Search results for: bagmati
3 Study of Bagmati River Pollution Level and Remediation of Heavy Metal using Microbial Fuel Cell
Authors: Jarina Joshi, Sujeeta Maharjan
Abstract:
This study was used to assess the potential of MFCs in removing heavy metals from the urban Bagmati River while (2) simultaneously producing electricity. Upon physicochemical and biological analysis of the collected water samples from three different locations during summer and winter, it was found that the Chemical Oxygen Demand (COD) and Total Suspended Solid (TSS) values exceeded the Ministry of Environment’s (MOE 2010) guidelines, and the river was contaminated with lead (Pb). The meta-genomic analysis, revealed the presence of four electrogenic bacterial genera: Pseudomonas, Rhodobacter, Rhodoferax, and Shewanella. Upon attainment of optimal configuration - COD 3500mg/L, a Graphite rod anode (TSA-13.31cm2), Platinum cathode (10×10×0.5mm) as electrodes, and a 1% bacterial consortium- MFCs with inoculum enriched Bagmati water, showed a maximum voltage of 0.08 ± 0.001 V, a current density of 0.8 ± 0.01 A/m2, and a power density of 0.070 ± 0.002 W/m2. Comparatively higher metal removal was also achieved in this operation, with approximately 100% As (III), 99% Pb (II), 98% Hg (II), and at least 25% Cr (VI) removal. Our results highlight MFC to be able to remediate heavy metals and also generating electricity. The research showed that though the pollution in Bagmati River had decreased in terms of parametric concentrations as researched in Baniya et al, 2019, it is still polluted exceeding guideline values, possibly indicating distortion of natural restoration capacity of river. Additionally, it also showed that with downstream flow of river, it indeed becomes less polluted but human activities isn’t letting this natural process to revive.Keywords: bagmati, heavy metal contamination, heavy metal remediation, bio-electricity
Procedia PDF Downloads 02 Identification of Groundwater Potential Zones Using Geographic Information System and Multi-Criteria Decision Analysis: A Case Study in Bagmati River Basin
Authors: Hritik Bhattarai, Vivek Dumre, Ananya Neupane, Poonam Koirala, Anjali Singh
Abstract:
The availability of clean and reliable groundwater is essential for the sustainment of human and environmental health. Groundwater is a crucial resource that contributes significantly to the total annual supply. However, over-exploitation has depleted groundwater availability considerably and led to some land subsidence. Determining the potential zone of groundwater is vital for protecting water quality and managing groundwater systems. Groundwater potential zones are marked with the assistance of Geographic Information System techniques. During the study, a standard methodology was proposed to determine groundwater potential using an integration of GIS and AHP techniques. When choosing the prospective groundwater zone, accurate information was generated to get parameters such as geology, slope, soil, temperature, rainfall, drainage density, and lineament density. However, identifying and mapping potential groundwater zones remains challenging due to aquifer systems' complex and dynamic nature. Then, ArcGIS was incorporated with a weighted overlay, and appropriate ranks were assigned to each parameter group. Through data analysis, MCDA was applied to weigh and prioritize the different parameters based on their relative impact on groundwater potential. There were three probable groundwater zones: low potential, moderate potential, and high potential. Our analysis showed that the central and lower parts of the Bagmati River Basin have the highest potential, i.e., 7.20% of the total area. In contrast, the northern and eastern parts have lower potential. The identified potential zones can be used to guide future groundwater exploration and management strategies in the region.Keywords: groundwater, geographic information system, analytic hierarchy processes, multi-criteria decision analysis, Bagmati
Procedia PDF Downloads 1051 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal
Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali
Abstract:
The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management
Procedia PDF Downloads 81