as all safety factors are above 2.0 for maximum operating and storm loads.

Keywords: axial capacity, cyclic loading, pile ageing, shallow gas

Procedia PDF Downloads 345
1782 Interdisciplinary Approach for Economic Production of Oil and Gas Reserves: Application of Geothermal Energy for Enhanced Oil Recovery

Authors: Dharmit Viroja, Prerakkumar Shah, Rajanikant Gajera, Ruchit Shah

Abstract:

With present scenario of aging oil and gas fields with high water cuts, volatile oil prices and increasing greenhouse gas emission, the need for alleviating such issues has necessitated for oil and gas industry to make the maximum out of available assets, infrastructure and reserves in mother Earth. Study undertaken emphasizes on utilizing Geothermal Energy under specific reservoir conditions for Enhanced oil Recovery (EOR) to boost up production. Allied benefits of this process include mitigation of electricity problem in remote fields and controlled CO-emission. Utilization of this energy for EOR and increasing economic life of field could surely be rewarding. A new way to value oil lands would be considered if geothermal co-production is integrated in the field development program. Temperature profile of co-produced fluid across its journey is a pivotal issue which has been studied. Geo pressured reservoirs resulting from trapped brine under an impermeable bed is also a frontier for exploitation. Hot geothermal fluid is a by-product of large number of oil and gas wells, historically this hot water has been seen as an inconvenience; however, it can be looked at as a useful resource. The production of hot fluids from abandoned and co-production of hot fluids from producing wells has potential to prolong life of oil and gas fields. The study encompasses various factors which are required for use of this technology and application of this process across various phases of oil and gas value chain. Interdisciplinary approach in oil and gas value chain has shown potential for economic production of estimated oil and gas reserves.

Keywords: enhanced oil recovery, geo-pressured reservoirs, geothermal energy, oil and gas value chain

Procedia PDF Downloads 342
1781 Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials

Authors: Johnson Rotimi Oluremi, A. Adedayo Adegbola, A. Samson Adediran, O. Solomon Oladapo

Abstract:

Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil.

Keywords: spent engine oil, lateritic soil, cement kiln dust, stabilization, compaction, unconfined compressive strength

Procedia PDF Downloads 389